CN113276913A - Method and system for dynamically balancing passenger flow of subway carriage - Google Patents
Method and system for dynamically balancing passenger flow of subway carriage Download PDFInfo
- Publication number
- CN113276913A CN113276913A CN202110569268.7A CN202110569268A CN113276913A CN 113276913 A CN113276913 A CN 113276913A CN 202110569268 A CN202110569268 A CN 202110569268A CN 113276913 A CN113276913 A CN 113276913A
- Authority
- CN
- China
- Prior art keywords
- passenger flow
- carriage
- passengers
- dynamic
- platform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000004891 communication Methods 0.000 claims description 10
- 101100134058 Caenorhabditis elegans nth-1 gene Proteins 0.000 claims description 9
- 230000002457 bidirectional effect Effects 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 7
- 238000007619 statistical method Methods 0.000 claims description 7
- 238000005070 sampling Methods 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000012067 mathematical method Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L27/00—Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Indicating And Signalling Devices For Elevators (AREA)
- Train Traffic Observation, Control, And Security (AREA)
Abstract
The invention provides a method and a system for dynamically balancing passenger flow of a subway carriage, which comprise a passenger flow information acquisition subsystem, a dynamic passenger flow balancing subsystem and a dynamic passenger flow guiding subsystem; the subway passenger taking system utilizes the passenger flow information acquisition subsystem to acquire the information of the starting point and the end point of the subway passenger taking a bus, the number of passengers in a carriage and the number of passengers getting on or off the bus in each carriage in real time; receiving passenger flow information collected by an AFC (automatic control Unit), a vehicle-mounted camera and a platform camera through a dynamic passenger flow balancing subsystem, and realizing the balancing of dynamic passenger flow in a subway carriage and dynamic passenger flow at a platform by a passenger flow guiding scheme obtained by a dynamic passenger flow balancing module; displaying a passenger flow balancing scheme to the carriage and the platform through the carriage guide display screen and the platform guide display screen to guide passenger flow to move; and identifying the acquired passenger flow information in the carriage through the vehicle-mounted camera, judging whether the passenger flow in the carriage reaches the expected value of the passenger flow in the carriage or not, and guiding the passenger flow in the carriage according to the expected value of the passenger flow in the carriage.
Description
Technical Field
The invention relates to the technical field of subway passenger flow systems, in particular to a method and a system for dynamically balancing subway carriage passenger flow.
Background
The urban rail transit system becomes the first choice of urban resident travel by the characteristics of large traffic volume, high speed, high efficiency, punctuality, safety and comfort, and provides an effective solution for the problems of urban traffic congestion and insufficient capacity. With the construction of subways in various cities in China spread widely, the demand of passengers on the comfort of taking the subways is increased day by day.
Because the passenger flow of the subway carriage has uneven space-time distribution, in addition, passengers can not know the distribution condition of passengers in the subway carriage which does not enter the station, and the passengers queued on the platform have randomness, the distribution of the passenger number of each carriage is uneven, so that the comfort level of riding is reduced. In addition, under the current epidemic situation prevention and control situation, the social distance needs to be kept between people is very important, so that the passengers queued in the carriages and the platforms are urgently guided in real time by an effective method to avoid the situation that the number of passengers in a certain carriage of the subway is too large and the space of the carriage cannot be fully utilized, the passenger flow of each carriage of the subway is balanced, and the riding comfort of the passengers is guaranteed.
At present, people can only obtain information such as train arrival time and the like through a display screen of a subway platform, but cannot obtain passenger flow distribution in a subway carriage and the number of getting-off passenger flows, and guidance of passenger flows in the carriage and guidance of the platform passenger flows are lacked. Passengers have great randomness in queuing and waiting at the platform and getting on the train, and the passenger flow in the carriage and the platform is guided in real time without a necessary method and system, so that the passenger flow distribution in the subway carriage is unbalanced, and the riding comfort of the passengers is seriously influenced. And the current subway carriage lacks dynamic real-time passenger flow guidance, can not display the carriage number which is relatively idle, and can only prompt the information such as the current carriage number, the station name and the like.
Disclosure of Invention
The invention provides a method and a system for dynamically balancing subway carriage passenger flow, aiming at the defects of the prior art, wherein the method and the system can make full use of AFC data of a station, provide the method and the system for dynamically balancing the subway carriage passenger flow on the basis of a passenger information system and a communication system, guide the queuing passenger flow of a subway platform and the passenger flow in a carriage in real time, and solve the problems of insufficient utilization of space of the subway carriage and unbalanced distribution of the passenger flow.
The technical scheme of the invention is as follows: a dynamic passenger flow balancing system for a subway car comprises a passenger flow information acquisition subsystem, a dynamic passenger flow balancing subsystem and a dynamic passenger flow guiding subsystem;
the passenger flow information acquisition subsystem comprises
The automatic fare collection system AFC is used for collecting information of a starting point and an end point of taking a subway passenger;
the vehicle-mounted camera is used for collecting the number of passengers in the carriage;
the platform camera is used for collecting the number of people getting on or off each carriage;
the dynamic passenger flow balancing subsystem comprises a getting-off passenger flow prediction module and a dynamic passenger flow balancing module, and the getting-off passenger flow prediction module and the dynamic passenger flow balancing module are both connected with the server; the system is connected to a communication backbone network through a switch, and is used for receiving passenger flow information collected by an AFC (automatic frequency control), a vehicle-mounted camera and a platform camera and transmitting the passenger flow information to a passenger flow guiding scheme obtained by a dynamic passenger flow balancing module;
the getting-off passenger flow prediction module is used for carrying out statistical analysis on passenger destination information acquired by an automatic fare collection system (AFC) and on-off passenger flow data of each carriage acquired by a platform camera, and predicting the number of people getting off at the next station;
the dynamic passenger flow balancing module is used for balancing the dynamic passenger flow in the subway carriages and the dynamic passenger flow at the platform according to the passenger flow data of getting on or off the subway carriages collected by the platform camera and the passenger flow information in the carriages collected by the vehicle-mounted camera;
the dynamic passenger flow guidance subsystem comprises:
the carriage guiding display screen guides the carriage passenger flow to move by displaying a carriage passenger flow guiding scheme obtained by the dynamic passenger flow balancing subsystem;
the platform guide display screen guides passenger flow to queue by displaying a platform passenger flow guide scheme obtained by the dynamic passenger flow balancing subsystem;
the communication module is used for connecting a carriage guide display screen, a platform guide display screen, a passenger information system PIS and a dynamic passenger flow balancing module of the dynamic passenger flow balancing subsystem so as to transmit passenger flow information between stations and trains;
and the passenger information system PIS is used for receiving the carriage passenger flow balancing scheme and the platform passenger flow balancing scheme, editing and composing the carriage passenger flow balancing scheme and the platform passenger flow balancing scheme to generate a program list, then issuing information, and playing the program through the carriage guide display screen and the platform guide display screen according to the program.
