CN113265249B - 一种功能化亲水性铅卤钙钛矿量子点制备及生物传感应用 - Google Patents
一种功能化亲水性铅卤钙钛矿量子点制备及生物传感应用 Download PDFInfo
- Publication number
- CN113265249B CN113265249B CN202110536658.4A CN202110536658A CN113265249B CN 113265249 B CN113265249 B CN 113265249B CN 202110536658 A CN202110536658 A CN 202110536658A CN 113265249 B CN113265249 B CN 113265249B
- Authority
- CN
- China
- Prior art keywords
- quantum dot
- perovskite quantum
- lead halide
- hydrophilic
- halide perovskite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
- C09K11/025—Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/66—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
- C09K11/664—Halogenides
- C09K11/665—Halogenides with alkali or alkaline earth metals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6432—Quenching
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
一步合成功能化亲水性铅卤钙钛矿量子点,并由此构建荧光共振能量转移生物传感体系。首先在等摩尔的卤化铯及卤化铅的亲水性有机溶剂优选二甲基甲酰胺中,同步或先后引入双官能团亲水聚合物优选一端氨基/巯基、一端羧基的聚乙二醇,及全氟烃基硅醚,合成表面官能团化亲水性铅卤钙钛矿量子点。经表面官能团活化,用于偶联对应末端官能团化生物分子如氨基末端单链核酸适配体;在此功能化铅卤钙钛矿量子点水溶液中加入适量荧光淬灭纳米片优选单层二硫化钼纳米片构建生物传感体系。当没有靶存在时,由于铅卤钙钛矿量子点标记的单链核酸适配体与纳米片间相互作用而被吸附,铅卤钙钛矿量子点荧光被淬灭;当靶标存在时,铅卤钙钛矿量子点标记的单链核酸适配体与靶标杂交,所形成的双链核酸不再被纳米片吸附,从而恢复荧光;随着靶标浓度的增加,荧光响应逐渐增强,由此实现对靶标的特异性定量检测。该量子点合成过程同步衍生的官能团可用于偶联不同生物分子,用于对应目标物的检测。
Description
技术领域
在本发明属于荧光量子点和生物传感技术领域,涉及一种可功能化亲水性铅卤钙钛矿量子点的制备,并偶联生物分子后与荧光淬灭纳米片构建生物传感用于核酸定量检测。
背景技术
铅卤钙钛矿量子点APbX3(A是阳离子或Cs+,X为卤化物),与传统的II-VI和III-V胶体量子点(如CdS、PbSe、InP)相比,具有显著的特点[Nat Rev Mater 4(3)(2019)169-188,Small(2019)e1903398]:a)荧光量子产率可达≈100%,CsPbBr3>90%;b)带隙可调,通过简单地调节卤素比,使其发光光谱覆盖整个可见光范围(405-700纳米);c)宽激发,在300-400纳米范围内激发产生不同波长的发射;d)发射半高宽仅为12-42纳米,色域范围可达NTCS标准的140%。但未经处理的铅卤钙钛矿,由于其形成能低、离子晶格和表面配体附着不稳定[ACS Appl Nano Mater 2(1)(2018)258-266],对水和其他极性溶剂的高度敏感且易光降解[Adv Funct Mater 29(29)(2019)],极大地限制了铅卤钙钛矿在生物、医学领域的应用。为了解决此问题,研究人员报道了一系列改善铅卤钙钛矿稳定性的策略。
制备铅卤钙钛矿量子点主要有热注入法[Nano Lett 15(6)(2015)3692-3696]、配体辅助再沉淀法[Adv Funct Mater 26(15)(2016)2435-2445]、水乳法[ACS Appl MaterInter 10(50)(2018)43915-43922]。为改善铅卤钙钛矿量子点水稳定性和光稳定性,多采用惰性材料如硅壳包覆[ACS Appl Nano Mater 2(1)(2018)258-266]、配体交换[AdvFunct Mater 29(2019)1902446]、多嵌段聚合物或白蛋白包覆[Small 14(51)(2018)e1803156]、无机离子掺入[Nanoscale 11(10)(2019)4278-4286]、固相多孔材料装载[AdvFunct Mater 27(45)(2017)]等策略。但改性后铅卤钙钛矿多以疏水形态应用于太阳能电池、光电探测器等物理领域,或旋涂成膜构成疏水性电极用于光电化学传感[Nanoscale 10(22)(2018)10505-10513,Biosens Bioelectron 77(2016)330-338]。钙钛矿量子点用于生物分子检测不但要考虑水稳定性,还要考虑水分散性,即表面亲水性铅卤钙钛矿量子点。亲水性钙钛矿量子点制备和应用报道较少,且仍举步维艰。Tan等用磁珠包裹铅卤钙钛矿量子点应用于细胞成像[Adv Healthc Mater 8(23)(2019)e1900859];Wang等经包裹高聚物功能化用于胰蛋白酶、Fe3+、pH检测[Nanoscale Horizons 2(4)(2017)225-232];Pramanik等人报道了聚合物包被的铅卤钙钛矿量子点用于体外细胞及囊泡显影[ACS Appl Bio Mater2(12)(2019)5872-5879];Li的团队首次采用水乳法合成亲水性铅卤钙钛矿量子点用于组织显影[ACS Appl Mater Inter 10(50)(2018)43915-43922],再用水乳法制备的亲水性铅卤钙钛矿量子点与金纳米粒靠静电吸附用于三聚氰胺的检测[Talanta 211(2020)120705];Chen等人采用热注入法制备并用聚苯乙烯/丙烯酰胺装载铅卤钙钛矿量子点用于Fe3+的检测[Sens Actuators B:Chem 325(2020)];Wang等人采用配体辅助法合成钙钛矿量子点,并通过线圈辅助喷雾法将量子点包覆于聚甲基丙烯酸甲酯,后经氧等离子处理获得表面羧基化和氨基化铅卤钙钛矿量子点[Small 14(51)(2018)e1803156];Yan等人在配体辅助再沉淀过程中引入甲基聚乙二醇氨基获得热稳定亲水性铅卤钙钛矿量子点,用于细胞成像[J Mater Chem B 7(26)(2019)4153-4160]。上述关于亲水性铅卤钙钛矿量子点报道,仅聚甲基丙烯酸甲酯可经后处理衍生官能团,其余未见表面可功能化亲水铅卤钙钛矿量子点报道。
本发明旨在一步制备一种表面可功能化水分散性铅卤钙钛矿量子点,经生物分子偶联后与二硫化钼纳米片构建一种“turn on”荧光共振能量转移生物传感体系,用于生物分子定量检测。
发明内容
本发明旨在合成一种可功能化亲水性铅卤钙钛矿量子点,并由此构建荧光共振能量转移生物传感体系。首先在等摩尔等摩尔的卤化化铯及卤化铅的亲水性有机溶剂优选二甲基甲酰胺溶液中,同步或先后引入双官能团亲水聚合物优选氨基/巯基及羧基末端聚乙二醇,及全氟烃基硅醚,合成表面官能团化亲水性铅卤钙钛矿量子点;直接、或经表面官能团活化,用于偶联对应末端官能团化生物分子如氨基末端单链核酸适配体;在此功能化铅卤钙钛矿量子点水溶液中加入适量荧光淬灭纳米片优选单层二硫化钼纳米片,当没有靶存在时,由于铅卤钙钛矿量子点标记的单链核酸适配体与纳米片间相互作用而被吸附,铅卤钙钛矿量子点荧光被淬灭,而当靶标存在时,铅卤钙钛矿量子点标记的单链核酸适配体与靶标杂交,所形成的双链核酸无法被纳米片吸附,从而恢复荧光;随着靶标浓度的增加,荧光响应逐渐增强,由此实现对靶标的定量检测。该量子点合成过程同步衍生官能团可用于偶联不同生物分子,用于对应目标物的检测。
1.一种功能化亲水性铅卤钙钛矿量子点制备及生物传感应用,其特征过程包括如下步骤:
(1)亲水性铅卤钙钛矿量子点的制备特征过程:等摩尔的卤化铯及卤化铅、加入1~20毫克/毫升如权力要求2所述亲水性高聚物并含如权力要求3所述偶联基团,2~20毫升亲水性有机溶剂优选二甲基甲酰胺,90~100摄氏度搅拌0.5~2小时后降至室温,再加入1~10毫升油胺,700转/分持续搅拌6~24小时,再加入0.1~10毫升如权力要求2所述碳氟试剂,25~100摄氏度搅拌0.5~2小时获得前体溶液;取前体溶液快速加入10-20倍惰性溶剂优选甲苯、正己烷、环己烷、二氯甲烷中,剧烈搅拌,将所得溶液在8000转/分4摄氏度下离心5~10分钟,用惰性溶剂洗涤,氮气吹干得亲水性表面羧基官能团化铅卤钙钛矿量子点;
(2)亲水性表面羧基铅卤钙钛矿量子点的官能团化特征过程:在1-20毫克/毫升的表面羧基量子点水溶液中加入1~5倍摩尔量的1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐、N-羟基琥珀酰亚胺,室温振荡15~30分钟活化量子点表面羧基,加入适量氨基末端适配体,0摄氏度200转每分震荡2~12小时;用氨基聚乙二醇、白蛋白、甘氨酸封闭;
(3)基于功能化亲水性铅卤钙钛矿量子点的生物传感体系构建及两种定量检测特征过程:1)0.25~10毫克/毫升量子点与0.25~25微克/毫升荧光淬灭纳米片优选单层二硫化钼室温孵育10~60分钟后,加入不同浓度的靶标,室温孵育5~60分钟,检测荧光信号;2)0.25~10毫克/毫升量子点与不同浓度的靶标室温孵育5~60分钟后,再加入0.25~25微克/毫升光淬灭纳米片优选单层二硫化钼室温孵育5~60分钟,检测荧光信号。
2.如权利要求1步骤1中所述亲水性铅卤钙钛矿量子点的制备,适用的含官能团的亲水性高聚物包括但不限于:分子量1500-6000道尔顿的氨基-聚乙二醇-羧基、羧基-聚乙二醇-羧基、聚丙烯酸、马来酸-丙烯酸共聚物,用于制备表面羧基量子点偶联胺基末端生物分子;胺基-聚乙二醇-胺基、胺基-聚乙二醇-巯基,用于制备表面胺基量子点偶联羧基末端生物分子;N-马来酰亚胺-聚乙二醇-胺基,用于制备表面马来酰亚胺量子点偶联巯基/氨基末端生物分子、炔基-聚乙二醇-氨基用于偶联叠氮基生物分子;适用的含不同末端官能团的碳氟试剂包括但不限于全氟辛基三乙氧基硅烷、甲基丙烯酸-1H,1H-全氟代辛酯。
3.如权利要求1步骤1和2中所述亲水性铅卤钙钛矿量子点的制备及其表面功能化特征过程,在于同步生成表面官能团包括氨基、羧基、巯基、炔基、N-马来酰亚胺、卤素;通过羧基活化、点击反应、亲核取代易于偶联生物分子如适配体、抗体、寡肽、蛋白配体。
4.如权利要求1步骤1中所述亲水性铅卤钙钛矿量子点的制备,所用卤化铯包括溴化铯、碘化铯、氯化铯;所用卤化铅包括溴化铅、碘化铅、氯化铅。
5.如权利要求1所述亲水性表面功能化铅卤钙钛矿量子点有以下特点:亲水且分散良好、极性溶剂稳定性好、易于表面功能化。
6.如权利要求1所述亲水性表面功能化铅卤钙钛矿量子点,可将其应用于生物传感检测核酸、蛋白、病毒、细菌。
附图说明
图1为亲水性CsPbBr3量子点的吸收和发射光谱图。
图中曲线a为CsPbBr3量子点水溶液在320nm激发下的发射曲线;曲线b为CsPbBr3量子点水溶液的紫外吸收曲线。
图2为CsPbBr3量子点水溶液的稳定性考察。
图3为CsPbBr3量子点偶联单链核酸适配体前后的紫外吸收光谱图。
图中曲线a为CsPbBr3量子点耦联核酸前的紫外吸收曲线;曲线b为CsPbBr3量子点耦联核酸后的紫外吸收曲线;曲线c为纯核酸的紫外吸收曲线。
图4为CsPbBr3量子点偶联单链核酸适配体前后的荧光发射光谱图。
图中曲线a为CsPbBr3量子点耦联核酸前的荧光发射曲线;曲线b为CsPbBr3量子点耦联核酸后的荧光发射曲线。
图5为基于CsPbBr3量子点-ap和二硫化钼纳米片构建的生物传感器的可行性分析。
图中曲线a为CsPbBr3量子点-ap在加入二硫化钼纳米片前的荧光信号;曲线b为CsPbBr3量子点-ap在加入二硫化钼纳米片后的荧光信号;曲线c为在靶标存在下,往CsPbBr3量子点-ap中加入二硫化钼纳米片的荧光信号。
图6为CsPbBr3量子点-ap/二硫化钼的荧光信号对结核分枝杆菌DNA浓度的线性响应。
图7为基于CsPbBr3量子点-ap/二硫化钼构建的生物传感检测方法的特异性考察。
图中纵坐标F/F0表示每个样本的荧光强度与仅加二硫化钼纳米片空白对照荧光强度的比值;柱形a为CsPbBr3量子点-ap加入二硫化钼纳米片前的初始荧光强度与空白对照的比值;柱形b为仅加二硫化钼纳米片的空白对照与空白对照的比值;柱形c、d、e、f分别表示加入5纳摩尔/升结核分枝杆菌DNA、M2、M4及R的样本的荧光强度与空白对照的比值(M2即结核分枝杆菌DNA错配两个碱基、M4即结核分枝杆菌DNA错配4个碱基、R即随机序列,序列如表1)。
表1所用核酸序列列表
核酸 | 序列(5’→3’) |
单链核酸适配体(ap) | NH2-C6-GTCATTGCGTCATTTCCTTCGATT |
结核分技杆菌DNA | AATCGAAGGAAATGACGCAATGAC |
M2 | AATCGAAGGAAGTGACGCACTGAC |
M4 | ACTCGAAGGTAGTGACGCACTGAC |
R | GTGTCGTCTTCAGAATACCATGCT |
具体实施方式
实施例1:合成亲水性CsPbBr3量子点(CsPbBr3 QDs)
溴化铯(0.4毫摩尔)、溴化铅(0.4毫摩尔)及氨基-聚乙二醇-羧基(40毫克),加入二甲基甲酰胺(10毫升)中,90摄氏度搅拌40分钟;降至室温加入0.5毫升油胺,700转/分持续搅拌12小时;加入0.4毫升全氟辛基三乙氧基硅烷,90摄氏度搅拌1小时;将0.5毫升所得溶液快速加入10毫升甲苯溶液中,剧烈搅拌30秒,肉眼可见亮绿色的CsPbBr3 QDs析出;所得CsPbBr3 QDs甲苯溶液于4摄氏度,8000转/分离心5分钟,用甲苯洗涤,氮吹干燥CsPbBr3QDs,放置4摄氏度备用。
实施例2:亲水性CsPbBr3 QDs的表面功能化
称量6毫克干燥CsPbBr3 QDs,加入双蒸水超声分散得到CsPbBr3 QDs水溶液(附图1);加入20微摩尔1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐、20微摩尔N-羟基琥珀酰亚胺,室温搅拌30分钟活化CsPbBr3 QDs表面羧基;加入适量氨基末端适配体,冰上避光200转/分震荡3小时,得到偶联适配体的CsPbBr3 QDs(CsPbBr3 QDs-ap),放置4摄氏度备用。通过紫外吸收光谱和荧光发射光谱表征提示CsPbBr3 QDs成功偶联了单链核酸适配体,结果如(附图3),偶联适配体后的CsPbBr3 QDs在260nm处出现了核酸的特异性吸收峰,区别于偶联适配体前的CsPbBr3 QDs,且517nm处CsPbBr3 QDs的特征吸收峰蓝移至502nm;荧光发射光谱图如(附图4),CsPbBr3 QDs-ap的发射峰从520nm蓝移至508nm;以上结果表明,CsPbBr3QDs成功偶联了单链核酸适配体。同时考察了CsPbBr3 QDs在水中的稳定性,结果如(附图2),CsPbBr3 QDs的水溶液的荧光强度在一周后几乎没有改变,提示改性后的CsPbBr3 QDs在水中的稳定性较好。
实施例3:基于功能化亲水性CsPbBr3 QDs和单层二硫化钼纳米片构建的生物传感体系用于生物分子检测的可行性验证
取50微升CsPbBr3 QDs-ap水溶液,加入25微升结核分枝杆菌DNA(终浓度5纳摩尔/升),室温孵育1小时后,加入25微升二硫化钼纳米片溶液(9微克/毫升);室温孵育40分钟。同步设置CsPbBr3QDs-ap稀释对照样本加入相同体积水和空白对照加入等体积水和二硫化钼,同步处理后,测量各个样本对应的荧光强度。结果如(附图5),图中曲线a为CsPbBr3QDs-ap水溶液稀释的荧光响应;曲线b为加入二硫化钼纳米片之后的CsPbBr3 QDs-ap的荧光响应。由图可见,由于单链DNA与二硫化钼纳米片间的范德华力作用,偶联了单链DNA适配体的CsPbBr3 QDs与二硫化钼纳米片吸附在一起,此时由于CsPbBr3 QDs的发射范围与二硫化钼纳米片的吸收范围重叠,且两者距离足够接近,达到了荧光共振能量转移的条件,二硫化钼纳米片有效淬灭了CsPbBr3 QDs的荧光;曲线c为加入靶标后的CsPbBr3QDs荧光响应,由于单链DNA适配体优先与靶标杂交形成双链DNA,双链DNA不能被吸附到二硫化钼纳米片表面,故CsPbBr3 QDs的荧光得以恢复。由此提示,基于功能化亲水性CsPbBr3 QDs和单层二硫化钼纳米片协同构建的生物传感体系用于生物分子检测的原理是可行的。
实施例4:基于功能化亲水性CsPbBr3 QDs和单层二硫化钼纳米片生物传感体系与结核分枝杆菌DNA浓度响应
取50微升CsPbBr3 QDs-ap水溶液(2.4毫克/毫升),分别加入25微升不同浓度的结核分枝杆菌DNA;室温孵育1小时后,再各加入25微升二硫化钼纳米片溶液(9微克/毫升),室温孵育40分钟后,测量各个样本对应的荧光强度。结果如(附图6),结核分枝杆菌DNA浓度在1.5-4纳摩尔/升范围内与CsPbBr3 QDs的荧光响应信号有较好的线性关系,结核分枝杆菌DNA的标准曲线为y=65.73x+286.73(R2=0.9950)。本发明测定结核分枝杆菌DNA的最低检测限为94.3皮摩尔/升,表明该方法的灵敏度较高。
实施例5:基于功能化亲水性CsPbBr3 QDs和单层二硫化钼纳米片构建的生物传体系检测方法的特异性考察
取50微升CsPbBr3 QDs-ap水溶液(2.4毫克/毫升),分别加入25微升不同样本(水、5纳摩尔/升结核分枝杆菌DNA、M2、M4、R);室温孵育1小时后,再各加入25微升二硫化钼纳米片溶液(9微克/毫升),室温孵育40分钟后,测量各个样本对应的荧光强度。结果如(附图7),纵坐标F/F0表示每个样本的荧光强度与仅加二硫化钼纳米片空白对照荧光强度的比值。a为加入二硫化钼纳米片前的初始荧光强度与空白对照的比值;b为仅加二硫化钼纳米片的空白对照与空白对照的比值,可以明显的看到加入二硫化钼纳米片后,CsPbBr3QDs的荧光被有效淬灭了;c、d、e、f分别表示加入5纳摩尔/升结核分枝杆菌DNA、M2、M4及R的样本,很明显的是,仅加入5纳摩尔/升结核分枝杆菌DNA样本的QDs荧光显著恢复,而其余样本的荧光信号与空白对照样本接近(统计学方差分析P<0.05,有统计学意义)。由此提示,本发明设计的基于功能化亲水性CsPbBr3 QDs和单层二硫化钼纳米片构建的生物传感体系对结核分枝杆菌DNA有高度的特异性。
Claims (5)
1.一种功能化亲水性铅卤钙钛矿量子点制备方法,其特征过程包括如下步骤:
将等摩尔的卤化铯及卤化铅、1~20毫克/毫升含双官能团的亲水性高聚物加入2~20毫升亲水性有机溶剂中,90~100 ℃搅拌0.5~2小时后降至室温,再加入1~10毫升油胺,700转/分持续搅拌6~24小时,再加入0.1~10毫升碳氟试剂,25~100℃搅拌0.5~2小时获得前体溶液;取前体溶液快速加入10~20倍惰性溶剂中,剧烈搅拌,将所得溶液在8000转/分4 ℃下离心5~10分钟,用惰性溶剂洗涤,氮气吹干得亲水性表面羧基官能团化铅卤钙钛矿量子点;
其中,所述铅卤钙钛矿量子点为CsPbBr3;
所述卤化铯为溴化铯,卤化铅为溴化铅;
所述含双官能团的亲水性高聚物为分子量1500~6000道尔顿的氨基-聚乙二醇-羧基,以制备表面羧基量子点用于偶联胺基末端生物分子;
所述亲水有机溶剂为二甲基甲酰胺;
所述碳氟硅醚试剂为全氟辛基三乙氧基硅烷;
所述惰性溶剂为甲苯、正己烷、环己烷或二氯甲烷。
2.如权利要求1所述方法制备的一种功能化亲水性铅卤钙钛矿量子点,其特征在于:所述表面羧基官能团化铅卤钙钛矿量子点亲水且分散良好、稳定性好、易于表面共价偶联生物分子。
3.如权利要求1所述方法制备的一种功能化亲水性铅卤钙钛矿量子点在生物传感的应用。
4.根据权利要求3所述的应用,其特征在于,包含如下生物传感体系的构建步骤:
在1~20毫克/毫升的权利要求1获得的表面羧基官能团化铅卤钙钛矿量子点水溶液中加入1~5倍摩尔量的1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐、N-羟基琥珀酰亚胺,室温振荡15~30分钟活化量子点表面羧基,加入适量氨基末端适配体,0℃下200转每分震荡2~12小时;用氨基聚乙二醇、白蛋白、甘氨酸封闭;随后
1)将获得的0.25~10毫克/毫升量子点与0.25~25微克/毫升荧光淬灭纳米片优室温孵育10~60分钟,加入不同浓度的靶标,室温孵育5~60分钟,检测荧光信号;
或者
2)将获得的0.25~10毫克/毫升量子点与不同浓度的靶标室温孵育5~60分钟后,再加入0.25~25微克/毫升光淬灭纳米片,室温孵育5~60分钟,检测荧光信号;
其中所述荧光淬灭纳米片为二硫化钼纳米片。
5.根据权利要求4所述的应用,其特征在于,用于检测核酸、蛋白、病毒、细菌。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110536658.4A CN113265249B (zh) | 2021-05-17 | 2021-05-17 | 一种功能化亲水性铅卤钙钛矿量子点制备及生物传感应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110536658.4A CN113265249B (zh) | 2021-05-17 | 2021-05-17 | 一种功能化亲水性铅卤钙钛矿量子点制备及生物传感应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113265249A CN113265249A (zh) | 2021-08-17 |
CN113265249B true CN113265249B (zh) | 2023-08-04 |
Family
ID=77231345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110536658.4A Active CN113265249B (zh) | 2021-05-17 | 2021-05-17 | 一种功能化亲水性铅卤钙钛矿量子点制备及生物传感应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113265249B (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102272597A (zh) * | 2008-11-21 | 2011-12-07 | 惠研生物系统公司 | 分析物检测试验 |
CN109142290A (zh) * | 2018-07-16 | 2019-01-04 | 佛山科学技术学院 | 用于检测辛硫磷的CsPbBr3钙钛矿量子点-分子印迹荧光传感器及其制备方法 |
CN111518558A (zh) * | 2019-12-11 | 2020-08-11 | 南京大学 | C3N4纳米球负载全无机钙钛矿CsPbBr3的制备方法及其电致化学发光细胞传感 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011127001A2 (en) * | 2010-04-05 | 2011-10-13 | University Of Massachusetts | Quantum dot-based optical sensors for rapid detection and quantitative analysis of biomolecules and biological materials |
WO2015030685A1 (en) * | 2013-09-02 | 2015-03-05 | Agency For Science, Technology And Research | Fluorescent polymer dots, methods for their preperation, and uses thereof |
-
2021
- 2021-05-17 CN CN202110536658.4A patent/CN113265249B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102272597A (zh) * | 2008-11-21 | 2011-12-07 | 惠研生物系统公司 | 分析物检测试验 |
CN109142290A (zh) * | 2018-07-16 | 2019-01-04 | 佛山科学技术学院 | 用于检测辛硫磷的CsPbBr3钙钛矿量子点-分子印迹荧光传感器及其制备方法 |
CN111518558A (zh) * | 2019-12-11 | 2020-08-11 | 南京大学 | C3N4纳米球负载全无机钙钛矿CsPbBr3的制备方法及其电致化学发光细胞传感 |
Non-Patent Citations (1)
Title |
---|
纯无机铅卤钙钛矿纳米晶的合成探究;刘慧雯;《中国博士学位论文全文数据库工程科技I辑》;20200815(第08期);第B014-137页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113265249A (zh) | 2021-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ye et al. | Dual-wavelength ratiometric electrochemiluminescence immunosensor for cardiac troponin I detection | |
Chen et al. | Electrochemiluminescence detection of Escherichia coli O157: H7 based on a novel polydopamine surface imprinted polymer biosensor | |
Mohammadi et al. | A 3D hydrogel based on chitosan and carbon dots for sensitive fluorescence detection of microRNA-21 in breast cancer cells | |
JP5356204B2 (ja) | 蛍光色素化合物含有コロイドシリカ粒子の製造方法およびこれを用いた定量方法 | |
Qiu et al. | A label-free amperometric immunosensor based on biocompatible conductive redox chitosan-ferrocene/gold nanoparticles matrix | |
Shikha et al. | Upconversion nanoparticles-encoded hydrogel microbeads-based multiplexed protein detection | |
Zhang et al. | A magnetic molecularly imprinted optical chemical sensor for specific recognition of trace quantities of virus | |
Ma et al. | Versatile electrochemiluminescence assays for PEDV antibody based on rolling circle amplification and Ru-DNA nanotags | |
CN110736725B (zh) | 一种同时可视化检测两种病毒的分子印迹荧光传感器的制备方法及应用 | |
Guo et al. | A concise detection strategy of Staphylococcus aureus using N-Succinyl-Chitosan-dopped bacteria-imprinted composite film and AIE fluorescence sensor | |
Wu et al. | Ratiometric fluorescence sensor for the sensitive detection of Bacillus thuringiensis transgenic sequence based on silica coated supermagnetic nanoparticles and quantum dots | |
US11650203B2 (en) | One-pot biosensor and immunoassay method using the same | |
Amiri et al. | Application of ratiometric fluorescence sensor-based microwave-assisted synthesized CdTe quantum dots and mesoporous structured epitope-imprinted polymers for highly efficient determination of tyrosine phosphopeptide | |
WO2010141105A2 (en) | Quantum dot-sensory array for biological recognition | |
Wang et al. | Electrochemical immunoassay for subgroup J of avian leukosis viruses using a glassy carbon electrode modified with a film of poly (3-thiophene boronic acid), gold nanoparticles, graphene and immobilized antibody | |
Hu et al. | The identification nanoparticle sensor using back propagation neural network optimized by genetic algorithm | |
Gao et al. | Electrochemical sensing of Staphylococcus aureus based on conductive anti-fouling interface | |
CN113072710B (zh) | 一种气体响应型共振光分子印迹传感器及其制备方法 | |
CN113265249B (zh) | 一种功能化亲水性铅卤钙钛矿量子点制备及生物传感应用 | |
Ghafary et al. | Ultrasensitive fluorescence immunosensor based on mesoporous silica and magnetic nanoparticles: Capture and release strategy | |
He et al. | Smartphone conducted DNA portable quantitative detection platform based on photonic crystals chip and magnetic nanoparticles | |
Zhang et al. | A novel dual recognition sensor based on molecularly imprinted polymers and photochemical aptamer for non-autofluorescence determination of dopamine | |
Tian et al. | Novel microbiosensors prepared utilizing biomimetic silicification method | |
Chen et al. | Core–shell nanostructures for ultrasensitive detection of α-thrombin | |
Wang et al. | A novel Eu3+ doped polydopamine nano particles/reductive copper particle hydrogel-based ECL sensor for HPV 16 DNA detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |