CN113258797A - 一种异构开关管桥臂的背靠背式三电平整流器 - Google Patents

一种异构开关管桥臂的背靠背式三电平整流器 Download PDF

Info

Publication number
CN113258797A
CN113258797A CN202110432529.0A CN202110432529A CN113258797A CN 113258797 A CN113258797 A CN 113258797A CN 202110432529 A CN202110432529 A CN 202110432529A CN 113258797 A CN113258797 A CN 113258797A
Authority
CN
China
Prior art keywords
inductor
capacitor
voltage
switch tube
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110432529.0A
Other languages
English (en)
Other versions
CN113258797B (zh
Inventor
马辉
曾雨涵
周沫函
邹旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN202110432529.0A priority Critical patent/CN113258797B/zh
Publication of CN113258797A publication Critical patent/CN113258797A/zh
Application granted granted Critical
Publication of CN113258797B publication Critical patent/CN113258797B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/066Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode particular circuits having a special characteristic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/25Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in series, e.g. for multiplication of voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

一种异构开关管桥臂的背靠背式三电平整流器,包括开关管S1~S6,二极管D1、D2,电感L,电容C1、C2;交流电源一端连接电感L一端,电感L另一端分别连接开关管S1漏极、二极管D1阳极、二极管D2阴极;交流电源另一端分别连接开关管S2漏极、开关管S4源极、开关管S6漏极;开关管S1源极连接开关管S2源极;二极管D1阴极分别连接开关管S3漏极、电容C1一端;二极管D2阳极分别连接开关管S6源极、电容C2另一端;开关管S4漏极分别连接开关管S3源极、开关管S5漏极;电容C1另一端分别连接开关管S5源极、电容C2一端。本发明三电平整流器传统的两电平整流器相比,能够实现输入侧电压的电平数为三种电平,可以显著减小电容值;减小器件的电压应力。

Description

一种异构开关管桥臂的背靠背式三电平整流器
技术领域
本发明涉及一种三电平整流器,具体涉及一种异构开关管桥臂的背靠背式三电平整流器。
背景技术
对于常规的两电平整流器,无法在较宽的输入电压范围作为电源时实现高效率,如公共电网;常规的两电平整流器在交变电电压等级较低的时候效率将大大降低。现有技术中,背靠背三电平整流器多采用级联式结构,所使用的全控型器件较多,成本高;另外辅助电路多,体积大,功率密度低。为节省成本,提高背靠背三电平整流器功率密度,并降低控制难度,而提出一种异构开关管桥臂的背靠背式三电平整流器。
发明内容
本发明提供一种异构开关管桥臂的背靠背式三电平整流器,减小了各个半导体器件承受的电压应力的同时,增加了整流桥臂操作的灵活性;该三电平整流器传统的两电平整流器相比,能够实现输入侧电压的电平数为三种电平,可以显著减小电容值;减小器件的电压应力;减小了电容、半导体器件的成本。
本发明采取的技术方案为:
一种异构开关管桥臂的背靠背式三电平整流器,包括:
开关管S1、S2、S3、S4、S5、S6,二极管D1、D2,电感L,电容C1、C2
交流电源一端连接电感L一端,电感L另一端分别连接开关管S1漏极、二极管D1阳极、二极管D2阴极;
交流电源另一端分别连接开关管S2漏极、开关管S4源极、开关管S6漏极;
开关管S1源极连接开关管S2源极;
二极管D1阴极分别连接开关管S3漏极、电容C1一端;
二极管D2阳极分别连接开关管S6源极、电容C2另一端;
开关管S4漏极分别连接开关管S3源极、开关管S5漏极;
电容C1另一端分别连接开关管S5源极、电容C2一端;
负载R两端分别连接电容C1一端、电容C2另一端。
该三电平整流器中,MOS管S3、S4、S5、S6排列成异构型开关管桥臂,MOS管S3、S4、S6组成整流桥主桥臂,同时S4与S5组成异构型双向开关。
该三电平整流器中,储能滤波电感L,背靠背MOS管组S1、S2组成双向开关。
该三电平整流器中,半导体器件S4为复用开关管。
该三电平整流器中,电容C1、C2串联组成并联稳压支路。
本发明一种异构开关管桥臂的背靠背式三电平整流器,技术效果如下:
1)本发明一种异构开关管桥臂的背靠背式三电平整流器,由于采用了三电平结构可以灵活地适应于合适的工作模式以获得最大效率。同时,该三电平整流器能够维持高功率因数的情况下保持对负载输出稳定的电压,从而实现功率因数校正(PFC)功能。
2)相比于传统的两电平整流器,本发明异构开关管桥臂的背靠背式三电平整流器,输出直流电压的纹波水平更小;器件的电压应力更小;功率因数以及功率密度更高;与公共电网无功功率交换减少。同时,由于电路采用异构开关管桥臂的构成方式,能够提高整流器控制的灵活性。
3)本发明异构开关管桥臂的背靠背式三电平整流器,具备两条电流路径结构,采用异性结构节省开关数量,具体开关管复用性能。
4)本发明一种异构开关管桥臂的背靠背式三电平整流器,相对于传统的两电平整流电路,减少了对电路元件的电压应力要求。整流桥有多开关管串联结构,所承受的电压应力减小,开关管的成本降低;两个极性电容串联使用,电容电压减小;开关管S4在整流电路中被高度复用,减小了整流器工作时不必要的开关损耗;直流母线由两个电容串联工作,有效减少输出电流纹波。
5)本发明一种异构开关管桥臂的背靠背式三电平整流器,通过工作模态的转换,分别对两个用来箝位电压的电容充电,对交流电源进行整流,共输出三种电压等级的整流电路。
6)本发明一种异构开关管桥臂的背靠背式三电平整流器,利用电感储能特性,用电感L上的电流不能突变的特性,配合二极管以及电容共同箝位电压,维持母线电压稳定,保证直流母线输出的电压纹波较小。
附图说明
图1为本发明一种异构开关管桥臂的背靠背式三电平整流器电路主拓扑结构图;
图2为本发明一种异构开关管桥臂的背靠背式三电平整流器电路工作模态一图;
图3为本发明一种异构开关管桥臂的背靠背式三电平整流器电路工作模态二图;
图4为本发明一种异构开关管桥臂的背靠背式三电平整流器电路工作模态三图;
图5为本发明一种异构开关管桥臂的背靠背式三电平整流器电路工作模态四图;
图6为本发明一种异构开关管桥臂的背靠背式三电平整流器电路工作模态五图;
图7为本发明一种异构开关管桥臂的背靠背式三电平整流器电路工作模态六图;
图8为本发明电路电压Uab波形图;
图9为本发明电路交流侧输入电压Us和电流iL波形图;
图10为本发明电路直流输出电压Udc波形图;
图11(1)为本发明电路的开关管S1脉冲分配图。
图11(2)为本发明电路的开关管S2脉冲分配图。
图11(3)为本发明电路的开关管S3脉冲分配图。
图11(4)为本发明电路的开关管S4脉冲分配图。
图11(5)为本发明电路的开关管S5脉冲分配图。
图11(6)为本发明电路的开关管S6脉冲分配图。
具体实施方式
如图1所示,一种异构开关管桥臂的背靠背式三电平整流器,包括:
开关管S1、S2、S3、S4、S5、S6,二极管D1、D2,电感L,电容C1、C2
交流电源一端连接电感L一端,电感L另一端分别连接开关管S1漏极、二极管D1阳极、二极管D2阴极;
交流电源另一端分别连接开关管S2漏极、开关管S4源极、开关管S6漏极;
开关管S1源极连接开关管S2源极;
二极管D1阴极分别连接开关管S3漏极、电容C1一端;
二极管D2阳极分别连接开关管S6源极、电容C2另一端;
开关管S4漏极分别连接开关管S3源极、开关管S5漏极;
电容C1另一端分别连接开关管S5源极、电容C2一端;
负载R两端分别连接电容C1一端、电容C2另一端。
本发明一种异构开关管桥臂的背靠背式三电平整流器,包括单相三电平PWM整流电路,该PWM整流电路由:储能滤波电感L,背靠背MOS管组S1、S2组成双向开关,半导体器件S4、S5组成的异构型双向开关,电容C1、C2串联组成并联稳压支路构成。电容C1、C2串联后与直流母线输出端并联。
该整流器电路所包括的整流回路在传统无桥单相两电平整流桥进行改进,引入两个串联的电容稳压结构构造三电平电路。
该整流器电路具有一个功率输入端和两个功率输出端,功率输入端对应电网电源功率输出端对应两个稳压电容。
该整流器电路电路功率输入端引入背对背开关结构,对输入端电压经行升压变换,简化升压回路结构。
由于工频交变电网电压的工作特性,为保证背对背无桥三电平整流电路输出电压的稳定,需要在不同的电网电压区间内调整不同的工作模态:
1)模态1:如图2所示,开关管全部断开。us>+Udc/2,uab=Udc,电感L释放能量,iL逐渐减小,电容C1、C2充电。
2)模态2:如图3所示,开关管S3导通,其余开关管断开。由于模态2有两种工作状态,故需要分情况讨论。
在us>+Udc/2时,uab=Udc/2,此时电感L吸收能量,iL逐渐增大,电容C1充电、C2放电。
在us<+Udc/2时,uab=Udc/2,此时电感L释放能量,iL逐渐减小,电容C1充电、C2放电。
3)模态3:如图4所示,开关管S1、S2导通,其余开关管断开。0<us<+Udc/2,uab=0,电感吸收能量,iL逐渐增大,电容C1、C2放电。
4)模态4:如图5所示,开关管S3导通,其余开关管断开。us<-Udc/2,uab=Udc,电感L释放能量,iL逐渐减小,电容C1、C2充电。
5)模态5:如图6所示,开关管S4导通,其余开关管断开。由于模态2有两种工作状态,故需要分情况讨论。
在us<-Udc/2时,uab=Udc/2,此时电感L吸收能量,iL逐渐增大,电容C2充电、C1放电。
在0>us>-Udc/2时,uab=Udc/2,此时电感L释放能量,iL逐渐减小,电容C2充电、C1放电。
6)模态6:如图7所示,开关管S1、S2导通,其余开关管断开。0>us>-Udc/2,uab=0,电感吸收能量,iL逐渐增大,电容C1、C2放电。
表1为本发明电路开关管S1~S4六种工作模态表。图8、图9、图10为本发明在负载80Ω时的实验波形,为本发明稳态时相关波形图。表1为本发明电路开关管S1~S4六种工作模态图;本发明通过不同开关管导通关断的组合,改变电路结构,得到不同的ab端输出电压Uab。±1代表输出额定电压,±1/2代表输出额定电压的一半,0代表ab端电压为0。
表1为本发明电路开关管S1~S4六种工作模态表
Figure BDA0003031930380000051
图8为本发明电路电压Uab波形图;在表1的基础上通过对电路开关管S1~S3的导通、关断状态的调制,本发明在直流母线Udc额定输出电压为400V时,使得ab端的电压能够输出额定电压,额定电压的一半,0三种电压等级,即输出±400V,±200V,0V的电压。
图9为本发明电路交流侧输入电压Us和电流iL波形图;表示本发明稳态交流输入电压Us波形保持正弦规律变化;交流输入电流iL波形跟随交流输入电压Us波形,且波形稳定后趋近于正弦波,通过实验波形对比可以看出该电路的电压电流相位基本相同,能够实现功率因数校正功能。
图10为本发明电路直流输出电压Udc波形图;表示本发明以400V为额定电压时,输出得到的直流母线侧电压Udc的稳态波形。
图11(1)为本发明电路的开关管脉冲分配图。为本发明开关管S1开关脉冲电压US1波形图,表示开关脉冲分配信号,即为开关管导通关断的驱动电压。开关管电压达到12V时,对应表1中的1信号,即开关管导通。开关管电压达到0V时,对应表1中的0信号,即开关管关断。
图11(2)为本发明电路的开关管脉冲分配图。为本发明开关管S2开关脉冲电压US2波形图,表示开关脉冲分配信号,即为开关管导通关断的驱动电压。开关管电压达到12V时,对应表1中的1信号,即开关管导通。开关管电压达到0V时,对应表1中的0信号,即开关管关断。
图11(3)为本发明电路的开关管脉冲分配图。为本发明开关管S3开关脉冲电压US3波形图,表示开关脉冲分配信号,即为开关管导通关断的驱动电压。开关管电压达到12V时,对应表1中的1信号,即开关管导通。开关管电压达到0V时,对应表1中的0信号,即开关管关断。
图11(4)为本发明电路的开关管脉冲分配图。为本发明开关管S4开关脉冲电压US4波形图,表示开关脉冲分配信号,即为开关管导通关断的驱动电压。开关管电压达到12V时,对应表1中的1信号,即开关管导通。开关管电压达到0V时,对应表1中的0信号,即开关管关断。
图11(5)为本发明电路的开关管脉冲分配图。为本发明开关管S5开关脉冲电压US5波形图,表示开关脉冲分配信号,即为开关管导通关断的驱动电压。开关管电压达到12V时,对应表1中的1信号,即开关管导通。开关管电压达到0V时,对应表1中的0信号,即开关管关断。
图11(6)为本发明电路的开关管脉冲分配图。为本发明开关管S6开关脉冲电压US6波形图,表示开关脉冲分配信号,即为开关管导通关断的驱动电压。开关管电压达到12V时,对应表1中的1信号,即开关管导通。开关管电压达到0V时,对应表1中的0信号,即开关管关断。
具体实验参数如下:
一种异构开关管桥臂的背靠背式三电平整流器,输入侧中电网电压有效值为220V,频率50Hz,直流侧输出电压400V,开关频率为20kHz,滤波电感L=3mH,负载RL的阻值为80Ω,输出电容C1=C2=4700μF。
通过改变开关管的状态可以对直流母线侧电容进行充放电操作,将直流侧电压稳定在比较理想的状态。各个工作模态的转化遵循PWM(脉冲分配调整)对电路的模态以及工作时间经行选择。对于所提出的电路,在电网的正半周期中,电路的有Udc、Udc/2、0三种电压等级的工作状态,分别对应了模态1、模态2、模态3,分析图8中一个正半周期的PWM调制过程:
(1)阶段一:此时电网电压0<us<+Udc/2,电路的工作状态会在模态2与模态3之间根据PWM比较出的调制波形来回切换,对应图8中一个正半周期内第一次0V到200V范围内的脉冲信号。由于电感L电流不能突变,电容C1、C2足够大。此时模态3下由于电感L直接与电网电压源串联,电感L电压等于电网电压us,电感分压并储存能量,直流母线的功率由电容C1、C2提供。从模态2切换到模态3后,由于电容C1的电压为Udc/2,此时电网电压us小于电容C1电压,为了电流不被二极管截止而发生突变,电感L会提供一个正向电压,电感L储存的能量在模态3时释放。
(2)阶段二:此时电网电压us>+Udc/2,电路的工作状态会在模态2与模态1之间根据PWM比较出的调制波形来回切换,对应图8中一个正半周期内200V到400V范围内的脉冲信号。由于电感电流不能突变,电容C1、C2足够大。此时模态2下由于回路接通的电压被电容箝位Udc/2上,此时电感会分压并储存一部分能量。从模态2切换到模态1之后,由于直流母线侧的电压被箝位在Udc上,同时us<Udc,电感会提供一个正向电压使电流不会被二极管截止而发生突变,在电路在模态2时电感储存的能量会在模态1时释放。
(3)阶段三:此时电网电压0<us<+Udc/2,电路的工作状态会在模态2与模态3之间根据PWM比较出的调制波形来回切换,对应图8中一个正半周期内第二次0V到200V范围内的脉冲信号。由于电感L电流不能突变,电容C1、C2足够大。此时模态3下由于电感L直接与电网电压源串联,电感L电压等于电网电压us,电感分压并储存能量,直流母线的功率由电容C1、C2提供。从模态2切换到模态3后,由于电容C1的电压为Udc/2,此时电网电压us小于电容C1电压,为了电流不被二极管截止而发生突变,电感L会提供一个正向电压,电感L储存的能量在模态3时释放。
在电网的负半周期中,电路的有-Udc、-Udc/2、0三种电压等级的工作状态,分别对应了模态4、模态5、模态6。同理,可类比正半周期的调制策略,用PWM控制负半周期的电路模态切换。

Claims (7)

1.一种异构开关管桥臂的背靠背式三电平整流器,其特征在于包括:
开关管S1、S2、S3、S4、S5、S6,二极管D1、D2,电感L,电容C1、C2
交流电源一端连接电感L一端,电感L另一端分别连接开关管S1漏极、二极管D1阳极、二极管D2阴极;
交流电源另一端分别连接开关管S2漏极、开关管S4源极、开关管S6漏极;
开关管S1源极连接开关管S2源极;
二极管D1阴极分别连接开关管S3漏极、电容C1一端;
二极管D2阳极分别连接开关管S6源极、电容C2另一端;
开关管S4漏极分别连接开关管S3源极、开关管S5漏极;
电容C1另一端分别连接开关管S5源极、电容C2一端;
负载R两端分别连接电容C1一端、电容C2另一端。
2.根据权利要求1所述一种异构开关管桥臂的背靠背式三电平整流器,其特征在于:该三电平整流器中,MOS管S3、S4、S5、S6排列成异构型开关管桥臂,MOS管S3、S4、S6组成整流桥主桥臂,同时S4与S5组成异构型双向开关。
3.根据权利要求1所述一种异构开关管桥臂的背靠背式三电平整流器,其特征在于:该三电平整流器中,储能滤波电感L,背靠背MOS管组S1、S2组成双向开关。
4.根据权利要求1所述一种异构开关管桥臂的背靠背式三电平整流器,其特征在于:该三电平整流器中,半导体器件S4为复用开关管。
5.根据权利要求1所述一种异构开关管桥臂的背靠背式三电平整流器,其特征在于:该三电平整流器中,电容C1、C2串联组成并联稳压支路。
6.根据权利要求1~5所述任意一种异构开关管桥臂的背靠背式三电平整流器,其特征在于:在不同的电网电压区间内调整不同的工作模态:
1)模态1:开关管S1、S2、S3、S4、S5关断,S6导通;二极管D1工作在导通状态下回路流经电容C1、C2,此时电网电压us<Udc;电容C1、C2释放能量将直流母线电压稳定在Udc上,由于电感L上的电流不能突变,电感L上会产生一个平衡电压使uab=Udc;此时电感释放能量,电感L上的电流减小,电容C1、C2充电;
2)模态2:开关管S1、S2、S3、S6关断,S4、S5导通;二极管D1工作在导通状态下回路流经电容C1;当电网电压us<+Udc/2时,由于电感L上的电流不能突变,电容C1释放能量将ab端电压稳定在Udc/2上,电感L上会产生一个平衡电压使uab=Udc/2;此时电感释放能量,电感L上的电流减小,电容C1充电,电容C2放电;当电网电压us>+Udc/2时,由于电感L上的电流不能突变,电容C1将ab端的电压稳定在Udc/2上,电感L上会产生一个平衡电压使uab=Udc/2;此时电感吸收能量,电感L上的电流增大,电容C1充电,电容C2放电;
3)模态3:开关管S3、S4、S5、S6关断,S1、S2导通;电路中的二极管全部截止,电网与负载没有功率通道;此时电网电压0<us<+Udc/2;由于电感L上的电流不能突变,电容C1、C释放能量将直流母线电压稳定在Udc上,电感L上会产生一个平衡电压使uab=0;此时电感吸收能量,电感L上的电流增加,电容C1、C2放电;
4)模态4:开关管S1、S2、S5、S6关断,S3、S4导通;二极管D2工作在导通状态下回路流经电容C1、C2,此时电网电压us<-Udc/2;由于电感L上的电流不能突变,电容C1、C2释放能量将直流母线电压稳定在Udc上,电感L上会产生一个平衡电压使-uab=Udc;此时电感释放能量,电感L上的电流减小,电容C1、C2充电;
5)模态5:开关管S1、S2、S3、S6关断,S4、S5导通;二极管D2工作在导通状态下回路流经电容C2;当电网电压us>-Udc/2时,由于电感L上的电流不能突变,电容C2释放能量将直流母线电压稳定在将ab端的电压稳定在Udc/2上,电感L上会产生一个平衡电压使-uab=Udc/2;此时电感释放能量,电感L上的电流减小,电容C2充电,电容C1放电;当电网电压us<-Udc/2时,由于电感L上的电流不能突变,电容C2将ab端的电压稳定在Udc/2上,电感L上会产生一个平衡电压使-uab=Udc/2;此时电感吸收能量,电感L上的电流增大,电容C2充电,电容C1放电;
6)模态6:开关管S3、S4、S5、S6关断,S1、S2导通;电路中的二极管全部截止,电网与负载没有功率通道;此时电网电压0<us<-Udc/2;由于电感L上的电流不能突变,电容C1、C2将释放能量将直流母线电压稳定在Udc上,电感L上会产生一个平衡电压使uab=0;此时电感吸收能量,电感L上的电流增加,电容C1、C2放电。
7.根据权利要求6所述任意一种异构开关管桥臂的背靠背式三电平整流器,其特征在于:通过改变开关管的状态,能够对直流母线侧电容进行充放电操作,在电网的正半周期中,电路的有Udc、Udc/2、0三种电压等级的工作状态,分别对应了模态1、模态2、模态3;在电网的负半周期中,电路的有-Udc、-Udc/2、0三种电压等级的工作状态,分别对应了模态4、模态5、模态6。
CN202110432529.0A 2021-04-21 2021-04-21 一种异构开关管桥臂的背靠背式三电平整流器 Active CN113258797B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110432529.0A CN113258797B (zh) 2021-04-21 2021-04-21 一种异构开关管桥臂的背靠背式三电平整流器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110432529.0A CN113258797B (zh) 2021-04-21 2021-04-21 一种异构开关管桥臂的背靠背式三电平整流器

Publications (2)

Publication Number Publication Date
CN113258797A true CN113258797A (zh) 2021-08-13
CN113258797B CN113258797B (zh) 2022-06-14

Family

ID=77221215

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110432529.0A Active CN113258797B (zh) 2021-04-21 2021-04-21 一种异构开关管桥臂的背靠背式三电平整流器

Country Status (1)

Country Link
CN (1) CN113258797B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113839574A (zh) * 2021-10-15 2021-12-24 国网安徽省电力有限公司亳州供电公司 一种用于手持电动摇把充电的三电平电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140334199A1 (en) * 2012-06-30 2014-11-13 Huawei Technologies Co., Ltd. Five-Level Power Converter, and Control Method and Control Apparatus for the Same
CN107482930A (zh) * 2017-08-21 2017-12-15 国网上海市电力公司 一种双电感双电压直流输出电路
CN107968580A (zh) * 2017-12-25 2018-04-27 三峡大学 一种单向混合型三相三电平整流器
CN109639160A (zh) * 2018-12-05 2019-04-16 三峡大学 基于软开关技术的新型单向三相三电平整流器
CN110649829A (zh) * 2019-09-16 2020-01-03 三峡大学 基于非对称四端口的单相三电平功率因数校正整流器
CN111030440A (zh) * 2019-12-13 2020-04-17 三峡大学 基于混合h桥的单相两管五电平整流器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140334199A1 (en) * 2012-06-30 2014-11-13 Huawei Technologies Co., Ltd. Five-Level Power Converter, and Control Method and Control Apparatus for the Same
CN107482930A (zh) * 2017-08-21 2017-12-15 国网上海市电力公司 一种双电感双电压直流输出电路
CN107968580A (zh) * 2017-12-25 2018-04-27 三峡大学 一种单向混合型三相三电平整流器
CN109639160A (zh) * 2018-12-05 2019-04-16 三峡大学 基于软开关技术的新型单向三相三电平整流器
CN110649829A (zh) * 2019-09-16 2020-01-03 三峡大学 基于非对称四端口的单相三电平功率因数校正整流器
CN111030440A (zh) * 2019-12-13 2020-04-17 三峡大学 基于混合h桥的单相两管五电平整流器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113839574A (zh) * 2021-10-15 2021-12-24 国网安徽省电力有限公司亳州供电公司 一种用于手持电动摇把充电的三电平电路

Also Published As

Publication number Publication date
CN113258797B (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
Soeiro et al. Three-phase high power factor mains interface concepts for electric vehicle battery charging systems
CN112865560B (zh) 一种多二极管串联型的背对背无桥三电平整流器
WO2007110954A1 (ja) 電源装置
CN111416534B (zh) 一种电流路径重构式的单相五电平整流器
CN210490732U (zh) 储能变流器
CN110572069B (zh) 一种双向dc-ac变换器
US6239995B1 (en) Resonant-boost-input three-phase power factor corrector with a low current stress on switches
CN115085347A (zh) 储能功率模块以及储能系统
CN112865569A (zh) 一种混合t型桥的单相三电平整流器
McHugh et al. A high power density single-phase inverter using stacked switched capacitor energy buffer
CN113258797B (zh) 一种异构开关管桥臂的背靠背式三电平整流器
CN100377481C (zh) 具有三相功率因数校正的集成变换装置
CN113193768B (zh) 四开关管串联型的背靠背式三电平整流器
CN112865563B (zh) 一种三端口箝位型的背对背无桥三电平整流器
CN109167525A (zh) 一种新型非隔离五电平逆变器
CN112865561B (zh) 一种二极管箝位式背对背无桥三电平整流器
CN110112902B (zh) 一种三相升降压型pfc整流电路
US20230253877A1 (en) Power factor correction and dc-dc multiplexing converter and uninterruptible power supply including the same
CN111543001A (zh) 具有ac正激电桥和改进的dc/dc拓扑的逆变器
CN113271023B (zh) 一种异构混合桥臂的背靠背式三电平整流器
RAJ et al. Comparative analysis of single phase bridgeless buck rectifier and single phase multilevel buck rectifier
Liu et al. Analysis and comparison of isolated converter based step-down partial power processing configurations
CN113437884A (zh) 基于并联式二极管钳位双向开关的三电平整流器
CN112865508A (zh) 一种非对称新型t型桥的单相三电平功率因数校正电路
Chorishiya et al. A review: Multilevel hybrid ultra-boost converter topologies for pv solar applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant