CN113274968A - 一种钙铁镁三元纳米复合除氟剂的合成方法 - Google Patents

一种钙铁镁三元纳米复合除氟剂的合成方法 Download PDF

Info

Publication number
CN113274968A
CN113274968A CN202110466372.3A CN202110466372A CN113274968A CN 113274968 A CN113274968 A CN 113274968A CN 202110466372 A CN202110466372 A CN 202110466372A CN 113274968 A CN113274968 A CN 113274968A
Authority
CN
China
Prior art keywords
calcium
salt
magnesium
iron
defluorinating agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110466372.3A
Other languages
English (en)
Inventor
陈缜缜
徐骥臣
张文健
冯莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN202110466372.3A priority Critical patent/CN113274968A/zh
Publication of CN113274968A publication Critical patent/CN113274968A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/046Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing halogens, e.g. halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/027Compounds of F, Cl, Br, I
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种钙铁镁三元纳米复合除氟剂的合成方法,属于除氟剂的合成方法。方法如下:(1)采用工业级的CaCl2、FeCl3·6H2O、MgCl2·6H2O作为钙盐、铁盐和镁盐原料;(2)按照钙铁镁摩尔比为1:2:1的比例确定钙盐、铁盐和镁盐的投加质量;(3)将称量好的钙盐、铁盐和镁盐依次加入到适量水中,并充分搅拌混合均匀后加入反应釜中;(4)向反应釜中边搅拌边逐滴加入2mol L‑1的NaOH溶液,至混合溶液的pH值为7‑9;(5)常温常压下继续搅拌1h,陈化12h;(6)取出产物过滤,洗涤至滤液呈中性;(7)将滤饼置于100℃恒温干燥箱中,干燥24h;(8)产物冷却至室温,粉碎,得到钙铁镁三元纳米复合除氟剂。优点:常温常压下,制备工艺简单、易操作,可大规模生产和应用。

Description

一种钙铁镁三元纳米复合除氟剂的合成方法
技术领域
本发明涉及一种除氟剂的合成方法,特别是一种钙铁镁三元纳米复合除氟剂的合成方法。
背景技术
氟是动植物维持正常生理活动不可缺少的微量元素,与牙齿、骨骼等组织的组成和机体代谢密切相关。人体及动植物摄氟的主要途径为饮用水,吸收率高达90%。据报道,目前高氟水在世界范围内广泛分布,超过两亿人饮用水中的氟离子浓度超过世界健康组织的标准,氟中毒引起的疾病至少在全世界25个国家盛行,轻者引起氟斑牙,重者引起氟骨症,甚至丧失劳动能力。因此,探究高效、绿色、廉价的除氟方法对降低饮用水中氟离子的浓度具有重要意义。
吸附法作为去除水体中氟离子的常用方法,可将氟离子的浓度降至1mg L-1以下,达到饮用水的标准,具有经济实惠、操作简单的优点。常用的吸附剂有自然材料类吸附剂、碳基吸附剂、羟基磷灰石、活性铝吸附剂及其他金属氧化物/氢氧化物等。自然材料及碳基类吸附剂具有廉价的显著的优点,但是除氟容量不高;羟基磷灰石类吸附剂的除氟容量良好,但后处理过程复杂;活性氧化铝吸附剂除氟时也存在后处理困难的缺点;其他金属氧化物/氢氧化物类吸附剂可表现出所掺杂各金属的协同性质,如除氟性能好、廉价等优点,成为近年研究的热点。
自然界中主要的含钙矿物有石灰石(CaCO3)、白云石(CaCO3 MgCO3)、萤石(CaF2)、氟磷灰石(Ca5(PO4)3F)等,其中氟化钙和氟磷灰石的溶度积(298K)分别为2.7*10-11和1.0*10-137,由溶度积规则可知Ca2+、F-在极低的浓度下也能反应后析出,所以钙基材料可作为除氟的潜在吸附剂。氧化镁的晶型结构完整、离子特性强,活化后氧化镁的晶型和表面形貌均发生明显变化,具有密集的孔隙结构和较大的比表面积,因此氧化镁多孔纳米材料的除氟容量较大,但纯镁基材料吸附剂的成本高昂,不适于大面积广泛使用。据报道,地下水中Ca2 +、Mg2+和F-三者之间存在相互共存、相互抑制的关系,氧化钙和氧化镁均可作为降低水溶液中氟离子浓度的有效吸附剂。
发明内容
本发明的目的是要提供一种钙铁镁三元纳米复合除氟剂的合成方法,将磁性材料掺入钙镁除氟剂的制备工艺中,提升复合材料的使用周期和减少后处理过程及成本。
本发明的目的是这样实现的:钙铁镁三元纳米复合除氟剂的生产方法如下:
(1)采用工业级的CaCl2、FeCl3·6H2O、MgCl2·6H2O作为钙盐、铁盐和镁盐原料;
(2)确定钙盐、铁盐和镁盐的投加质量;
(3)将称量好的钙盐、铁盐和镁盐依次加入到适量水中,并充分搅拌混合均匀后加入反应釜中;
(4)向反应釜中边搅拌边逐滴加入2mol L-1的NaOH溶液,调整混合溶液的pH值;
(5)常温常压下继续搅拌,陈化;
(6)取出产物过滤,洗涤至滤液呈中性;
(7)将滤饼置于恒温干燥箱中干燥;
(8)产物冷却至室温,粉碎,得到钙铁镁三元纳米复合除氟剂。
所述的步骤2中,钙盐、铁盐和镁盐的投加质量为钙盐、铁盐和镁盐的摩尔比为1:2:1。
所述的步骤4中,调整混合溶液的pH值为7-9。
所述的步骤5中,搅拌时间为0.5-1.5h,陈化时间为10-14h。
所述的步骤7中,滤饼置于恒温干燥箱的温度为90-110℃,干燥时间为20-28h。
有益效果,由于采用了上述方案,本发明采用廉价工业级的CaCl2、FeCl3·6H2O、MgCl2·6H2O作为钙盐、铁盐和镁盐的原料,合成钙铁镁三元纳米复合除氟剂;其中氢氧化钠起到调控制备液pH的作用,以保证产物的纯度和活性位点的数量;钙基、镁基材料的加入,使得钙铁镁三元纳米复合除氟剂成表面凹凸不平的无定型非晶结构,比表面积、孔结构增加,除氟性能增强;铁基材料的加入,使得产物在外加磁场的作用下易于从水溶液中分离出来,后处理过程更加快速高效。
将磁性材料掺入钙镁除氟剂的制备工艺中,向金属氧化物或氢氧化物材料中添加磁性物质,如铁、镍和锰等,在外加磁场的作用下易使复合材料从水溶液中分离出来,大大提升复合材料的使用周期和减少后处理过程及成本,合成钙铁镁三元纳米复合除氟剂,达到了本发明的目的。
优点:
1、常温常压下,以廉价工业级金属盐为原料生产,制备工艺简单、易操作,可大规模生产和应用;
2、产品的pH适用范围较广,适用于饮用水研究,除氟容量比已报道的相关研究高出2-3倍;
3、产品的后处理过程简单,可直接在外磁场的作用下从水溶液中分离出来,再生性能良好,除氟效果长期稳定。
附图说明
图1是本发明生产方法流程图。
图2是本发明的钙铁镁三元纳米复合吸附剂除氟前后的分析谱图,图2(a)为傅里叶红外分析谱图,图2(b)为X射线衍射分析谱图。
图3是本发明的钙铁镁三元纳米复合吸附剂除氟前后的SEM-EDS能谱,图3(a)为吸附前的能谱图,图3(b)为吸附后的能谱图。
图4是本发明的钙铁镁三元纳米复合吸附剂除氟前后的XPS能谱,图4(a)为总谱图,图4(b)为O1s能谱图。
图5是本发明的钙铁镁三元纳米复合吸附剂除氟前后的吸-脱附曲线和孔径分布图,图5(a)为吸-脱附曲线图,图5(b)为孔径分布图。
具体实施方式
以下实施例是为了进一步描述本发明,而不是以任何方式限制本发明。
以一吨反应釜为例,选用工业级二水合氯化钙(含量74%)、六水合氯化镁(含量99%)、六水合氯化铁(含量99%)和氢氧化钠(含量99%)为原料。
钙铁镁三元纳米复合除氟剂的生产方法如下:
(1)采用工业级的CaCl2、FeCl3·6H2O、MgCl2·6H2O作为钙盐、铁盐和镁盐原料;
(2)确定钙盐、铁盐和镁盐的投加质量;
(3)将称量好的钙盐、铁盐和镁盐依次加入到适量水中,并充分搅拌混合均匀后加入反应釜中;
(4)向反应釜中边搅拌边逐滴加入2mol L-1的NaOH溶液,调整混合溶液的pH值;
(5)常温常压下继续搅拌,陈化;
(6)取出产物过滤,洗涤至滤液呈中性;
(7)将滤饼置于恒温干燥箱中干燥;
(8)产物冷却至室温,粉碎,得到钙铁镁三元纳米复合除氟剂。
所述的步骤2中,钙盐、铁盐和镁盐的投加质量为钙盐、铁盐和镁盐的摩尔比为1:2:1。
所述的步骤4中,调整混合溶液的pH值为7-9。
所述的步骤5中,搅拌时间为0.5-1.5h,陈化时间为10-14h。
所述的步骤7中,滤饼置于恒温干燥箱的温度为90-110℃,干燥时间为20-28h。
图2中,钙铁镁三元纳米复合吸附剂的除氟实验:30℃时,取100mL、10mg L-1的NaF溶液置于250mL的聚乙烯瓶中,向其中加入0.30g L-1的钙铁镁三元纳米复合吸附剂,以150rh-1的速度在恒温振荡器上震荡。待反应到达吸附平衡点时,用0.45um的水相滤膜过滤,将得到的滤渣在100℃下干燥12h后,存储于干燥器中备用。
将除氟实验得到的滤渣和制备的钙铁镁三元纳米复合吸附剂分别进行表征分析实验,如傅里叶红外、X射线衍射、扫描电子显微镜、X射线光电子能谱、比表面积孔径测试,并对实验结果进行处理、对比和分析,进一步探究钙铁镁三元纳米复合吸附剂除氟前后表面形貌的变化。
图2(a)为钙铁镁三元纳米复合吸附剂除氟前后的傅里叶红外谱图,在3440、1640cm-1附近的吸收峰是由金属层间或水分子中-OH的拉伸和弯曲振动引起的,吸附后峰强度明显减弱,说明-OH与F-之间可能发生了离子交换作用,吸附剂表面和金属层间水分子中所含的-OH被溶液中的氟离子取代;另外吸附后-OH峰位置发生蓝移,说明吸附后可能形成了氢键;吸附剂于1428cm-1处的M-O/M-OH(M=Ca、Fe、Mg)特征振动峰,在吸附后均消失,可能的原因是吸附剂中的M-O/M-OH发生质子化反应生成M-OH/M-OH2 +,之后又通过配体交换和表面络合作用与材料表面的氟离子反应,生成M-F或M-OH2 +F-。钙铁镁三元复合吸附剂除氟前后的XRD衍射谱图2(b)中均未发现明显的衍射峰,表明吸附剂除氟前后均为无定型非晶结构化合物。
图3中,钙铁镁三元纳米复合吸附剂除氟前后的SEM图有明显差别。除氟前,吸附剂呈小颗粒分散状,属于纳米级物质,结构边缘不明显、表面凹凸不平,图3(a)所示为吸附前的能谱图;除氟后,吸附剂凝聚体积变大,致密性增加,表面变得光滑。除氟前后的EDS能谱中均含有Ca、Fe、Mg元素,说明三种金属均被复合到吸附剂中;另外,除氟后的能谱中含有氟,说明氟离子被成功地吸附在复合材料中,图3(b)所示吸附后的能谱图。
图4中,钙铁镁三元纳米复合吸附剂除氟前后的全扫谱中存在明显的Ca、Fe、Mg峰,说明三种金属被成功加入到吸附剂中,这与EDS能谱显示的结果一致。全扫谱和F1s窄谱显示,在结合能为684.20eV处存在明显的F1s特征峰,表明溶液中的氟离子被成功吸附在吸附剂上,如图4(a)总谱图所示。对O1s的高分辨窄扫谱进行分峰拟合,得到三个小峰,位于532.31eV处的峰为吸附水中的氧,除氟后的峰面积比率从16.40%增至29.31%,位于531.10eV处的峰为金属氢氧化物(Ca/Fe/Mg-OH)中的氧,吸附后的百分比从51.13%降至42.17%,这两种变化均说明金属层间的氢氧化物可能以离子交换或表面络合的方式被氟离子取代,与红外分析的结果相符;M-O(M=Ca/Fe/Mg)中的氧位于529.30eV处,吸附前后的峰面积百分比相差3.95%,说明金属插层间的记忆效应有助于氟离子与金属层间形成很强的结合力,如图4(b)的O1s能谱图所示。
图5中,图5显示了钙铁镁三元氧化物吸附氟离子前后的氮气吸-脱附曲线和孔径分布情况,其中,图5(a)为吸-脱附曲线图,图5(b)为孔径分布图。吸脱附曲线均属于典型的Ⅳ型吸附等温线,具有明显的H3型滞后环,这是介孔材料特有的吸附现象。除氟前后吸附剂的平均孔径分别为6.45和5.22nm,吸附后比表面积和总孔容分别减小40.962m2·g-1和0.007cm3·g-1,表明钙铁镁三元纳米复合吸附剂是一种高效的氟离子吸附剂。
综合以上表征分析结果,得出如下结论:
(1)钙、铁、镁三种金属元素均被成功合成到钙铁镁三元纳米复合除氟剂中;
(2)钙铁镁三元纳米复合吸附剂具有去除水溶液中氟离子的效果;
(3)除氟后,钙铁镁三元纳米复合吸附剂表面致密性增加,可能发生了离子交换、络合和氢键作用。
实施例1:
(1)称取工业级的二水合氯化钙、六水合氯化铁、六水合氯化镁分别50、102和68kg,依次加入220kg水中,边加边搅拌;
(2)将充分搅拌并混合均均的金属盐溶液加入反应釜中;
(3)以200Lh-1的速度,向处于搅拌状态的反应釜中逐滴加入2mol L-1的NaOH溶液,至混合溶液的pH为8.2;
(4)然后在常温常压下继续搅拌1h,陈化12h;
(5)之后从反应釜中取出产物过滤,用水洗涤至滤液pH为7左右;
(6)将滤渣置于100℃下干燥24h;
(7)最后冷却至室温后,将产物粉碎,得到钙铁镁三元纳米复合除氟剂。
实施例2:
(1)称取工业级的CaCl2、FeCl3·6H2O、MgCl2·6H2O分别58、118和79kg,依次加入260kg水中,一边加入一边充分搅拌,待混合均匀后倒入反应釜中;
(2)以200L h-1的速度,向反应釜中逐滴加入2mol L-1的NaOH溶液,至混合溶液的pH为8;
(3)然后在常温常压下继续搅拌1h,陈化12h;
(4)将陈化产物进行过滤,并用水洗涤至下方滤液pH为7左右;
(5)将滤渣置于100℃下干燥24h;
(6)待干燥结束后,冷却至室温,再将产物粉碎,得到钙铁镁三元纳米复合除氟剂。
实施例3:
(1)称取工业级的CaCl2、FeCl3·6H2O、MgCl2·6H2O分别69、141和94kg,依次加入310kg水中,边加边搅拌;
(2)将充分搅拌并混合均均的金属盐溶液加入反应釜中;
(3)以200L h-1的速度,向处于搅拌状态的反应釜中逐滴加入2mol L-1的NaOH溶液,至混合溶液的pH为7.8;
(4)然后在常温常压下继续搅拌1h,陈化12h;
(5)之后从反应釜中取出产物过滤,用水洗涤至滤液为中性;
(6)将过滤所得到的滤渣置于100℃下干燥24h;
(7)冷却至室温后,将产物粉碎,得到钙铁镁三元纳米复合除氟剂。

Claims (5)

1.一种钙铁镁三元纳米复合除氟剂的合成方法,其特征是:生产方法如下:
(1)采用工业级的CaCl2、FeCl3·6H2O、MgCl2·6H2O作为钙盐、铁盐和镁盐原料;
(2)确定钙盐、铁盐和镁盐的投加质量;
(3)将称量好的钙盐、铁盐和镁盐依次加入到适量水中,并充分搅拌混合均匀后加入反应釜中;
(4)向反应釜中边搅拌边逐滴加入2mol L-1的NaOH溶液,调整混合溶液的pH值;
(5)常温常压下继续搅拌,陈化;
(6)取出产物过滤,洗涤至滤液呈中性;
(7)将滤饼置于恒温干燥箱中干燥;
(8)产物冷却至室温,粉碎,得到钙铁镁三元纳米复合除氟剂。
2.根据权利要求1所述的一种钙铁镁三元纳米复合除氟剂的合成方法,其特征是:所述的步骤2中,钙盐、铁盐和镁盐的投加质量为钙盐、铁盐和镁盐的摩尔比为1:2:1。
3.根据权利要求1所述的一种钙铁镁三元纳米复合除氟剂的合成方法,其特征是:所述的步骤4中,调整混合溶液的pH值为7-9。
4.根据权利要求1所述的一种钙铁镁三元纳米复合除氟剂的合成方法,其特征是:所述的步骤5中,搅拌时间为0.5-1.5h,陈化时间为10-14h。
5.根据权利要求1所述的一种钙铁镁三元纳米复合除氟剂的合成方法,其特征是:所述的步骤7中,滤饼置于恒温干燥箱的温度为90-110℃,干燥时间为20-28h。
CN202110466372.3A 2021-04-28 2021-04-28 一种钙铁镁三元纳米复合除氟剂的合成方法 Pending CN113274968A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110466372.3A CN113274968A (zh) 2021-04-28 2021-04-28 一种钙铁镁三元纳米复合除氟剂的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110466372.3A CN113274968A (zh) 2021-04-28 2021-04-28 一种钙铁镁三元纳米复合除氟剂的合成方法

Publications (1)

Publication Number Publication Date
CN113274968A true CN113274968A (zh) 2021-08-20

Family

ID=77277505

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110466372.3A Pending CN113274968A (zh) 2021-04-28 2021-04-28 一种钙铁镁三元纳米复合除氟剂的合成方法

Country Status (1)

Country Link
CN (1) CN113274968A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103253788A (zh) * 2012-12-28 2013-08-21 中国科学院生态环境研究中心 基于铝基复合金属氧化物的除氟吸附材料的络合-吸附去除水中氟化物的方法
CN108014746A (zh) * 2017-12-15 2018-05-11 中霖中科环境科技(安徽)股份有限公司 一种亚微米级Fe-Al-Mg复合金属氧化物除氟剂的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103253788A (zh) * 2012-12-28 2013-08-21 中国科学院生态环境研究中心 基于铝基复合金属氧化物的除氟吸附材料的络合-吸附去除水中氟化物的方法
CN108014746A (zh) * 2017-12-15 2018-05-11 中霖中科环境科技(安徽)股份有限公司 一种亚微米级Fe-Al-Mg复合金属氧化物除氟剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
贾翠萍等: "Ca-Fe-Mg复合材料制备及其对矿区高氟水氟去除性能研究", 《中国矿业》 *

Similar Documents

Publication Publication Date Title
Wang et al. Simultaneous and efficient removal of fluoride and phosphate by Fe-La composite: adsorption kinetics and mechanism
Kumari et al. A novel acid modified alumina adsorbent with enhanced defluoridation property: kinetics, isotherm study and applicability on industrial wastewater
Benhammou et al. Adsorption of metal ions onto Moroccan stevensite: kinetic and isotherm studies
Cui et al. Adsorption study of selenium ions from aqueous solutions using MgO nanosheets synthesized by ultrasonic method
Kang et al. Insights into adsorption mechanism for fluoride on cactus-like amorphous alumina oxide microspheres
Chitrakar et al. Selective adsorption of phosphate from seawater and wastewater by amorphous zirconium hydroxide
Wu et al. Effective removal of pyrophosphate by Ca–Fe–LDH and its mechanism
Kumar et al. Defluoridation from aqueous solutions by nano-alumina: characterization and sorption studies
Wang et al. Enhanced adsorption of fluoride from aqueous solution onto nanosized hydroxyapatite by low-molecular-weight organic acids
Long et al. Removal of phosphate from aqueous solution by magnetic Fe–Zr binary oxide
Tezuka et al. Studies on selective adsorbents for oxo-anions. Nitrate ion-exchange properties of layered double hydroxides with different metal atoms
Heidari-Chaleshtori et al. Clinoptilolite nano-particles modified with aspartic acid for removal of Cu (II) from aqueous solutions: isotherms and kinetic aspects
Koilraj et al. Phosphate uptake behavior of ZnAlZr ternary layered double hydroxides through surface precipitation
Tchomgui-Kamga et al. Evaluation of removal efficiency of fluoride from aqueous solution using new charcoals that contain calcium compounds
Nagaraj et al. Hydrothermal synthesis of a mineral-substituted hydroxyapatite nanocomposite material for fluoride removal from drinking water
Qiu et al. Removal of Cu (II) from aqueous solutions using dolomite–palygorskite clay: performance and mechanisms
Zhou et al. Application of FeMgMn layered double hydroxides for phosphate anions adsorptive removal from water
Li et al. The vanadate adsorption on a mesoporous boehmite and its cleaner production application of chromate
Luo et al. Synthesis of calcined La-doped layered double hydroxides and application on simultaneously removal of arsenate and fluoride
Samaraweera et al. Lignite, thermally-modified and Ca/Mg-modified lignite for phosphate remediation
JP4958293B2 (ja) 臭素酸イオン用吸着剤
Iiu et al. Defluoridation by rice spike-like akaganeite anchored graphene oxide
Raghav et al. Tetragonal prism shaped Ni-Al bimetallic adsorbent for study of adsorptive removal of fluoride and role of ion-exchange
Ma et al. Performance and mechanism of Mg-Ca-Fe hydrotalcite-like compounds for fluoride removal from aqueous solution
Li et al. Layered chalcogenide modified by Lanthanum, calcium and magnesium for the removal of phosphate from water

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210820