CN113273073A - 新型全波开关dc-ac并网逆变器 - Google Patents

新型全波开关dc-ac并网逆变器 Download PDF

Info

Publication number
CN113273073A
CN113273073A CN201980073368.1A CN201980073368A CN113273073A CN 113273073 A CN113273073 A CN 113273073A CN 201980073368 A CN201980073368 A CN 201980073368A CN 113273073 A CN113273073 A CN 113273073A
Authority
CN
China
Prior art keywords
inverter
grid
power
topologies
connected inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980073368.1A
Other languages
English (en)
Other versions
CN113273073B (zh
Inventor
陈学健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Redx Electrical Technology Ltd
Original Assignee
Guangdong Redx Electrical Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Redx Electrical Technology Ltd filed Critical Guangdong Redx Electrical Technology Ltd
Publication of CN113273073A publication Critical patent/CN113273073A/zh
Application granted granted Critical
Publication of CN113273073B publication Critical patent/CN113273073B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/497Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode sinusoidal output voltages being obtained by combination of several voltages being out of phase
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

一种新型DC‑AC并网逆变器,该拓扑由一个或两个降压变换器和两个或四个低频开关组成,在并网应用中具有超高效率、无功补偿能力、体积小、成本低等优点。

Description

新型全波开关DC-AC并网逆变器
相关申请的交叉引用
本申请主张2018年11月8日提交的第62/757168号临时专利申请35U.S.C.§119(e)项下的利益,其全部披露通过引用并入本文。
技术领域
本发明涉及一种DC-AC功率逆变器,特别是用于并网应用。
背景技术
在过去的十年中,本领域技术人员为并网应用提出了一些新的功率转换拓扑,以实现更高的效率,更低的成本和更小的体积。以下文献只是这项工作中最新提出的一些拓扑:
1、S.Dutta和K.Chatterjee,“基于降压升压的并网光伏逆变器在不匹配的环境条件下最大化两个光伏阵列的功率输出”,在IEEE工业电子学报,65卷,第7期,第5561-5571页,2018年7月。
2、S.Strache、R.Wunderlich和S.Heinen,“全面、定量各种光伏系统、光伏电池和辐照度曲线的逆变器结构比较”,IEEE可持续能源学报,第5卷,第3期,第813-822页,2014年7月。
3、周立群,高福林,徐太宗,“一个中性点箝位电路的家庭单相光伏逆变器:一般原理和实现”,IEEE电力电子学报,第32卷,第6期,第4307-4319页,2017年6月。
4、J.F.Ardashir、M.Sabahi、S.H.Hosseini、F.Blaabjerg、E.Babaei和G.B.Gharepetian,“用于并网光伏应用的带电荷泵电路概念的单相无变压器逆变器”,见IEEE工业电子学报,第64卷,第7期,第5403-5415页,2017年7月。
5、S.Saridakis、E.Koutroulis和F.Blaabjerg,“基于sic的H5和无变压器光伏逆变器”,电力电子与电子工程学会期刊,第3卷,第2期,第555-567页,2015年6月。
6、李文华、顾永元、罗汉华、崔文华、贺旭、夏春华,“拓扑学回顾与展望-用于抑制泄漏电流的单相无变压器光伏逆变器的推导方法,”IEEE工业电子学报,第62卷,第7期,4537-4551页,2015年7月。
7、Y.Zhou,W.Huang,P.Zhao和J.Zhao,“基于耦合电感单级升压三相逆变器的无变压器并网光伏系统”,IEEE电力电子学报,第29卷,第3期,1041-1046页,2014年3月。
8、L.Zhang,K.Sun,Y.Xing和M.Xing,“H6无变压器全桥光伏并网逆变器”,《IEEE电力电子学报》,第29卷,第3期,第1229-1238页,2014年3月。
上述所有文献均通过引用并入各自的实体中。
同时,在许多专利文件中也可以找到各种功率转换拓扑。下面是这些美国专利文件的示例性列表。
示范性美国专利文件
8369113 B2 02/2013 Rodriguez
8582331 B2 11/2013 Frisch等人
8971082 B2 03/2015 Rodriguez
9071141 B2 06/2015 Dong等人
9093897 B1 06/2015 Weng等人
9148072 B2 09/2015 Ueki等人
9318974 B2 04/2016 Yoscovich等人
9413268 B2 08/2016 Fu等人
9584044 B2 02/2017 Zhou等人
9627995 B2 04/2017 Ayai
9641098 B2 05/2017 Fu等人
9692321 B2 06/2017 Hu等人
9806529 B2 10/2017 Fu
9806637 B2 10/2017 Fu
9812985 B2 11/2017 Rodriguez
9831794 B2 11/2017 Rodriguez
9866147 B2 01/2018 Kidera等人
9871436 B1 01/2018 Jiao等人
9941813 B2 04/2018 Yoscovich
10008858B2 06/2018 Garrity
10033292B2 07/2018 Rodriguez
以上列出的所有示例性的美国专利文件在此以其各自的全文引入作为参考。
当前主流的功率转换拓扑,包括例如美国专利中涉及的那些,如美国专利No.8369113、美国专利No.9941813、美国专利No.10008858和美国专利No.10033292,在申请人的观点中,仍然需要在性能方面进行改进。首先,许多流行的逆变器拓扑在减小开关损耗方面具有局限性,从而导致每个输出电感器L和无源元件的尺寸都很大。
在这个领域,存在几类并网逆变器拓扑,即隔离和非隔离逆变器,中频(MF)(10kHz-30kHz),高频(HF)(高于100kHz)或包括低频(LF)开关的高频(HF)开关逆变器拓扑。图2B,2C,2F,2J示出了几种中频逆变器。中频逆变器减少开关损耗的能力受到中频开关频率的限制。然而,由于其在减小开关损耗方面的限制,这样的中频逆变器的输出电感器L和无源元件在尺寸上相对较大,这是不希望的。图2G,2I是具有低频开关的中频逆变器,这些逆变器拓扑在用其中频开关频率控制其开关损耗方面仍然受到限制,并且这样的逆变器拓扑其输出电感器L和无源元件的尺寸依然较大。
其次,许多流行的逆变器拓扑在无功功率流动能力方面具有局限性。对于那些并网逆变器拓扑,我们希望在连接电网的同时实现无功补偿能力。具有图2A,2E和2K所示的具有拓扑结构的逆变器,可以在高频和低频开关操作。对于这样的逆变器,其输出电感器L可以更小,并且可以实现更高的效率,因此相对于传统的逆变器而言,可以获得更好的效率。然而,由于没有无功补偿能力,这些拓扑结构只能工作在单位功率因数。
无功补偿能力被认为是当今逆变器技术的一个非常重要的特征。图1E是功率单元的三种配置。配置(A)是单向单元,其配置用于图2E和2K所示的拓扑结构中。本领域技术人员容易理解和认识到,这种结构只能支持单向电流流动,因此不能具有无功补偿能力。
继续对图1E的讨论,功率级单元的配置(B)是传统的半桥配置,其支持无功潮流的双向电流。值得注意的是,该配置用于几乎所有其它传统拓扑结构中。虽然这种双向配置易于应用于IGBT型逆变器电路中,但是工作时开关频率是有限的。对于诸如MOSFET的现代功率半导体器件,是可以有更高的开关频率的。然而,由于高压器件在这种半导体器件的体二极管上具有缓慢的恢复时间,导致逆变器遭受过度的开关损耗,如果不是因为缓慢的恢复时间时可以避免或减少这种开关损耗的。即在配置(B)中运行的MOSFET可能出现直通,从而导致逆变器故障。
因此,需要解决在常规功率转换拓扑中存在的上述问题。
发明内容
本发明为解决技术问题,提供了一种新型DC-AC并网逆变器。
如图1A所示,本发明公开的新型DC-AC并网逆变器包括一个或两个降压变换器(一个或多个)。在当前公开的转换拓扑下,可以轻易实现软开关,这与H桥或半桥配置形成对比。在一个导通周期的每半个周期中,在相应的导通路径中存在两个开关,这与其它拓扑结构(其中可能存在三个或更多个串联的开关)相反。因此,可以获得更好的效率,从而减小相关输出电感器L和无源元件的尺寸。
其次,在当前公开的转换拓扑下,每组输出端子只有低频半波信号。因此,有害的高频漏电流被最小化。
另外,在图1E所示的当前公开的配置(C)下,所涉及的开关不像同相支路那样串联连接。因此,反向恢复速度较慢的体二极管不导通电流,从而导致功率级不存在直通问题,同时具有无功补偿的能力。另一方面,耦合电感器和开关T1使功率级等效于半桥功率级工作,这是双向的。由于没有两个功率器件串联,可以避免体二极管反向恢复问题。开关T1工作在ZVS(零电压开关)模式,开关损耗小,这也降低了相关输出电感器L和无源元件在尺寸方面的要求。
上述概要包含细节的简化,概括和省略,并且不是想要作为对所要求保护的主题的全面描述,而是想要提供与之相关联的一些功能的简要概述。在检查以下附图和详细的书面描述之后,所要求保护的主题的其他系统、方法、功能、特征和优点对于本领域技术人员将是或将变得显而易见。
附图说明
说明性实施例的描述可以结合附图来阅读。应当理解,为了说明的简单和清楚,除非明确说明,附图中所示的元件不一定是按比例绘制的。而且,提供出现在任何附图上的任何文本和/或任何数字数据(数字)以示出示例性实施例或实现,因此,提供文本和/或数字数据是为了示出而不是为了限制的目的。例如,一些元件的尺寸可能相对于其它元件被放大。结合了本专利所公开的实施例并参照这里给出的附图进行了描述,其中:
图1A示出了本发明公开的DC-AC逆变器的一般形式。
图1B和1C示出了图1A所示降压变换器的优选实施例。
图1D示出了当前公开的具有一个降压变换器和四个低频开关的DC-AC逆变器的例子。
图1E示出了单向和双向单元配置之间的比较。
图2A-2K示出了相关技术中的各个转换拓扑。
图3A示出了当前公开的具有两个降压变换器和两个低频开关的DC-AC逆变器的例子。
图3B描述了与图3A的当前公开的DC-AC转换器的调制策略相关的示例性时序图。
图3C-D示出了与图3A的当前公开的DC-AC转换器的调制定时相关的示例性时序图。
图4A-4D示出了用于图3A的当前公开的DC-AC转换器的四个相应操作模式,包括与四种操作模式相关联的示例性各自的时序图。
图4E示出了当前公开的DC-AC逆变器接收来自与Vac并联的大电感串联或大电容器的无功功率流的示例。
图4F和4G示出了与当前公开的DC-AC逆变器如何处理来自示例性电感负载和示例性电容负载的无功功率流有关的示例性各自时序图。
具体实施方式
在本节对本发明的示例性实施例的以下详细描述中,对可以实施本发明的具体示例性实施例进行了足够详细的描述,以使本领域技术人员能够实施所公开的实施例。但是,可以理解的,这些具体细节不需要被用来实现本发明的实施例。因此,随后的详细描述不被理解为限制,本发明的保护范围由附加的权利要求和等同内容来限定。
说明书中使用的“一个实施例”,“一种实施例”,“实施例”,或者“一个或多个实施例”意在表明与实施例描述相关的一种特别的功能,结构,或者特性都包括在本发明的至少一个实施例中。这样的词语出现在说明书中的不同地方不必都指同一实施例,也不必指分立的或者是排除其它实施例的可用的实施例。此外,描述了可以由一些实施例而不是由其他实施例展示的各种特征。类似地,描述了各种要求,这些要求可以是一些实施例的要求,而不是其他实施例的要求。
本文中使用的术语仅用于描述特定实施例,并不旨在限制本发明。如本文所使用的,除非上下文另有明确指示,否则单数形式“a”、“an”和“the”也意在包括复数形式。此外,First”(第一)和“Second”(第二)等的词语使用并不表示任何次序或者重要性,“First”(第一)和“Second”(第二)等的词语是用于一个要素和另一要素的区分。
本领域的普通技术人员将理解,下图中描述的组件和基本配置可能会有所不同。除了所描述的组件之外,还可以使用其他类似的或等效的组件来代替所描述的组件。所描述的例子并不意在表明基于现在描述的一个或多个实施例和(或)发明公开的架构或其它限制。
目前公开的DC-AC转换器在图1A中以一般形式示出,包括两个降压变换器和两个低频开关。参考图1A,直流电源可以是光伏阵列、电池、燃料电池或其它。交流电源可以是公用电网、单相电动机或其他电源。每个前转换器可以是能够在所连接的交流电源的频率下产生半正弦波形的任何单向转换器,包括但不限于经典的单向降压变换器(如图1B所示)和三电平双向降压变换器(如图1C所示)或任何其他种类的降压变换器。这两个转换器可以是相同的,也可以是任何降压变换器的组合。
图3A示出了当前公开的DC-AC转换器作为描述示例,其配置有双向单元的典型降压变换器。图3B-D中描绘了一种可能的调制策略以及交流电压和电流波形。图4A-4D中分别示出了采用所述调制策略的当前公开的逆变器在单位功率发电中的四种可能的操作模式。
对于与当前公开的拓扑相关的无功发电模式,图4E-4G分别提供示例性配置图和与示例性配置相关联的无功功率流的示例。
模式1
参考图4A和图3B,在此模式期间,T3工作在PWM斩波状态,通过一个或多个大小合适的电感或电容器产生交流波形。T2用作低频开关。当T1和T4闭合时,变换器在“A”点产生半波交流。因此,电能从DC源传输到电感器L1、输出电容器C3和交流源。其结果是在交流电源上产生半个交流正弦波。如时序图所示,T5与T3同时工作并与L3耦合,在T3关闭期间通过正向偏置的D1(否则在T3开启期间反向偏置)传导续流。
模式2
参考图4B和图3B,在该模式(也可以理解为模式1期间的特定子模式)期间,T2和D1导通,而T1、T3和T4断开,T5导通。电能从电感器L1和L3、电容器C3流向交流源。由于T5导通,电感器L1通过D1续流,续流电流也通过电感器L3和T5。
模式3
参考图4C和图3D,该模式与模式1形成镜像,不同之处在于产生交流正弦的负半波。因此,如本领域技术人员容易理解的,模式3的操作与模式1的操作是一致的,除了其他低频T1导通外,T4工作在PWM斩波状态,而T1和T4对应的开关T2和T3断开。因此,电能从直流源流向电感器L2(对应于L1),再到输出电容器C4(对应于C3)和交流源。因此,交流正弦波的另一半波通过交流电源产生。如时序图所示,T6(与T5相对应)与T4同时工作,并与L4耦合,在T4关闭期间通过正向偏置D2(在T4开启期间反向偏置)传导续流。
模式4
参考图4D和图3D,该模式是模式2的镜像,不同之处在于产生交流正弦的负半波。因此,模式4也可以理解为模式3期间的特定子模式。因此,在此模式期间,T1和D2导通,而T2、T3和T4断开,T6导通。电感器L2、L4的功率传输。电容器C4连接到交流电源。由于T6接通,D2保持电感器L2的续流电流,耦合到T6的电感器L4也接合T6以连接续流电流。
无功补偿模式
参考图4E、4F和4G,在此模式下,负载(交流电源)是无功的,有感性负载(滞后)或容性负载(超前)。如图4F和4G所示,输出电流与输出电压存在相位差,耦合电感器L1和L3、L2和L4在T5和T4接通的间隔期间,使电流自由流动。利用组合的D1和D2导通电流,建立了双向电流。参见图4F和4G中的Iac1和Iac2。这些电流向两个方向流动,显示出双向电流流动。
总之,在正向正弦周期(vac>0)期间,T1保持断开,T2保持导通。T3、D1和T5以互补的方式导通和关闭,以产生所需的电流iac1,而T4和D2保持关闭。对于负向正弦周期(vac<0),T1保持导通,T2保持断开。T4、D2和T6以互补的方式导通和断开,以产生所需的电流iac2,而T3和D1保持断开。
虽然已经参考一个或多个示例性实施例描述了本发明,但是本领域技术人员应该理解,在不脱离本发明的范围的情况下,可以做出各种改变,并且可以用等效物代替其元件。此外,可作出许多修改以使特定系统、装置或其组件适应本发明而不脱离其基本范围。因此,本发明不限于为实施本发明而公开的特定实施例。

Claims (1)

1.一种DC-AC并网逆变器,其特征在于,包括:
一组一个或多个降压变换器,每个降压变换器具有一个双向单元,所述双向单元包括两个不串联连接的开关,当第一开关断开时,第二开关导通续流电流;以及
一组耦合到交流电源的两个相应端子的两个低频开关,每个低频开关产生交流正弦波的半波。
CN201980073368.1A 2018-11-08 2019-11-08 新型全波开关dc-ac并网逆变器 Active CN113273073B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862757168P 2018-11-08 2018-11-08
US62/757,168 2018-11-08
PCT/US2019/060649 WO2020097586A1 (en) 2018-11-08 2019-11-08 Novel fws dc-ac grid connected inverter

Publications (2)

Publication Number Publication Date
CN113273073A true CN113273073A (zh) 2021-08-17
CN113273073B CN113273073B (zh) 2023-01-31

Family

ID=70611567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980073368.1A Active CN113273073B (zh) 2018-11-08 2019-11-08 新型全波开关dc-ac并网逆变器

Country Status (3)

Country Link
US (2) US11159097B2 (zh)
CN (1) CN113273073B (zh)
WO (1) WO2020097586A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11557983B2 (en) * 2020-01-15 2023-01-17 Solaredge Technologies Ltd. Coupled inductors inverter topology

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594179A (zh) * 2012-01-19 2012-07-18 华为技术有限公司 逆变器电路及其控制方法、逆变器电路控制装置
CN203617928U (zh) * 2013-12-19 2014-05-28 上海电机学院 单相光伏并网逆变器
US20160006295A1 (en) * 2012-09-20 2016-01-07 Eaton Manufacturing Lp, Glasgow, Succursale De Morges Online uninterruptible power supply topology
CN106130352A (zh) * 2016-06-30 2016-11-16 盐城工学院 中间电流型双管正激微逆变器及其数字控制装置
CH711423A2 (de) * 2015-08-06 2017-02-15 ETH Zürich Verfahren und Vorrichtung zur Steuerung eines Einphasen-DC/AC-Konverters.
US20170098998A1 (en) * 2015-10-05 2017-04-06 Maxim Integrated Products, Inc. Method And Apparatus For Multi-Phase DC-DC Converters Using Coupled Inductors In Discontinuous Conduction Mode
WO2018144856A1 (en) * 2017-02-03 2018-08-09 President And Fellows Of Harvard College Area efficient single-ended analog-to-digital converter

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2415841B (en) * 2004-11-08 2006-05-10 Enecsys Ltd Power conditioning unit
CN101263648A (zh) * 2005-09-12 2008-09-10 皇家飞利浦电子股份有限公司 控制的e类dc-ac变换器
GB2434490B (en) * 2006-01-13 2009-04-01 Enecsys Ltd Power conditioning unit
US8582331B2 (en) 2009-07-20 2013-11-12 Vincotech Holdings S.à.r.l. Inverter topologies usable with reactive power
EP2309639B1 (de) * 2009-10-09 2016-02-10 SMA Solar Technology AG Blindleistungsfähiger Wechselrichter
GB2486509B (en) 2011-03-22 2013-01-09 Enecsys Ltd Solar photovoltaic power conditioning units
US9071141B2 (en) * 2011-04-08 2015-06-30 Virginia Tech Intellectual Properties, Inc. Two-stage single phase bi-directional PWM power converter with DC link capacitor reduction
WO2013146340A1 (ja) * 2012-03-26 2013-10-03 株式会社村田製作所 インバータ装置
US9413268B2 (en) * 2012-05-10 2016-08-09 Futurewei Technologies, Inc. Multilevel inverter device and method
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9584044B2 (en) * 2013-03-15 2017-02-28 Sunpower Corporation Technologies for converter topologies
US9806637B2 (en) * 2013-04-30 2017-10-31 Futurewei Technologies, Inc. Soft switching inverter device and method
JP5618022B1 (ja) * 2013-06-11 2014-11-05 住友電気工業株式会社 インバータ装置
EP2852044B1 (de) 2013-09-23 2019-03-06 SMA Solar Technology AG Bidirektionaler wandler mit vorzugsrichtung und blindleistungsfähige wechselrichter mit diesem wandler
US9692321B2 (en) * 2013-12-04 2017-06-27 Sungrow Power Supply Co., Ltd. Five level inverter
CN104811076B (zh) * 2014-01-28 2018-03-16 台达电子企业管理(上海)有限公司 逆变器及其控制方法
US9318974B2 (en) * 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
JP6195202B2 (ja) * 2014-05-29 2017-09-13 パナソニックIpマネジメント株式会社 電力変換装置、およびそれを用いたパワーコンディショナ
US9641098B2 (en) * 2015-03-12 2017-05-02 Futurewei Technologies, Inc. Multi-level inverter apparatus and method
US9871436B1 (en) * 2016-11-15 2018-01-16 Toshiba International Corporation Three-phase three-level inverter with reduced common mode leakage current

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594179A (zh) * 2012-01-19 2012-07-18 华为技术有限公司 逆变器电路及其控制方法、逆变器电路控制装置
US20160006295A1 (en) * 2012-09-20 2016-01-07 Eaton Manufacturing Lp, Glasgow, Succursale De Morges Online uninterruptible power supply topology
CN203617928U (zh) * 2013-12-19 2014-05-28 上海电机学院 单相光伏并网逆变器
CH711423A2 (de) * 2015-08-06 2017-02-15 ETH Zürich Verfahren und Vorrichtung zur Steuerung eines Einphasen-DC/AC-Konverters.
US20170098998A1 (en) * 2015-10-05 2017-04-06 Maxim Integrated Products, Inc. Method And Apparatus For Multi-Phase DC-DC Converters Using Coupled Inductors In Discontinuous Conduction Mode
CN106130352A (zh) * 2016-06-30 2016-11-16 盐城工学院 中间电流型双管正激微逆变器及其数字控制装置
WO2018144856A1 (en) * 2017-02-03 2018-08-09 President And Fellows Of Harvard College Area efficient single-ended analog-to-digital converter

Also Published As

Publication number Publication date
US20200252003A1 (en) 2020-08-06
US20220190742A1 (en) 2022-06-16
EP3878087A1 (en) 2021-09-15
WO2020097586A1 (en) 2020-05-14
US11159097B2 (en) 2021-10-26
CN113273073B (zh) 2023-01-31
US11996787B2 (en) 2024-05-28

Similar Documents

Publication Publication Date Title
Sahoo et al. Review and comparative study of single-stage inverters for a PV system
Khan et al. Dual-buck-structured high-reliability and high-efficiency single-stage buck–boost inverters
Meraj et al. Common mode voltage reduction in a single-phase quasi Z-source inverter for transformerless grid-connected solar PV applications
Faraji et al. Single-stage single-phase three-level neutral-point-clamped transformerless grid-connected photovoltaic inverters: Topology review
Cao et al. Low-cost semi-Z-source inverter for single-phase photovoltaic systems
Tang et al. Active buck–boost inverter
US10381951B1 (en) Family of modular quasi-resonant inverters
US9660580B2 (en) Synchronous buck inverter
Nag et al. Current-fed DC/DC topology based inverter
Chub et al. Switched-capacitor current-fed quasi-Z-source inverter
CN113273073B (zh) 新型全波开关dc-ac并网逆变器
Lee et al. Input-series-output-parallel connected DC/DC converter for a photovoltaic PCS with high efficiency under a wide load range
Matiushkin et al. Novel single-stage buck-boost inverter with unfolding circuit
Khan et al. Four-switch buck-boost inverter for stand-alone and grid-connected single-phase PV systems
Roy et al. GaN based transformer-less microinverter with coupled inductor interleaved boost and half bridge voltage swing inverter
Abdel-Rahim et al. Pseudo single stage flyback current source inverter for grid connected PV applications
Yang et al. An asymmetrical multi-level dual-input dual-buck inverter for multi-source interface applications
Mazza et al. A Soft Switching Bidirectional DC-DC Converter with High Frequency Isolation Feasible to Photovoltaic System Applications
Pervaiz et al. A novel single-phase soft switching microinverter for photovoltaic applications
Cheng et al. The topology analysis and compare of high-frequency power electronic transformer
Lodh Review of Solar Photovoltaic Microinverter Topologies
Kosenko et al. Comparison and verification of boost control methods for full soft-switching bidirectional current-fed isolated full-bridge DC-DC converter
Abdelrahem et al. Three phase Semi-Z-Source Inverter for PV Applications
Shehadeh et al. Photovoltaic inverters technology
Mazza et al. A soft switching bidirectional DC-DC converter based on three-state switching cell to photovoltaic systems applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20211202

Address after: Rooms 302 and 302B, 3 / F, building 10, innovation science park, Songshanhu high tech Industrial Development Zone, Dongguan City, Guangdong Province

Applicant after: GuangDong Redx Electrical Technology Ltd.

Address before: 523808 rooms 301 and 302, 3 / F, building 10, innovation science park, Songshanhu high tech Industrial Development Zone, Dongguan City, Guangdong Province

Applicant before: GuangDong Redx Electrical Technology Ltd.

Applicant before: Chen Xuejian

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant