CN113277609A - 针对难降解有机污染地下水的双氧化修复处理方法 - Google Patents

针对难降解有机污染地下水的双氧化修复处理方法 Download PDF

Info

Publication number
CN113277609A
CN113277609A CN202110774835.2A CN202110774835A CN113277609A CN 113277609 A CN113277609 A CN 113277609A CN 202110774835 A CN202110774835 A CN 202110774835A CN 113277609 A CN113277609 A CN 113277609A
Authority
CN
China
Prior art keywords
solution
underground water
pollution
sodium persulfate
groundwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110774835.2A
Other languages
English (en)
Inventor
苗竹
任贝
刘新
冯国杰
倪鑫鑫
王腾飞
赵越
孙炜
方华祥
秦森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Geoenviron Engineering and Technology Inc
Original Assignee
Beijing Geoenviron Engineering and Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Geoenviron Engineering and Technology Inc filed Critical Beijing Geoenviron Engineering and Technology Inc
Priority to CN202110774835.2A priority Critical patent/CN113277609A/zh
Publication of CN113277609A publication Critical patent/CN113277609A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明公开了一种针对难降解有机污染地下水的双氧化修复处理方法,包括:监测地下水的污染特征参数,注入硫酸亚铁溶液至地下水pH值低于5,1‑2小时内,注入浓度不低于7%的双氧水,形成芬顿氧化体系;12小时后,注入10%‑15%浓度过硫酸钠溶液,1‑2小时内,注入pH值>10的氢氧化钠溶液,预留2‑3天的反应时间;按照硫酸亚铁溶液‑双氧水‑过硫酸钠溶液‑氢氧化钠溶液的顺序循环分批次添加药剂,直至污染特征参数降低至修复目标要求。通过本发明的技术方案,能够选择最合理的药剂施用参数,采用严格的药剂添加顺序和间隔时间投加,保证对污染物处理的双氧化体系协同增效作用,达到长效可维持且氧化能力更强的修复处理效果。

Description

针对难降解有机污染地下水的双氧化修复处理方法
技术领域
本发明涉及污染修复技术领域,尤其涉及一种针对难降解有机污染地下水的双氧化修复处理方法。
背景技术
随着环保法规的更新进步,对于污染地下水修复治理的要求逐渐完善,大量化工企业遗留场地的污染地下水修复治理问题逐渐暴露出来,区别于一般污染场景(如污水处理设施跑冒滴漏、冶炼或含重金属废液的泄漏等)的地下水污染情况,化工生产企业遗留地块的污染地下水中由于含有生产原料、中间体或成品杂质等非常规有机物,对目标污染物的识别、风险评估的计算和修复治理施工都带来了新的问题,特别是对于这类复杂难降解有机污染物的修复处理,常规的氧化方式难以持续、高效的达到分解污染物的目的。
发明内容
针对上述问题,本发明提供了一种针对难降解有机污染地下水的双氧化修复处理方法,通过对污染区域地下水的污染特征参数的监测,可根据污染物的浓度进行实验室小试和现场施工调试,从而能够针对不同地质结构、污染分布和污染程度选择最合理的药剂施用参数,采用的双氧化体系使反应体系的酸碱度维持平稳中性范围,且双氧水和过硫酸钠协同激活的氧化能力相互增效,采用严格的药剂添加顺序和间隔时间投加,保证对复杂难降解污染物处理的协同增效作用,相比于一般氧化方法达到长效可维持且氧化能力更强的修复处理效果,满足地下水中复杂难降解有机污染物的修复处理需求。
为实现上述目的,本发明提供了一种针对难降解有机污染地下水的双氧化修复处理方法,包括:
通过对污染区域地下水进行取样分析,监测所述地下水的污染特征参数;
向所述地下水中注入硫酸亚铁溶液至地下水pH值低于5;
加入所述硫酸亚铁溶液后1-2小时内,向所述地下水注入浓度不低于7%的双氧水,形成芬顿氧化体系;
芬顿氧化体系形成12小时后,向所述地下水注入浓度为10%-15%的过硫酸钠溶液;
加入所述过硫酸钠溶液后1-2小时内,向所述地下水注入pH值大于10的氢氧化钠溶液,并预留2-3天的反应时间;
根据针对所述地下水的污染特征参数和药剂反应情况的监测,按照硫酸亚铁溶液-双氧水-过硫酸钠溶液-氢氧化钠溶液的顺序循环分批次添加药剂,直至所述污染特征参数降低至修复目标要求。
在上述技术方案中,优选地,所述污染特征参数包括需要处理的污染物类别和性质特征、污染区域的位置和范围、地下水流动产生污染羽的范围、不同位置的污染浓度分布以及修复地层的结构特征;
根据所述污染区域的地下水取样进行试验,对药剂的注入扩散半径和扩散速度进行测试,根据所述污染区域污染物的总量和修复工期反推计算得到所需氧化剂总量的添加量和投加频次。
在上述技术方案中,优选地,所述硫酸亚铁溶液的质量浓度为30%-45%,并在配置完成后迅速注入所述地下水中。
在上述技术方案中,优选地,按照双氧水浓度为7%计算,所述双氧水的注入量与所述硫酸亚铁溶液注入量的体积比为1:1。
在上述技术方案中,优选地,根据所述污染特征参数,在整个循环分批次添加药剂过程中,所述过硫酸钠溶液的总注入量需使其中过硫酸钠药剂质量占所要修复地下水总质量的1-3%。
在上述技术方案中,优选地,对所述地下水中的污染特征参数进行连续监测,判断污染物是否存在拖尾或反弹情况,并在连续监测合格后停止添加药剂。
在上述技术方案中,优选地,在硫酸亚铁溶液-双氧水-过硫酸钠溶液的投加阶段保持所述地下水的pH值在4-6之间,在过硫酸钠溶液-氢氧化钠溶液的投加阶段保持所述地下水的pH值在7-8之间。
在上述技术方案中,优选地,所述污染区域均匀分布设置有监测井,通过便携式设备对所述监测井中的取样进行检测,得到当前监测井位置的污染特征参数。
在上述技术方案中,优选地,所述污染区域的污染源和由地下水流动产生的污染羽区域分布设置有注入井,所述注入井的设置密度与设置位置的污染物浓度正相关。
在上述技术方案中,优选地,采用至少两套药剂配置系统,每套药剂配置系统中分别采用三个药剂桶用以配置和盛装硫酸亚铁溶液、双氧水、过硫酸钠溶液和氢氧化钠溶液,按照硫酸亚铁溶液-双氧水-过硫酸钠溶液-氢氧化钠溶液的顺序,在隔膜泵作用下将相应的溶液泵送至所述污染区域的注入井中。
与现有技术相比,本发明的有益效果为:通过对污染区域地下水的污染特征参数的监测,可根据污染物的浓度进行实验室小试和现场施工调试,从而能够针对不同地质结构、污染分布和污染程度选择最合理的药剂施用参数,采用的双氧化体系使反应体系的酸碱度维持平稳中性范围,且双氧水和过硫酸钠协同激活的氧化能力相互增效,采用严格的药剂添加顺序和间隔时间投加,保证对复杂难降解污染物处理的协同增效作用,相比于一般氧化方法达到长效可维持且氧化能力更强的修复处理效果,满足了地下水中复杂难降解有机污染物的修复处理需求。
附图说明
图1为本发明一种实施例公开的针对难降解有机污染地下水的双氧化修复处理方法的流程示意图;
图2为本发明一种实施例公开的药剂配置系统的现场施工布置示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图对本发明做进一步的详细描述:
如图1所示,根据本发明提供的一种针对难降解有机污染地下水的双氧化修复处理方法,包括:
通过对污染区域地下水进行取样分析,监测地下水的污染特征参数;
向地下水中注入硫酸亚铁溶液至地下水pH值低于5;
加入硫酸亚铁溶液后1-2小时内,向地下水注入浓度不低于7%的双氧水,形成芬顿氧化体系;
芬顿氧化体系形成12小时后,向地下水注入浓度为10%-15%的过硫酸钠溶液;
加入过硫酸钠溶液后1-2小时内,向地下水注入pH值大于10的氢氧化钠溶液,并预留2-3天的反应时间;
根据针对地下水的污染特征参数和药剂反应情况的监测,按照硫酸亚铁溶液-双氧水-过硫酸钠溶液-氢氧化钠溶液的顺序循环分批次添加药剂,直至污染特征参数降低至修复目标要求。
在该实施例中,通过对污染区域地下水的污染特征参数的监测,可根据污染物的浓度进行实验室小试和现场施工调试,从而能够针对不同地质结构、污染分布和污染程度选择最合理的药剂施用参数,采用的双氧化体系使反应体系的酸碱度维持平稳中性范围,且双氧水和过硫酸钠协同激活的氧化能力相互增效,采用严格的药剂添加顺序和间隔时间投加,保证对复杂难降解污染物处理的协同增效作用,相比于一般氧化方法达到长效可维持且氧化能力更强的修复处理效果,满足了地下水中复杂难降解有机污染物的修复处理需求。
具体地,该方法用于原位修复污染地下水的工程实施,施工工艺可以采用原位建井注入、原位直推注入或者高压旋喷等,通过不同药剂投加配比和固定施工方法步骤的使用,达到修复治理达标的目的。
如图2所示,其中,药剂配置系统主要包括带搅拌装置的翻板液位计药剂桶、进水管、出水管、隔膜泵、阀门、压力表和连接管道,一般的药剂桶为PE材质的容积为2m3或者3m3的圆柱形桶,侧面安装翻板液位计,用于药剂桶内溶液高度的判断;进水管为自来水进水管,材质为普通的PVC管道,尺寸为DN32或者DN50;出水管为氧化剂溶液或激活剂溶液的出水管,材质为UPVC或者PE管道,耐热防腐蚀,尺寸为DN32或者DN50;隔膜泵为气动隔膜泵或者电动隔膜泵,用于配制药剂溶液的输出,选用隔膜泵的原因是配制的药剂溶液为强氧化性腐蚀性液体,隔膜泵的过流部分为防腐蚀的泵腔,通过隔膜的来回鼓动从而将药剂溶液挤压输出;隔膜泵前后端均安装压力表,输入端前段为1根主管道,安装总压力表,输出端后端为多根分支管道,用于不同位置注入井管道的连接,安装分压力表;主管道和分支管道均安装不锈钢球阀,用于停机过程中阀门关闭和运行过程中非注入管道的关闭调节。
其中,在上述双氧化修复处理过程中,双氧化体系的实施原理为:
(1)反应激活条件调整
通过注入硫酸亚铁溶液,将注入区域的地下水中pH调节降低,同时亚铁离子的注入能够为双氧水的激活提供条件;硫酸亚铁溶液的配制以质量浓度以30-45%为宜,使用量以调节至地下水的pH<5为宜。
(2)充分激活芬顿氧化体系
硫酸亚铁溶液注入完成后1-2h内进行双氧水的注入实施,双氧水的使用根据当地危险化学品要求执行,推荐使用27%浓度,若现场无实施条件则使用浓度不得低于7%。加入双氧水后形成激活的芬顿氧化药剂溶液,通过监测井的观察可在加药后6h左右取样检测。
(3)初步氧化激活过硫酸钠氧化体系
硫酸亚铁与双氧水的芬顿氧化体系的预留反应时间为12h,即自双氧水溶液注入完成后12h内不再进行其他药剂的注入实施;12h后,开始注入过硫酸钠溶液,过硫酸钠溶液的配制浓度为10-15%,充分搅拌溶解后用于地下注入实施。
(4)深度碱激活过硫酸钠氧化体系
过硫酸钠溶液注入后1-2h内进行氢氧化钠溶液的注入,氢氧化钠溶液配制要求为pH值达到10以上,注入地下后能够激活已经注入的过硫酸钠,提高氧化性。由于氢氧化钠溶液配制过程大量放热,需要现场操作人员做好个人安全防护措施。加入后为氧化物和碱双激活的过硫酸钠氧化药剂溶液,通过监测井的观察可在加药后24h左右取样检测。过硫酸钠激活后可维持数小时至周,因此,注入过硫酸钠和氢氧化钠溶液后2-3天内可停止药剂体系的注入,充分预留反应时间。
在该双氧化体系中,在同时使用双氧水和过硫酸钠的过程中,可能由于羟基自由基和硫酸根自由基的同时存在相互消耗而产生抵消的作用,因此修复处理过程中应严格按照药剂添加顺序和间隔时间投加,以保证协同增效的效果。
而且,由于使用的双氧水激活和过硫酸钠激活过程均能产生剧烈的反应,具有一定的施工危险性,因此施工过程步骤建议按照本发明的要求进行实施,并对操作人员进行必要的安全防护。
在上述实施例中,优选地,本发明的修复处理方法需要对所要进行修复实施的污染区域地下水进行污染特征参数的采集和监测,污染特征参数包括但不限于重点需要处理的污染物类别和性质特征、污染区域的位置和范围、地下水流动产生污染羽的范围、不同位置的污染浓度分布以及修复地层的结构特征;
根据污染区域的地下水取样并采用实验室小试或者现场代表性小区域中试的方式,对药剂的注入扩散半径和扩散速度进行测试,根据污染区域污染物的总量和修复工期反推计算得到所需氧化剂总量的添加量和投加频次。
在上述实施例中,优选地,硫酸亚铁溶液的质量浓度为30%-45%,由于硫酸亚铁具有还原性,在配制和使用过程中应尽量快速使用,在配置完成后迅速注入地下水中,避免被氧化而降低使用效果。
在上述实施例中,优选地,按照双氧水浓度为7%计算,双氧水的注入量与硫酸亚铁溶液注入量的体积比为1:1。
在上述实施例中,优选地,根据污染特征参数,在整个循环分批次添加药剂过程中,过硫酸钠溶液的总注入量需使其中过硫酸钠药剂质量占所要修复地下水总质量的1-3%,可根据污染情况进行适当增减。
在上述实施例中,优选地,按照上述投加顺序在规定的时间段内进行药剂的配制和注入投加,并根据要求对地下水中的污染特征参数进行连续监测,观测药剂反应情况。经过多批次循环投加双氧化体系药剂后,观察地下水中污染物是否已经降低至修复目标要求及平稳下降趋势,达到此效果后可停止注入药剂,判断污染物是否存在拖尾或反弹情况,并在连续监测合格后停止注入药剂。
在上述实施例中,优选地,在硫酸亚铁溶液-双氧水-过硫酸钠溶液的投加阶段保持地下水的pH值在4-6之间,在过硫酸钠溶液-氢氧化钠溶液的投加阶段保持地下水的pH值在7-8之间,在维持氧化体系酸碱度中性平稳的状态中利用两类氧化剂互相激活增效对复杂难降解污染物的处理,相比于一般氧化方法能够长效可维持且氧化能力更强的修复处理方法,满足地下水中复杂难降解有机污染物的修复处理需求。
在上述实施例中,优选地,污染区域均匀分布设置有监测井,通过便携式设备对监测井中的取样进行检测。具体地,在双氧化体系药剂注入过程中,需要对地下水中污染物、pH和氧化还原电位进行跟踪监测,得到当前监测井位置的污染特征参数。
其中,对于污染物的监测由于常规做法为送到第三方实验室检测,因此可按照每10天或每2周进行取样检测。对于pH和氧化还原电位的取样检测过程可在每循环加药后通过便携式设备进行,用于控制地下水中药剂的激活条件和程度判断,指导加药操作,避免药剂的浪费使用和反应场条件紊乱,影响污染物的去除效果和增加修复周期。
在上述实施例中,优选地,污染区域的污染源和由地下水流动产生的污染羽区域分布设置有注入井,注入井的设置密度与设置位置的污染物浓度正相关,针对高浓度污染源的区域可以加密建设注入井,提高药剂投加的密度,增强修复治理效果。
如图2所示,在上述实施例中,优选地,采用至少两套药剂配置系统,每套药剂配置系统中采用三个药剂桶,分别用以配置硫酸亚铁溶液、用以配置过硫酸钠溶液或氢氧化钠溶液,以及用于双氧水的储存和投加。在修复处理过程中,按照硫酸亚铁溶液-双氧水-过硫酸钠溶液-氢氧化钠溶液的顺序,在隔膜泵作用下将相应的溶液泵送至污染区域的注入井中。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种针对难降解有机污染地下水的双氧化修复处理方法,其特征在于,包括:
通过对污染区域地下水进行取样分析,监测所述地下水的污染特征参数;
向所述地下水中注入硫酸亚铁溶液至地下水pH值低于5;
加入所述硫酸亚铁溶液后1-2小时内,向所述地下水注入浓度不低于7%的双氧水,形成芬顿氧化体系;
芬顿氧化体系形成12小时后,向所述地下水注入浓度为10%-15%的过硫酸钠溶液;
加入所述过硫酸钠溶液后1-2小时内,向所述地下水注入pH值大于10的氢氧化钠溶液,并预留2-3天的反应时间;
根据针对所述地下水的污染特征参数和药剂反应情况的监测,按照硫酸亚铁溶液-双氧水-过硫酸钠溶液-氢氧化钠溶液的顺序循环分批次添加药剂,直至所述污染特征参数降低至修复目标要求。
2.根据权利要求1所述的针对难降解有机污染地下水的双氧化修复处理方法,其特征在于,所述污染特征参数包括需要处理的污染物类别和性质特征、污染区域的位置和范围、地下水流动产生污染羽的范围、不同位置的污染浓度分布以及修复地层的结构特征;
根据所述污染区域的地下水取样进行试验,对药剂的注入扩散半径和扩散速度进行测试,根据所述污染区域污染物的总量和修复工期反推计算得到所需氧化剂总量的添加量和投加频次。
3.根据权利要求1所述的针对难降解有机污染地下水的双氧化修复处理方法,其特征在于,所述硫酸亚铁溶液的质量浓度为30%-45%,并在配置完成后迅速注入所述地下水中。
4.根据权利要求1所述的针对难降解有机污染地下水的双氧化修复处理方法,其特征在于,按照双氧水浓度为7%计算,所述双氧水的注入量与所述硫酸亚铁溶液注入量的体积比为1:1。
5.根据权利要求2所述的针对难降解有机污染地下水的双氧化修复处理方法,其特征在于,根据所述污染特征参数,在整个循环分批次添加药剂过程中,所述过硫酸钠溶液的总注入量需使其中过硫酸钠药剂质量占所要修复地下水总质量的1-3%。
6.根据权利要求1所述的针对难降解有机污染地下水的双氧化修复处理方法,其特征在于,对所述地下水中的污染特征参数进行连续监测,判断污染物是否存在拖尾或反弹情况,并在连续监测合格后停止添加药剂。
7.根据权利要求1所述的针对难降解有机污染地下水的双氧化修复处理方法,其特征在于,在硫酸亚铁溶液-双氧水-过硫酸钠溶液的投加阶段保持所述地下水的pH值在4-6之间,在过硫酸钠溶液-氢氧化钠溶液的投加阶段保持所述地下水的pH值在7-8之间。
8.根据权利要求6所述的针对难降解有机污染地下水的双氧化修复处理方法,其特征在于,所述污染区域均匀分布设置有监测井,通过便携式设备对所述监测井中的取样进行检测,得到当前监测井位置的污染特征参数。
9.根据权利要求1所述的针对难降解有机污染地下水的双氧化修复处理方法,其特征在于,所述污染区域的污染源和由地下水流动产生的污染羽区域分布设置有注入井,所述注入井的设置密度与设置位置的污染物浓度正相关。
10.根据权利要求9所述的针对难降解有机污染地下水的双氧化修复处理方法,其特征在于,采用至少两套药剂配置系统,每套药剂配置系统中分别采用三个药剂桶用以配置和盛装硫酸亚铁溶液、双氧水、过硫酸钠溶液和氢氧化钠溶液,按照硫酸亚铁溶液-双氧水-过硫酸钠溶液-氢氧化钠溶液的顺序,在隔膜泵作用下将相应的溶液泵送至所述污染区域的注入井中。
CN202110774835.2A 2021-07-09 2021-07-09 针对难降解有机污染地下水的双氧化修复处理方法 Pending CN113277609A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110774835.2A CN113277609A (zh) 2021-07-09 2021-07-09 针对难降解有机污染地下水的双氧化修复处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110774835.2A CN113277609A (zh) 2021-07-09 2021-07-09 针对难降解有机污染地下水的双氧化修复处理方法

Publications (1)

Publication Number Publication Date
CN113277609A true CN113277609A (zh) 2021-08-20

Family

ID=77286529

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110774835.2A Pending CN113277609A (zh) 2021-07-09 2021-07-09 针对难降解有机污染地下水的双氧化修复处理方法

Country Status (1)

Country Link
CN (1) CN113277609A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023123424A1 (zh) * 2021-12-31 2023-07-06 北京建工环境修复股份有限公司 多技术耦合原位修复污染土壤的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070272623A1 (en) * 2006-05-25 2007-11-29 Kerfoot William B Multi-zone ground water and soil treatment
CN101730596A (zh) * 2007-05-04 2010-06-09 解决方案-Ies公司 用于土壤和地下水修复的就地pH调节
DE102010015819B4 (de) * 2010-04-21 2012-07-12 Bauer Umwelt Gmbh Verfahren zur in-situ-Sanierung von Boden und/oder Wasser/Grundwasser im Boden mit einem kontaminierten Bodenbereich sowie eine Anlage und Substanz hierzu
CN105712412A (zh) * 2014-11-30 2016-06-29 江苏维尔利环保科技股份有限公司 修复有机污染地下水的原位灌注方法
CN105964677A (zh) * 2016-06-23 2016-09-28 北京建工环境修复股份有限公司 一种土壤及地下水原位化学氧化高压注射优化修复方法
CN206408007U (zh) * 2016-12-27 2017-08-15 上海同济建设科技股份有限公司 一种地下水修复装置
CN108773893A (zh) * 2018-04-09 2018-11-09 北京建工环境工程咨询有限责任公司 一种基于分区控制的地下水污染原位化学氧化处理方法及系统
CN108837759A (zh) * 2018-06-27 2018-11-20 北京高能时代环境技术股份有限公司 用于有机污染场地的原位注入药剂系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070272623A1 (en) * 2006-05-25 2007-11-29 Kerfoot William B Multi-zone ground water and soil treatment
CN101730596A (zh) * 2007-05-04 2010-06-09 解决方案-Ies公司 用于土壤和地下水修复的就地pH调节
DE102010015819B4 (de) * 2010-04-21 2012-07-12 Bauer Umwelt Gmbh Verfahren zur in-situ-Sanierung von Boden und/oder Wasser/Grundwasser im Boden mit einem kontaminierten Bodenbereich sowie eine Anlage und Substanz hierzu
CN105712412A (zh) * 2014-11-30 2016-06-29 江苏维尔利环保科技股份有限公司 修复有机污染地下水的原位灌注方法
CN105964677A (zh) * 2016-06-23 2016-09-28 北京建工环境修复股份有限公司 一种土壤及地下水原位化学氧化高压注射优化修复方法
CN206408007U (zh) * 2016-12-27 2017-08-15 上海同济建设科技股份有限公司 一种地下水修复装置
CN108773893A (zh) * 2018-04-09 2018-11-09 北京建工环境工程咨询有限责任公司 一种基于分区控制的地下水污染原位化学氧化处理方法及系统
CN108837759A (zh) * 2018-06-27 2018-11-20 北京高能时代环境技术股份有限公司 用于有机污染场地的原位注入药剂系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023123424A1 (zh) * 2021-12-31 2023-07-06 北京建工环境修复股份有限公司 多技术耦合原位修复污染土壤的方法

Similar Documents

Publication Publication Date Title
CN111003792A (zh) 一种有机污染地下水的原位氧化循环抽提修复系统及修复方法
CN102059247A (zh) 一种污染场地土壤和地下水体的车载式修复设备及修复方法
CN111704180B (zh) 一种强化地下水污染修复的原位注入装置及工艺
CN108188171A (zh) 一种有机污染场地原位氧化修复系统及修复工艺
CN113182335A (zh) 抽提驱动原位氧化修复系统
CN108773893A (zh) 一种基于分区控制的地下水污染原位化学氧化处理方法及系统
CN113277609A (zh) 针对难降解有机污染地下水的双氧化修复处理方法
CN111994973A (zh) 一种地下水卤代烃原位多级循环修复系统
CN106311738A (zh) 一种原位氧化还原修复系统
CN111704226B (zh) 一种石油有机污染地下水修复工艺、修复系统及应用
CN110814008A (zh) 一种有机污染的土壤和地下水原位修复设备
CN108405600A (zh) 一种过硫酸钠和双氧水复配体系原位修复有机污染物土壤的方法
CN109848200A (zh) 一种用于修复污染场地的原位雾化注入系统
CN107096791A (zh) 一种纳米级原位多点注药一体式模块化智能设备
Akbarian et al. A sustainable Decision Support System for soil bioremediation of toluene incorporating UN sustainable development goals
CN111420983A (zh) 一种原位曝气修复污染土壤和地下水的方法
CN205217598U (zh) 一种原位注药系统
CN111360060B (zh) 土壤/地下水集成式注射系统及其单源、双源及混合微纳米气泡液注射方法
CN109663808A (zh) 一种动态地下水循环系统
US20220402783A1 (en) Oil-contaminated soil and geround water treatment system
CN215467024U (zh) 有机物污染场地原位修复系统
CN114751472A (zh) 污染场地原位修复的地下水循环井装置与修复方法
CN111792759A (zh) 一种基于碳源回用的污水污泥调理工艺及系统
CN113458130A (zh) 有机物污染场地原位修复系统及方法
CN116393501B (zh) 一种三氯甲烷污染场地的修复系统与方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210820