Preferably, the automatic fare collection system AFC consists of an entrance gate, an exit gate, a server, a computer and a database.
Preferably, the get-off passenger flow prediction module includes:
the storage unit is used for storing passenger destination information acquired by AFC (automatic frequency control) at each line station and each item of boarding passenger flow data acquired by the platform camera;
the prediction unit is connected with the storage unit and used for analyzing carriage getting-off passenger flow data acquired by the AFC acquired passenger destination information platform camera and predicting the number of people getting-off in each carriage by a plurality of prediction methods; and transmitting the result of the predictive analysis to a dynamic passenger flow average module.
Preferably, the dynamic passenger flow balancing module includes:
the judging unit is used for identifying the acquired passenger flow information in the carriage through the vehicle-mounted camera and judging whether the passenger flow in the carriage reaches the expected passenger flow value of the carriage or not;
the computing unit is used for processing the passenger flow expected value of the carriage judged by the judging unit, and computing the passenger flow data collected by the vehicle-mounted camera and the platform camera by a passenger flow prediction method if the passenger flow in the carriage reaches the passenger flow expected value of the carriage;
and the decision unit is used for deciding a proper carriage passenger flow guiding scheme according to the result obtained by the calculation unit and deciding a proper platform passenger flow guiding scheme according to the result obtained by the prediction unit.
Preferably, the car guidance display screen is connected to the vehicle AP to receive the car passenger guidance plan delivered by the dynamic passenger balancing subsystem.
Preferably, the platform guidance display screen receives a platform passenger flow guidance scheme transmitted by the dynamic passenger flow balancing subsystem through a station local area network.
The invention also provides a dynamic balancing method for passenger flow of the subway carriage, which comprises the following steps:
s1), collecting subway passenger starting point and terminal point information by using an automatic fare collection system AFC, and counting the number of passengers in a subway carriage and the number of passengers getting on or off a platform by using a vehicle-mounted camera and a platform camera;
s2), carrying out statistical analysis on the collected start point and end point information of the subway passengers, predicting the number of people getting off at the next station, and balancing the dynamic passenger flow in the subway carriages and the dynamic passenger flow at the platform by a passenger flow dynamic balancing method;
s3), displaying the dynamic passenger flow information and the scheme for balancing the passenger flow to the passengers through the electronic display screen so as to guide the dynamic passenger flow in the carriage and the dynamic passenger flow at the platform.
Preferably, step S2) specifically includes the following steps:
s201), firstly, judging whether the number of passengers in the carriage reaches the expected passenger flow value E of the carriage by utilizing a judging unit; if the number of passengers is up or down, the average number of passengers in the carriage and the number of passengers to be guided by each carriage are obtained according to the number of passengers on or off the carriage, which is collected by the vehicle-mounted camera and the platform camera;
s202), according to the number of passengers getting on and off the train in the carriage collected by the vehicle-mounted camera and the platform camera, and the passenger guiding mode min () with the minimum number of passengers needing to move in the adjacent carriage;
s203), taking pictures according to the vehicle-mounted camera and the platformThe number of passengers getting on or off the carriage and the passenger flow balance function collected like the head are repeated to obtain the number of passengers needing to be guided by other carriages, and the passenger flow balance function f is defined (S)n) Comprises the following steps:
in the formula, N is the grouping number of the subway, and N belongs to N +) SnThe adjusted population represented as nth car; u (S)n) Indicating a people adjustment for the nth car; d (S)n) Indicates the population adjustment scheme set when the nth car is in, and u (S)n)∈D(Sn);u(Sn+1) Indicates that the number of the adjusted persons in the (n + 1) th carriage is Sn+1One people number adjustment scheme; d (S)n,u(Sn+1) Indicates that the number of persons adjusted in the (n + 1) th car is Sn+1Meanwhile, the number of people in the nth compartment is adjusted; f (u (S)n+1) Indicates that the number of persons adjusted in the (n + 1) th car is Sn+1(ii) a And f (u (S) when n is the last carn+1))=0。
Preferably, the step S201) of determining whether the number of passengers in the car reaches the expected car passenger flow value E includes the following steps:
s2011) when x is less than or equal to E, the method is directly connected to a decision module to obtain a proper platform passenger flow guiding scheme, namely, the method does not guide passenger flow in a carriage;
when x is larger than E, transmitting the number of passengers getting on and off the carriages collected by the vehicle-mounted camera and the platform camera to a computing unit, and preparing to process the data of the passengers getting on and off the carriages of each station collected by the vehicle-mounted camera and the platform camera by a mathematical method;
in the formula, x is the number of passengers in the compartment in one getting-on and getting-off period, and E is the expected value of passenger flow in the compartment;
s2012), calculating the number of passengers getting on or off the train according to the number of the passengers collected by the vehicle-mounted camera and the platform camera, and obtaining the average number of the passengers in the train;
[(a1-b1)+(a2-b2)+...+(an-bn)]÷n=X;
in the formula, anThe number of passengers getting on the nth compartment, bnThe number of passengers getting off the nth compartment is X, and the average number of passengers in the compartment is X;
s2013), obtaining the number of passengers needing to be guided by the nth compartment according to the number of passengers getting on or off the compartment, which is collected by the vehicle-mounted camera and the platform camera;
|an-bn-X|=|x'n|;
wherein, | x'nI is the number of passengers needing to be guided by the nth carriage;
s2014), judging the increase and decrease conditions of the number of passengers to be guided in the nth compartment;
x'nWhen the speed is more than 0, the nth carriage is reduced by x'nA human;
x'n< 0, then n th carriage increases x'nA human;
x'nIf the number of the adjacent cars is 0, carrying out passenger flow guidance on the nth car according to the situation of the adjacent car;
s2015), determining the passenger flow guiding direction as bidirectional guiding; and carrying out bidirectional guidance on the passenger flow of the nth section of the carriage.
Preferably, step S202) includes the steps of:
s2021), according to the number of passengers getting on or off the train in each carriage collected by the vehicle-mounted camera and the platform camera, the number of passengers needing to be guided in the nth-1 section of carriage;
|an-1-bn-1-X|=|x'n-1|;
in the formula, an-1The number of passengers getting on the nth-1 carriage, bn-1Is the number of people getting off the carriage of the (n-1) th carriage, | x'n-1I is the number of passengers needing to be guided by the (n-1) th carriage;
s2022), determining the number of passengers needing to be guided by the (n-1) th carriage by using a min function according to the number of passengers getting on or off the carriage, which is acquired by the vehicle-mounted camera and the platform camera;
in the formula (I), the compound is shown in the specification,determining the function of the minimum number of people needing to be guided in the (n-1) th compartment;is the (n-1) th compartment when x'nAdjustment scheme > 0;is the (n-1) th compartment when x'nAn adjustment scheme below 0;denotes when x'nWhen the speed is more than 0, the nth carriage is reduced by x'nA human;denotes when x'nIf < 0, adding x 'to the nth compartment'nA human; sn-1The number of people for adjusting the nth-1 carriage;is when x'nWhen the number is more than 0, the number of the adjusted people in the nth carriage is increased;is when x'nWhen the number is less than 0, the number of people for adjusting the nth carriage is increased;
s2023), when x'nWhen the number is more than 0, the number of passengers to be guided in the (n-1) th compartment is calculated;
wherein, | x'n-1-x'nL is when x'nWhen the number is more than 0, the number of passengers needs to be guided in the (n-1) th compartment;
s2024), during one sampling period,x'nIf the number is more than 0, judging that the number of passengers needs to be guided in the (n-1) th compartment;
x'n-1-x'nWhen the speed is more than 0, the (n-1) th carriage is reduced by x'n-1-x'nA human;
x'n-1-x'nIf < 0, increasing x 'to the n-1 st carriage'n-1-x'nA human;
s2025), calculating when x'nWhen the number is less than 0, the number of passengers needs to be guided in the (n-1) th compartment;
wherein, | x'n-1+x'nL is when x'nWhen the number is less than 0, the number of passengers needs to be guided in the (n-1) th compartment;
s2026), when x'nIf the number is less than 0, judging that the number of passengers needs to be guided in the (n-1) th compartment;
x'n-1+x'nWhen the speed is more than 0, the (n-1) th carriage is reduced by x'n-1+x'nA human;
x'n-1+x'nIf < 0, increasing x 'to the n-1 st carriage'n-1+x'nA human;
s2027), repeating the steps, and obtaining the number of passengers needing to be guided by the (n + 1) th compartment after the passengers in the nth compartment are obtained according to the number of passengers getting on or off the compartment, which is acquired by the vehicle-mounted camera and the platform camera, in a sampling period;
in the formula (I), the compound is shown in the specification,determining the function of the minimum number of people needing to be guided in the (n + 1) th compartment;is section n +1X 'of carriage'nAdjustment scheme > 0;is the (n + 1) th compartment when x'nAn adjustment scheme below 0; sn+1The number of the adjusted persons in the (n + 1) th carriage.
The invention has the beneficial effects that:
1. the invention utilizes a passenger flow information acquisition subsystem to acquire the information of a starting point and an end point of the subway passenger in real time; the number of passengers in the carriage and the number of passengers getting on or off the carriage;
2. according to the invention, the passenger flow information collected by the AFC, the vehicle-mounted camera and the platform camera is received by the dynamic passenger flow balancing subsystem and is transmitted to the passenger flow guiding scheme obtained by the dynamic passenger flow balancing module, so that the dynamic passenger flow in the subway carriage and the dynamic passenger flow at the platform are balanced;
3. the invention displays a passenger flow balancing scheme to guide passenger flow to move and displays a platform passenger flow balancing scheme to guide passenger flow to queue to the carriage and the platform through the carriage guide display screen and the platform guide display screen;
4. the method comprises the steps of identifying acquired passenger flow information in a carriage through a vehicle-mounted camera, judging whether the passenger flow in the carriage reaches a carriage passenger flow expected value, if the number of passengers in the carriage in a getting-on/off period is less than the carriage passenger flow expected value, guiding the passenger flow in the carriage without guiding, and if the number of passengers in the carriage in a getting-on/off period is more than the carriage passenger flow expected value, guiding the passenger flow in the carriage;
5. the invention can solve the problems of unbalanced carriage utilization and poor passenger riding comfort caused by too many or too few passengers in a certain section of the subway.
Drawings
FIG. 1 is a structural framework diagram of the system of the present invention;
FIG. 2 is a schematic diagram of a framework architecture of a dynamic passenger flow balancing subsystem according to the present invention;
FIG. 3 is a schematic view of the passenger flow guidance of the present invention;
FIG. 4 is a flow chart of a dynamic passenger flow balancing method according to the present invention;
fig. 5 is a flowchart of inventive method step S2).
Detailed Description
The following further describes embodiments of the present invention with reference to the accompanying drawings:
example 1
As shown in fig. 1-2, the present embodiment provides a dynamic passenger flow balancing system for a subway car, where the system adopts a bidirectional guidance mode, and includes a passenger flow information collection subsystem, a dynamic passenger flow balancing subsystem, and a dynamic passenger flow guidance subsystem;
the passenger flow information acquisition subsystem comprises
The automatic fare collection system AFC is used for collecting information of a starting point and an end point of taking a subway passenger;
the vehicle-mounted camera is used for collecting the number of passengers in the carriage;
the platform camera is used for collecting the number of people getting on or off each carriage;
as shown in fig. 3, the dynamic passenger flow balancing subsystem includes a getting-off passenger flow prediction module and a dynamic passenger flow balancing module, both of which are connected to the server; the get-off passenger flow prediction module is used for receiving passenger flow information collected by an AFC (automatic control Unit), a vehicle-mounted camera and a platform camera, performing statistical analysis on the collected subway passenger starting point and terminal point information, predicting the number of get-off passengers at the next station, and transmitting the predicted number to a passenger flow guidance scheme obtained by the dynamic passenger flow balancing module;
the getting-off passenger flow prediction module is used for carrying out statistical analysis on passenger destination information acquired by an automatic fare collection system (AFC) and on-off passenger flow data of each carriage acquired by a platform camera, and predicting the number of people getting off at the next station;
the dynamic passenger flow balancing module is used for balancing the dynamic passenger flow in the subway carriages and the dynamic passenger flow at the platform according to the passenger flow data of getting on or off the subway carriages collected by the platform camera and the passenger flow information in the carriages collected by the vehicle-mounted camera;
the dynamic passenger flow guidance subsystem comprises:
the carriage guiding display screen guides the carriage passenger flow to move by displaying a carriage passenger flow guiding scheme obtained by the dynamic passenger flow balancing subsystem;
the platform guide display screen guides passenger flow to queue by displaying a platform passenger flow guide scheme obtained by the dynamic passenger flow balancing subsystem;
the communication module is used for connecting a carriage guide display screen, a platform guide display screen, a passenger information system PIS and a dynamic passenger flow balancing module of the dynamic passenger flow balancing subsystem so as to transmit passenger flow information between stations and trains;
and the passenger information system PIS is used for receiving the carriage passenger flow balancing scheme and the platform passenger flow balancing scheme, editing and composing the carriage passenger flow balancing scheme and the platform passenger flow balancing scheme to generate a program list, then issuing information, and playing the program through the carriage guide display screen and the platform guide display screen according to the program.
Preferably, the automatic fare collection system AFC consists of an entrance gate, an exit gate, a server, a computer and a database.
Preferably, the get-off passenger flow prediction module includes:
the storage unit is used for storing passenger destination information acquired by AFC (automatic frequency control) at each line station and each item of boarding passenger flow data acquired by the platform camera;
the prediction unit is connected with the storage unit and used for analyzing carriage getting-off passenger flow data acquired by the AFC acquired passenger destination information platform camera and predicting the number of people getting-off in each carriage by a plurality of prediction methods; and transmitting the result of the predictive analysis to a dynamic passenger flow average module.
Preferably, the dynamic passenger flow balancing module includes:
the judging unit is used for identifying the acquired passenger flow information in the carriage through the vehicle-mounted camera and judging whether the passenger flow in the carriage reaches the expected passenger flow value of the carriage or not;
the computing unit is used for processing the passenger flow expected value of the carriage judged by the judging unit, and computing the passenger flow data collected by the vehicle-mounted camera and the platform camera by a passenger flow prediction method if the passenger flow in the carriage reaches the passenger flow expected value of the carriage;
and the decision unit is used for deciding a proper carriage passenger flow guiding scheme according to the result obtained by the calculation unit and deciding a proper platform passenger flow guiding scheme according to the result obtained by the prediction unit.
Preferably, the car guidance display screen is connected to the vehicle AP to receive the car passenger guidance plan delivered by the dynamic passenger balancing subsystem.
Preferably, the platform guidance display screen receives a platform passenger flow guidance scheme transmitted by the dynamic passenger flow balancing subsystem through a station local area network.
Example 2
As shown in fig. 4 and 5, the present embodiment provides a dynamic equalization method for passenger flow in a subway car, including the following steps:
s1), collecting subway passenger starting point and terminal point information by using an automatic fare collection system AFC, and counting the number of passengers in a subway carriage and the number of passengers getting on or off a platform by using a vehicle-mounted camera and a platform camera;
s2), carrying out statistical analysis on the collected start point and end point information of the subway passengers, predicting the number of people getting off at the next station, and balancing the dynamic passenger flow in the subway carriages and the dynamic passenger flow at the platform by a passenger flow dynamic balancing method;
s3), displaying the dynamic passenger flow information and the scheme for balancing the passenger flow to the passengers through the electronic display screen so as to guide the dynamic passenger flow in the carriage and the dynamic passenger flow at the platform.
Preferably, the step S2) includes the following steps:
s201), firstly, judging whether the number of passengers in the carriage reaches the expected passenger flow value E of the carriage by utilizing a judging unit; if the number of passengers is up or down, the average number of passengers in the carriage and the number of passengers to be guided by each carriage are obtained according to the number of passengers on or off the carriage, which is collected by the vehicle-mounted camera and the platform camera;
s202), according to the number of passengers getting on and off the train in the carriage collected by the vehicle-mounted camera and the platform camera, and the passenger guiding mode min () with the minimum number of passengers needing to move in the adjacent carriage;
s203), defining a passenger flow balance function f (S) according to the passenger number of getting on or off the train and the passenger flow balance function collected by the vehicle-mounted camera and the platform camera in the carriage and the passenger number required to be guided by other carriages obtained by repeating the stepsn) Comprises the following steps:
in the formula, N is the grouping number of the subway, and N belongs to N +) SnThe adjusted population represented as nth car; u (S)n) Indicating a people adjustment for the nth car; d (S)n) Indicates the population adjustment scheme set when the nth car is in, and u (S)n)∈D(Sn);u(Sn+1) Indicates that the number of the adjusted persons in the (n + 1) th carriage is Sn+1One people number adjustment scheme; d (S)n,u(Sn+1) Indicates that the number of persons adjusted in the (n + 1) th car is Sn+1Meanwhile, the number of people in the nth compartment is adjusted; f (u (S)n+1) Indicates that the number of persons adjusted in the (n + 1) th car is Sn+1(ii) a And f (u (S) when n is the last carn+1))=0。
Preferably, the step S201) of determining whether the number of passengers in the car reaches the expected car passenger flow value E includes the following steps:
s2011) when x is less than or equal to E, the method is directly connected to a decision module to obtain a proper platform passenger flow guiding scheme, namely, the method does not guide passenger flow in a carriage;
when x is larger than E, transmitting the number of passengers getting on and off the carriages collected by the vehicle-mounted camera and the platform camera to a computing unit, and preparing to process the data of the passengers getting on and off the carriages of each station collected by the vehicle-mounted camera and the platform camera by a mathematical method;
in the formula, x is the number of passengers in the compartment in one getting-on and getting-off period, and E is the expected value of passenger flow in the compartment;
s2012), calculating the number of passengers getting on or off the train according to the number of the passengers collected by the vehicle-mounted camera and the platform camera, and obtaining the average number of the passengers in the train;
[(a1-b1)+(a2-b2)+...+(an-bn)]÷n=X;
in the formula, anThe number of passengers getting on the nth compartment, bnThe number of passengers getting off the nth compartment is X, and the average number of passengers in the compartment is X;
s2013), obtaining the number of passengers needing to be guided by the nth compartment according to the number of passengers getting on or off the compartment, which is collected by the vehicle-mounted camera and the platform camera;
|an-bn-X|=|x'n|;
wherein, | x'nI is the number of passengers needing to be guided by the nth carriage;
s2014), judging the increase and decrease conditions of the number of passengers to be guided in the nth compartment;
x'nWhen the speed is more than 0, the nth carriage is reduced by x'nA human;
x'n< 0, then n th carriage increases x'nA human;
x'nIf the number of the adjacent cars is 0, carrying out passenger flow guidance on the nth car according to the situation of the adjacent car;
s2015), determining the passenger flow guiding direction as bidirectional guiding; and carrying out bidirectional guidance on the passenger flow of the nth section of the carriage.
Preferably, step S202) includes the steps of:
s2021), according to the number of passengers getting on or off the train in each carriage collected by the vehicle-mounted camera and the platform camera, the number of passengers needing to be guided in the nth-1 section of carriage;
|an-1-bn-1-X|=|x'n-1|;
in the formula, an-1The number of passengers getting on the nth-1 carriage, bn-1Is the number of people getting off the carriage of the (n-1) th carriage, | x'n-1I is the number of passengers needing to be guided by the (n-1) th carriage;
s2022), determining the number of passengers needing to be guided by the (n-1) th carriage by using a min function according to the number of passengers getting on or off the carriage, which is acquired by the vehicle-mounted camera and the platform camera;
in the formula (I), the compound is shown in the specification,determining the function of the minimum number of people needing to be guided in the (n-1) th compartment;is the (n-1) th compartment when x'nAdjustment scheme > 0;is the (n-1) th compartment when x'nAn adjustment scheme below 0;denotes when x'nWhen the speed is more than 0, the nth carriage is reduced by x'nA human;denotes when x'nIf < 0, adding x 'to the nth compartment'nA human; sn-1The number of people for adjusting the nth-1 carriage;is when x'nWhen the number is more than 0, the number of the adjusted people in the nth carriage is increased;is when x'nWhen the number is less than 0, the number of people for adjusting the nth carriage is increased;
s2023), when x'nWhen the number is more than 0, the number of passengers to be guided in the (n-1) th compartment is calculated;
wherein, | x'n-1-x'nL is when x'nWhen the number is more than 0, the number of passengers needs to be guided in the (n-1) th compartment;
s2024), during one sampling period, when x'nIf the number is more than 0, judging that the number of passengers needs to be guided in the (n-1) th compartment;
x'n-1-x'nWhen the speed is more than 0, the (n-1) th carriage is reduced by x'n-1-x'nA human;
x'n-1-x'nIf < 0, increasing x 'to the n-1 st carriage'n-1-x'nA human;
s2025), calculating when x'nWhen the number is less than 0, the number of passengers needs to be guided in the (n-1) th compartment;
wherein, | x'n-1+x'nL is when x'nWhen the number is less than 0, the number of passengers needs to be guided in the (n-1) th compartment;
s2026), when x'nIf the number is less than 0, judging that the number of passengers needs to be guided in the (n-1) th compartment;
x'n-1+x'nWhen the speed is more than 0, the (n-1) th carriage is reduced by x'n-1+x'nA human;
x'n-1+x'nIf < 0, increasing x 'to the n-1 st carriage'n-1+x'nA human;
s2027), repeating the steps, and obtaining the number of passengers needing to be guided by the (n + 1) th compartment after the passengers in the nth compartment are obtained according to the number of passengers getting on or off the compartment, which is acquired by the vehicle-mounted camera and the platform camera, in a sampling period;
in the formula (I), the compound is shown in the specification,determining the function of the minimum number of people needing to be guided in the (n + 1) th compartment;is the (n + 1) th compartment when x'nAdjustment scheme > 0;is the (n + 1) th compartment when x'nAn adjustment scheme below 0; sn+1The number of the adjusted persons in the (n + 1) th carriage.
The foregoing embodiments and description have been presented only to illustrate the principles and preferred embodiments of the invention, and various changes and modifications may be made therein without departing from the spirit and scope of the invention as hereinafter claimed.
Claims (9)
1. A dynamic passenger flow balancing system for a subway car is characterized in that the system adopts a bidirectional guiding mode and comprises a passenger flow information acquisition subsystem, a dynamic passenger flow balancing subsystem and a dynamic passenger flow guiding subsystem; the passenger flow information acquisition subsystem is in communication connection with the dynamic passenger flow balancing subsystem through a communication module, the dynamic passenger flow guidance subsystem is in communication connection with the dynamic passenger flow balancing subsystem through a communication module, wherein,
the passenger flow information acquisition subsystem comprises
The automatic fare collection system AFC is used for collecting information of a starting point and an end point of taking a subway passenger;
the vehicle-mounted camera is arranged in the subway carriage and used for acquiring the number information of passengers in the carriage;
the platform camera is arranged near the platform and is used for acquiring the information of the number of people getting on and off each carriage;
the dynamic passenger flow balancing subsystem comprises a getting-off passenger flow prediction module and a dynamic passenger flow balancing module, and the getting-off passenger flow prediction module and the dynamic passenger flow balancing module are both connected with the server; and connected to a communication backbone network through a switch;
the get-off passenger flow prediction module is used for receiving passenger flow information collected by the automatic fare collection system AFC, the vehicle-mounted camera and the platform camera, performing statistical analysis on the collected subway passenger starting point and terminal point information, predicting the number of get-off passengers at the next station, and transmitting the predicted number to the dynamic passenger flow balancing module to obtain a passenger flow guiding scheme;
the dynamic passenger flow balancing module is used for balancing the dynamic passenger flow in the subway carriages and the dynamic passenger flow at the platform according to the passenger flow data of getting on or off the subway carriages collected by the platform camera and the passenger flow information in the carriages collected by the vehicle-mounted camera;
the dynamic passenger flow guidance subsystem comprises:
the carriage guiding display screen guides the carriage passenger flow to move by displaying a carriage passenger flow guiding scheme obtained by the dynamic passenger flow balancing subsystem;
the platform guide display screen guides passenger flow to queue by displaying a platform passenger flow guide scheme obtained by the dynamic passenger flow balancing subsystem;
the communication module is used for connecting a carriage guide display screen, a platform guide display screen, a passenger information system PIS and a dynamic passenger flow balancing module of the dynamic passenger flow balancing subsystem so as to transmit passenger flow information between stations and trains;
and the passenger information system PIS is used for receiving the carriage passenger flow balancing scheme and the platform passenger flow balancing scheme, editing and composing the carriage passenger flow balancing scheme and the platform passenger flow balancing scheme to generate a program list, then issuing information, and playing the program through the carriage guide display screen and the platform guide display screen according to the program.
2. The system for dynamic equalization of passenger flow in a subway car compartment as claimed in claim 1, wherein: the automatic fare collection system AFC consists of an entrance gate, an exit gate, a server, a computer and a database.
3. The system for dynamic equalization of passenger flow in a subway car compartment as claimed in claim 1, wherein: the get-off passenger flow prediction module comprises:
the storage unit is used for storing passenger destination information acquired by AFC (automatic frequency control) at each line station and each item of boarding passenger flow data acquired by the platform camera;
the prediction unit is connected with the storage unit and used for analyzing carriage getting-off passenger flow data acquired by the AFC acquired passenger destination information platform camera and predicting the number of people getting-off in each carriage by a plurality of prediction methods; and transmitting the result of the predictive analysis to a dynamic passenger flow average module.
4. The system for dynamic equalization of passenger flow in a subway car compartment as claimed in claim 1, wherein: the dynamic passenger flow balancing module comprises:
the judging unit is used for identifying the acquired passenger flow information in the carriage through the vehicle-mounted camera and judging whether the passenger flow in the carriage reaches the expected passenger flow value of the carriage or not;
the computing unit is used for processing the passenger flow expected value of the carriage judged by the judging unit, and computing the passenger flow data collected by the vehicle-mounted camera and the platform camera by a passenger flow prediction method if the passenger flow in the carriage reaches the passenger flow expected value of the carriage;
and the decision unit is used for deciding a proper carriage passenger flow guiding scheme according to the result obtained by the calculation unit and deciding a proper platform passenger flow guiding scheme according to the result obtained by the prediction unit.
5. The system for dynamic equalization of passenger flow in a subway car compartment as claimed in claim 1, wherein: the carriage guiding display screen is connected with the vehicle-mounted AP and used for receiving a carriage passenger flow guiding scheme transmitted by the dynamic passenger flow balancing subsystem.
6. The system for dynamic equalization of passenger flow in a subway car compartment as claimed in claim 1, wherein: and the platform guide display screen receives a platform passenger flow guide scheme transmitted by the dynamic passenger flow balancing subsystem through a station local area network.
7. A dynamic balancing method for passenger flow of a subway car is characterized by comprising the following steps:
s1), collecting subway passenger starting point and terminal point information by using an automatic fare collection system AFC, and counting the number of passengers in a subway carriage and the number of passengers getting on or off a platform by using a vehicle-mounted camera and a platform camera;
s2), carrying out statistical analysis on the collected start point and end point information of the subway passengers, predicting the number of people getting off at the next station, and balancing the dynamic passenger flow in the subway carriages and the dynamic passenger flow at the platform by a passenger flow dynamic balancing method; the method specifically comprises the following steps:
s201), firstly, judging whether the number of passengers in the carriage reaches the expected passenger flow value E of the carriage by utilizing a judging unit; if the number of passengers is up or down, the average number of passengers in the carriage and the number of passengers to be guided by each carriage are obtained according to the number of passengers on or off the carriage, which is collected by the vehicle-mounted camera and the platform camera;
s202), according to the number of passengers getting on and off the train in the carriage collected by the vehicle-mounted camera and the platform camera, and the passenger guiding mode min () with the minimum number of passengers needing to move in the adjacent carriage;
s203), defining a passenger flow balance function f (S) according to the passenger number of getting on or off the train and the passenger flow balance function collected by the vehicle-mounted camera and the platform camera in the carriage and the passenger number required to be guided by other carriages obtained by repeating the stepsn) Comprises the following steps:
in the formula, N is the grouping number of the subway, and N belongs to N +) SnThe adjusted population represented as nth car; u (S)n) Indicating a people adjustment for the nth car; d (S)n) Indicates the population adjustment scheme set when the nth car is in, and u (S)n)∈D(Sn);u(Sn+1) Indicates that the number of the adjusted persons in the (n + 1) th carriage is Sn+1One people number adjustment scheme; d (S)n,u(Sn+1) Watch (C)Shows that the number of the adjusted persons in the (n + 1) th carriage is Sn+1Meanwhile, the number of people in the nth compartment is adjusted; f (u (S)n+1) Indicates that the number of persons adjusted in the (n + 1) th car is Sn+1(ii) a And f (u (S) when n is the last carn+1))=0;
S3), displaying the dynamic passenger flow information and the scheme for balancing the passenger flow to the passengers through the electronic display screen so as to guide the dynamic passenger flow in the carriage and the dynamic passenger flow at the platform.
8. The method of claim 7, wherein the step S201) of determining whether the number of passengers in the car reaches the car passenger flow expected value E specifically comprises the steps of:
s2011) when x is less than or equal to E, the method is directly connected to a decision module to obtain a proper platform passenger flow guiding scheme, namely, the method does not guide passenger flow in a carriage;
when x is larger than E, transmitting the number of passengers getting on and off the carriages collected by the vehicle-mounted camera and the platform camera to a computing unit, and preparing to process the data of the passengers getting on and off the carriages of each station collected by the vehicle-mounted camera and the platform camera by a mathematical method;
in the formula, x is the number of passengers in the compartment in one getting-on and getting-off period, and E is the expected value of passenger flow in the compartment;
s2012), calculating the number of passengers getting on or off the train according to the number of the passengers collected by the vehicle-mounted camera and the platform camera, and obtaining the average number of the passengers in the train;
[(a1-b1)+(a2-b2)+...+(an-bn)]÷n=X;
in the formula, anThe number of passengers getting on the nth compartment, bnThe number of passengers getting off the nth compartment is X, and the average number of passengers in the compartment is X;
s2013), obtaining the number of passengers needing to be guided by the nth compartment according to the number of passengers getting on or off the compartment, which is collected by the vehicle-mounted camera and the platform camera;
|an-bn-X|=|x′n|;
in the formula (I), the compound is shown in the specification,|x′ni is the number of passengers needing to be guided by the nth carriage;
s2014), judging the increase and decrease conditions of the number of passengers to be guided in the nth compartment;
x'nWhen the speed is more than 0, the nth carriage is reduced by x'nA human;
x'n< 0, then n th carriage increases x'nA human;
x'nIf the number of the adjacent cars is 0, carrying out passenger flow guidance on the nth car according to the situation of the adjacent car;
s2015), determining the passenger flow guiding direction as bidirectional guiding; and carrying out bidirectional guidance on the passenger flow of the nth section of the carriage.
9. A method for dynamically equalizing passenger flows in passenger compartments of a subway according to claim 7, wherein step S202) comprises the steps of:
s2021), according to the number of passengers getting on or off the train in each carriage collected by the vehicle-mounted camera and the platform camera, the number of passengers needing to be guided in the nth-1 section of carriage;
|an-1-bn-1-X|=|x′n-1|;
in the formula, an-1The number of passengers getting on the nth-1 carriage, bn-1Is the number of people getting off the carriage of the (n-1) th carriage, | x'n-1I is the number of passengers needing to be guided by the (n-1) th carriage;
s2022), determining the number of passengers needing to be guided by the (n-1) th carriage by using a min function according to the number of passengers getting on or off the carriage, which is acquired by the vehicle-mounted camera and the platform camera;
in the formula (I), the compound is shown in the specification,determining the function of the minimum number of people needing to be guided in the (n-1) th compartment;is the (n-1) th compartment when x'nAdjustment scheme > 0;is the (n-1) th compartment when x'nAn adjustment scheme below 0;denotes when x'nWhen the speed is more than 0, the nth carriage is reduced by x'nA human;denotes when x'nIf < 0, adding x 'to the nth compartment'nA human; sn-1The number of people for adjusting the nth-1 carriage;is when x'nWhen the number is more than 0, the number of the adjusted people in the nth carriage is increased;is when x'nWhen the number is less than 0, the number of people for adjusting the nth carriage is increased;
s2023), when x'nWhen the number is more than 0, the number of passengers to be guided in the (n-1) th compartment is calculated;
wherein, | x'n-1-x′nL is when x'nWhen the number is more than 0, the number of passengers needs to be guided in the (n-1) th compartment;
s2024), during one sampling period, when x'nIf the number is more than 0, judging that the number of passengers needs to be guided in the (n-1) th compartment;
x'n-1-x′nWhen the speed is more than 0, the (n-1) th carriage is reduced by x'n-1-x′nA human;
x'n-1-x′nIf < 0, increasing x 'to the n-1 st carriage'n-1-x′nA human;
s2025), calculating when x'nWhen the number is less than 0, the number of passengers needs to be guided in the (n-1) th compartment;
wherein, | x'n-1+x′nL is when x'nWhen the number is less than 0, the number of passengers needs to be guided in the (n-1) th compartment;
s2026), when x'nIf the number is less than 0, judging that the number of passengers needs to be guided in the (n-1) th compartment;
x'n-1+x′nWhen the speed is more than 0, the (n-1) th carriage is reduced by x'n-1+x′nA human;
x'n-1+x′nIf < 0, increasing x 'to the n-1 st carriage'n-1+x′nA human;
s2027), repeating the steps, and obtaining the number of passengers needing to be guided by the (n + 1) th compartment after the passengers in the nth compartment are obtained according to the number of passengers getting on or off the compartment, which is acquired by the vehicle-mounted camera and the platform camera, in a sampling period;
in the formula (I), the compound is shown in the specification,determining the function of the minimum number of people needing to be guided in the (n + 1) th compartment;is the (n + 1) th compartment when x'nAdjustment scheme > 0;is the (n + 1) th compartment when x'nAn adjustment scheme below 0; sn+1The number of the adjusted persons in the (n + 1) th carriage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110569268.7A CN113276913B (en) | 2021-05-25 | 2021-05-25 | Method and system for dynamically balancing passenger flow of subway carriage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110569268.7A CN113276913B (en) | 2021-05-25 | 2021-05-25 | Method and system for dynamically balancing passenger flow of subway carriage |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113276913A true CN113276913A (en) | 2021-08-20 |
CN113276913B CN113276913B (en) | 2022-11-01 |
Family
ID=77281280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110569268.7A Expired - Fee Related CN113276913B (en) | 2021-05-25 | 2021-05-25 | Method and system for dynamically balancing passenger flow of subway carriage |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113276913B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113807026A (en) * | 2021-10-08 | 2021-12-17 | 青岛理工大学 | Passenger flow line optimization and dynamic guide signboard system in subway station and design method |
CN114004486A (en) * | 2021-10-29 | 2022-02-01 | 广州广电运通智能科技有限公司 | Rail transit passenger flow scheduling system, method, storage medium and equipment |
CN115022104A (en) * | 2022-05-31 | 2022-09-06 | 京东方科技集团股份有限公司 | Centralized control method, system, device, equipment and medium for terminal |
CN115588298A (en) * | 2022-10-28 | 2023-01-10 | 广州地铁集团有限公司 | Urban rail passenger flow broadcasting induction method based on machine vision |
WO2023206825A1 (en) * | 2022-04-26 | 2023-11-02 | 广州地铁集团有限公司 | Subway station scene joint control system |
WO2024055410A1 (en) * | 2022-09-15 | 2024-03-21 | 浙江中车电车有限公司 | Passenger diversion method and system for multi-carriage passenger-carrying system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005271765A (en) * | 2004-03-25 | 2005-10-06 | Seiko Precision Inc | Passenger guiding system |
CN109598257A (en) * | 2018-12-28 | 2019-04-09 | 福建工程学院 | A kind of bootstrap technique and system of equilibrium subway carriage passenger capacity |
CN110395298A (en) * | 2019-07-26 | 2019-11-01 | 中国安全生产科学研究院 | A kind of passenger flow intelligent guidance system and method |
CN111071298A (en) * | 2019-12-30 | 2020-04-28 | 湖南酷客轨道装备有限公司 | Passenger flow intelligent guide system for rail transit |
CN111553314A (en) * | 2020-05-13 | 2020-08-18 | 合肥学院 | Urban rail transit passenger guidance system and guidance method |
-
2021
- 2021-05-25 CN CN202110569268.7A patent/CN113276913B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005271765A (en) * | 2004-03-25 | 2005-10-06 | Seiko Precision Inc | Passenger guiding system |
CN109598257A (en) * | 2018-12-28 | 2019-04-09 | 福建工程学院 | A kind of bootstrap technique and system of equilibrium subway carriage passenger capacity |
CN110395298A (en) * | 2019-07-26 | 2019-11-01 | 中国安全生产科学研究院 | A kind of passenger flow intelligent guidance system and method |
CN111071298A (en) * | 2019-12-30 | 2020-04-28 | 湖南酷客轨道装备有限公司 | Passenger flow intelligent guide system for rail transit |
CN111553314A (en) * | 2020-05-13 | 2020-08-18 | 合肥学院 | Urban rail transit passenger guidance system and guidance method |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113807026A (en) * | 2021-10-08 | 2021-12-17 | 青岛理工大学 | Passenger flow line optimization and dynamic guide signboard system in subway station and design method |
CN114004486A (en) * | 2021-10-29 | 2022-02-01 | 广州广电运通智能科技有限公司 | Rail transit passenger flow scheduling system, method, storage medium and equipment |
WO2023206825A1 (en) * | 2022-04-26 | 2023-11-02 | 广州地铁集团有限公司 | Subway station scene joint control system |
CN115022104A (en) * | 2022-05-31 | 2022-09-06 | 京东方科技集团股份有限公司 | Centralized control method, system, device, equipment and medium for terminal |
WO2024055410A1 (en) * | 2022-09-15 | 2024-03-21 | 浙江中车电车有限公司 | Passenger diversion method and system for multi-carriage passenger-carrying system |
CN115588298A (en) * | 2022-10-28 | 2023-01-10 | 广州地铁集团有限公司 | Urban rail passenger flow broadcasting induction method based on machine vision |
CN115588298B (en) * | 2022-10-28 | 2023-12-29 | 广州地铁集团有限公司 | Urban rail passenger flow broadcasting induction method based on machine vision |
Also Published As
Publication number | Publication date |
---|---|
CN113276913B (en) | 2022-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113276913B (en) | Method and system for dynamically balancing passenger flow of subway carriage | |
CN109308546B (en) | Method and system for predicting bus trip get-off station of passenger | |
WO2021159865A1 (en) | Data calibration-based bus route prediction method and system | |
CN110084397B (en) | Subway through line planning method | |
CN110298516B (en) | Method and device for splitting overlong bus line based on passenger flow OD data, mobile terminal equipment and server | |
CN110450822B (en) | Rail transit service method, device, equipment and system | |
JP5108808B2 (en) | Operation disturbance information distribution device, operation disturbance information distribution method, and operation disturbance information distribution system | |
CN105261211B (en) | A kind of bus departure interval transition method under the influence of traffic composite factor | |
CN110675032A (en) | Vehicle scheduling method and device | |
CN107194491A (en) | A kind of dynamic dispatching method based on Forecasting of Travel Time between bus passenger flow and station | |
CN102737500B (en) | Method for acquiring arrival interval reliability of urban bus | |
CN108665140A (en) | A kind of inter-city passenger rail Passenger Transport Hub traffic connection System Assessment Method | |
CN112183815B (en) | Accurate short-time passenger flow prediction model based on rule recommendation algorithm | |
CN112465213B (en) | Auxiliary device and method of subway passenger information service system | |
CN103679399A (en) | Station passenger flow linkage management and control method | |
CN112819316A (en) | Hub transportation energy identification method of comprehensive passenger transport hub rail transit system | |
CN114707709A (en) | Safety early warning method and system for comprehensive passenger transport hub of railway | |
CN108388542A (en) | A kind of rail traffic crowding computational methods and system | |
CN114446076A (en) | Intelligent scheduling control system based on 5G communication technology | |
CN117371596A (en) | Public transport comprehensive regulation and control system for smart city based on multi-source data | |
CN113468243A (en) | Subway passenger flow analysis and prediction method and system | |
CN114565128A (en) | Passenger transport hub taxi passenger queuing time prediction method based on image recognition | |
CN103903472A (en) | Real-time BRT vehicle pull-in optimization and platform passenger flow guidance system and method | |
CN113888387A (en) | Multi-objective operation optimization method based on passenger flow demand | |
CN108515988B (en) | Train operation diagram optimization method for improving passenger timeliness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20221101 |
|
CF01 | Termination of patent right due to non-payment of annual fee |