CN113254861A - 无资料地区水文模型参数率定方法、装置和终端设备 - Google Patents

无资料地区水文模型参数率定方法、装置和终端设备 Download PDF

Info

Publication number
CN113254861A
CN113254861A CN202110695306.3A CN202110695306A CN113254861A CN 113254861 A CN113254861 A CN 113254861A CN 202110695306 A CN202110695306 A CN 202110695306A CN 113254861 A CN113254861 A CN 113254861A
Authority
CN
China
Prior art keywords
area
parameters
data
hydrological model
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110695306.3A
Other languages
English (en)
Other versions
CN113254861B (zh
Inventor
陈晓宏
于泽兴
吴杰峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202110695306.3A priority Critical patent/CN113254861B/zh
Publication of CN113254861A publication Critical patent/CN113254861A/zh
Application granted granted Critical
Publication of CN113254861B publication Critical patent/CN113254861B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C13/00Surveying specially adapted to open water, e.g. sea, lake, river or canal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Operations Research (AREA)
  • Analytical Chemistry (AREA)
  • Algebra (AREA)
  • Pathology (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Image Processing (AREA)

Abstract

本申请提供了一种无资料地区水文模型参数率定方法、装置和终端设备,方法包括获取待研究区域率定期内的至少一个近红外波段影像和根据水文模型随机生成的至少一组初始参数;计算各个近红外波段影像中参考区域和淹没区域的多像素比例指数,以得到一组多像素比例指数数据,将每一组初始参数输入水文模型生成每一组径流数据;计算多像素比例指数数据与每一组径流数据的相关系数;选择相关系数排名在预设阈值内的径流数据对应的初始参数,记为有效参数;对有效参数采用水量平衡滤波器进行过滤,以得到过滤参数;根据过滤参数得到水文模型的率定参数。该方法采用光谱特征差异结合水量平衡原理可以对无资料地区的水文模型进行率定。

Description

无资料地区水文模型参数率定方法、装置和终端设备
技术领域
本申请涉及水文水利技术领域,具体涉及一种无资料地区水文模型参数率定方法、装置、终端设备和存储介质。
背景技术
水文是指自然界中水的变化、运动等的各种现象。现在一般指研究自然界水的时空分布、变化规律的一门边缘学科。水文学属于地球科学,研究的是关于地球表面、土壤中、岩石下和大气中水的发生、循环、含量、分布、物理化学特性、影响以及与所有生物之间的关系的科学。
为了高效准确进行水文研究,相关学者提出了一系列的水文模型,例如系统理论模型、概念性模型、数学物理模型以及分布式水文模型等。虽然采用水文模型进行水文研究具有很多优势,但在使用水文模型时首先要进行水文参数率定,并且针对不同的河流类型,水文参数率定方式也有所不同。
我国水文站基本分布在大中河流上,小河流分布甚少,大多数小河流都有宽阔的河谷,形成的辫状河道宽度不足100米,径流数据对于水文模型参数率定起着至关重要的作用,但对于大部分小河流来说径流数据测定非常复杂,甚至没有实测径流数据(即没有径流资料)。因此,针对无径流资料的小河流水文模型参数率定有待研究。
发明内容
有鉴于此,本申请实施例中提供了一种无资料地区水文模型参数率定方法、装置、终端设备和存储介质,以克服现有技术中无法对无资料小河流进行水文模型参数率定的问题。
第一方面,本申请实施例提供了一种无资料地区水文模型参数率定方法,该方法包括:
获取待研究区域率定期内的至少一个近红外波段影像和根据水文模型随机生成的至少一组初始参数;
计算各个所述近红外波段影像中参考区域和淹没区域的多像素比例指数,以得到一组多像素比例指数数据;
将每一组所述初始参数输入所述水文模型生成每一组径流数据;
计算所述多像素比例指数数据与每一组所述径流数据的相关系数;
选择所述相关系数排名在预设阈值内的所述径流数据对应的初始参数,记为有效参数;
对所述有效参数采用水量平衡滤波器进行过滤,以得到过滤参数;
根据所述过滤参数得到所述水文模型的率定参数。
第二方面,本申请实施例提供了一种无资料地区水文模型参数率定装置,该装置包括:
信息获取模块,用于获取待研究区域率定期内的至少一个近红外波段影像和根据水文模型随机生成的至少一组初始参数;
指数数据获取模块,用于计算各个所述近红外波段影像中参考区域和淹没区域的多像素比例指数,以得到一组多像素比例指数数据;
径流数据生成模块,用于将每一组所述初始参数输入所述水文模型生成每一组径流数据;
相关系数计算模块,用于计算所述多像素比例指数数据与每一组所述径流数据的相关系数;
参数选择模块,用于选择所述相关系数排名在预设阈值内的所述径流数据对应的初始参数,记为有效参数;
参数过滤模块,用于对所述有效参数采用水量平衡滤波器进行过滤,以得到过滤参数;
率定参数获得模块,用于根据所述过滤参数得到所述水文模型的率定参数。
第三方面,本申请实施例提供了一种终端设备,包括:存储器;一个或多个处理器,与所述存储器耦接;一个或多个应用程序,其中,一个或多个应用程序被存储在存储器中并被配置为由一个或多个处理器执行,一个或多个应用程序配置用于执行上述第一方面提供的无资料地区水文模型参数率定方法。
第四方面,本申请实施例提供了一种计算机可读取存储介质,计算机可读取存储介质中存储有程序代码,程序代码可被处理器调用执行上述第一方面提供的无资料地区水文模型参数率定方法。
本申请实施例提供的无资料地区水文模型参数率定方法、装置、终端设备和存储介质,方法包括:首先获取待研究区域率定期内的至少一个近红外波段影像和根据水文模型随机生成的至少一组初始参数;然后计算各个近红外波段影像中参考区域和淹没区域的多像素比例指数,其中,多像素比例指数与河道流量具有相关性,能反应河道流量的动态变化;在得到每一个多像素比例指数之后,将这些多像素比例指数集合起来形成一组多像素比例指数数据;将每一组初始参数输入水文模型生成每一组径流数据;再计算多像素比例指数数据与每一组径流数据的相关系数;选择相关系数排名在预设阈值内的径流数据对应的初始参数,记为有效参数;由于相关系数能反应出多像素比例指数数据与径流数据之间线性或非线性相关性,根据相关性关系就可以选择出能反应河道流量变化的初始参数,将其记为有效参数;对有效参数采用水量平衡滤波器进行过滤,以得到过滤参数;根据过滤参数得到水文模型的率定参数。
该方法采用近红外波段对水体和非水体之间的光谱特性差异来反应小河流的河道流量变化特性,然后结合水量平衡原理来对水文模型的参数进行率定,使得率定结果更加精准;且在整个自动对水文模型参数进行率定,确保参数率定高效。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请实施例提供的无资料地区水文模型参数率定方法的应用场景示意图;
图2为本申请一个实施例提供的无资料地区水文模型参数率定方法的流程示意图;
图3为本申请一个实施例提供的多像素比例指数计算方法的流程示意图;
图4为本申请一个实施例提供的近红外波段影像的结构示意图;
图5为本申请一个实施例提供的GR4J水文模型的结构示意图;
图6为本申请一个实施例提供的CemaNeige-GR4J水文模型的结构示意图;
图7为本申请另一个实施例提供的无资料地区水文模型参数率定方法的流程示意图;
图8为本申请一个实施例提供的无资料地区水文模型参数率定装置的结构示意图;
图9为本申请一个实施例中提供的终端设备的结构示意图;
图10为本申请一个实施例中提供的计算机可读存储介质的结构示意图。
具体实施方式
下面将对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了更详细说明本申请,下面结合附图对本申请提供的一种无资料地区水文模型参数率定方法、装置、终端设备和计算机存储介质,进行具体地描述。
请参考图1,图1示出了本申请实施例提供的无资料地区水文模型参数率定方法的应用场景的示意图,该应用场景包括本申请实施例提供的终端设备100,终端设备100可以是具有显示屏的各种电子设备(如102、104、106和108的结构图),包括但不限于智能手机和计算机设备,其中计算机设备可以是台式计算机、便携式计算机、膝上型计算机、平板电脑等设备中的至少一种。用户对终端设备100进行操作,发出无资料地区水文模型参数率定操作指示,终端设备100执行本申请的无资料地区水文模型参数率定方法,具体过程请参照无资料地区水文模型参数率定方法实施例。进一步地,终端设备100还可以将参数率定后的水文模型存储下来,以备后续进一步水文数据处理。
此外,终端设备100可以泛指多个终端设备中的一个,本实施例仅以终端设备100来举例说明。本领域技术人员可以知晓,上述终端设备的数量可以更多或更少。比如上述终端设备可以仅为几个,或者上述终端设备为几十个或几百个,或者更多数量,本申请实施例对终端设备的数量和类型不加以限定。终端设备100可以用来执行本申请实施例中提供的一种无资料地区水文模型参数率定方法。
在一种可选的实施方式中,该应用场景包括本申请实施例提供的终端设备100之外,还可以包括服务器,其中服务器与终端设备之间设置有网络。网络用于在终端设备和服务器之间提供通信链路的介质。网络可以包括各种连接类型,例如有线、无线通信链路或者光纤电缆等等。
应该理解,终端设备、网络和服务器的数目仅仅是示意性的。根据实现需要,可以具有任意数目的终端设备、网络和服务器。比如服务器可以是多个服务器组成的服务器集群等。其中,终端设备通过网络与服务器交互,以接收或发送消息等。服务器可以是提供各种服务的服务器。其中服务器可以用来执行本申请实施例中提供的一种无资料地区水文模型参数率定方法的步骤。此外,终端设备在执行本申请实施例中提供的一种无资料地区水文模型参数率定方法时,可以将一部分步骤在终端设备执行,一部分步骤在服务器执行,在这里不进行限定。
基于此,本申请实施例中提供了一种无资料地区水文模型参数率定方法。请参阅图2,图2示出了本申请实施例提供的一种无资料地区水文模型参数率定方法的流程示意图,以该方法应用于图1中的终端设备为例进行说明,包括以下步骤:
步骤S110,获取待研究区域率定期内的至少一个近红外波段影像和根据水文模型随机生成的至少一组初始参数。
其中,所述待研究区域指需要进行水文研究的小河流河道区域。无资料地区是指没有实测径流数据资料的地区。
率定通常是指校准、标定;而对于水文模型而言,水文模型参数率定是指对水文模型中的参数进行校准或标定。水文模型模拟中通常分为率定期和验证期两个时段,率定期是通过实测的水文气象数据来率定水文模型的参数,验证期内通过输入实测的水文气象数据到率定好参数的水文模型来输出径流模拟的结果,并与实测径流比较说明水文模型率定后的效果。
近红外波段影像是通过卫星遥感采集到的近红外波段数据。在本实施例中,可以通过Google Earth Engine平台来获取 Landsat8卫星影像。其中Landsat8卫星携带OLI(Operational Land Imager 陆地成像仪)和TIRS(Thermal Infrared Sensor 热红外传感器)两种传感器。OLI陆地成像仪包括9个波段,波段5为近红外波段,该波段常用来估算生物量,分辨潮湿土壤等。而在本实施例中,采用近红外波段影像主要用来选择参考区域和淹没区域,从而来计算多像素比例指数。另外,Landsat8卫星是按照一个周期来运动的,每通过一次待研究区域就可以拍摄行程一个近红外波段影像,因此,在率定期内通常会行程多个近红外波段影像。在本实施例中,可以选择率定期内部分近红外波段影像,也可以选择全部近红外波段影像。可选地,近红外波段影像的数量可以是多个,例如30个,100个,10000个等。
水文模型是指用模拟方法将复杂的水文现象和过程经概化所给出的近似的科学模型。可以包括系统理论模型、概念性模型、数学物理模型以及分布式水文模型等。在本实施例中的水文模型可以是水文模型中的任意一个或多个。
对于一个水文模型而言,通常包括一系列参数,这些参数也不是固定值,往往根据不同的待研究区域而有所变化;因此在使用水文模型时首先需要确定这些参数。不同的水文模型的参数的名称、含义以及个数都是不同的,例如GR4J水文模型包括4个参数,而CemaNeige-GR4J水文模型包括6个参数。在本实施例中,可以将一个水文模型包含的一系列参数记为一组参数,例如GR4J水文模型的4个参数可以记为一组参数。初始参数是根据水文模型随机生成的水文模型参数,其数量可以是一组或多组。例如可以随机生成100组,1000组或100000组GR4J水文模型的初始参数(x1,x2,x3,x4)。
步骤S120,计算各个近红外波段影像中参考区域和淹没区域的多像素比例指数,以得到一组多像素比例指数数据。
其中,参考区域是待研究区域中对河流流量不敏感的区域,而淹没区域是待研究区域中对流域流量变化敏感的区域。参考区域和淹没区域的位置、大小通常是不固定的,可以根据研究区域实际情况进行合理选择。此外,对于一个近红外波段影像通常选择一个参考区域和一个淹没区域。
在选择完参考区域和淹没区域后,计算参考区域和淹没区域的多像素比例指数,其中每一个参考区域和淹没区域都对应生成一个多像素比例指数,当具有多个近红外波段影像时就可以生成多个多像素比例指数,将多个多像素比例指数记为一组多像素比例指数数据。
另外,多像素比例指数与河道流量具有相关性,能反应流量的动态变化。因此,可以根据多像素比例指数确定河道流量多或少。
步骤S130,将每一组初始参数输入水文模型生成每一组径流数据。
具体而言,将实测的水文气象参数和每一组初始参数输入水文模型即可得到每一组径流数据。其中径流数据通常是指径流总量。
步骤S140,计算多像素比例指数数据与每一组径流数据的相关系数。
其中,相关系数是用于反映两组数据是否具有相关性,即反映的是两组数据之间变化趋势的方向以及程度。
评价两组数据之间的相关性,有皮尔森(pearson)相关系数,斯皮尔曼(spearman)等级相关系数和肯德尔(kendall)相关系数。
在一种可选的实施方式中,在计算多像素比例指数数据与每一组径流数据的相关系数时,计算多像素比例指数数据与每一组径流数据的斯皮尔曼等级相关系数。
其中,斯皮尔曼等级相关系数(即RSpear)能有效的反映两组数据之间的线性和非线性的相关性,若RSpear接近1表明径流数据和多像素比例数据(MPR)产生同样的动态变化,两者之间有严格的单调关系。采用多像素比例指数数据与每一组径流数据斯皮尔曼等级相关系数,可以选择出与多像素比例指数数据(即河道流量)具有相同动态变化的径流数据对应的初始参数,形成的有效参数更加精确。
步骤S150,选择相关系数排名在预设阈值内的径流数据对应的初始参数,记为有效参数。
具体地,预设阈值为一个预先设置的值,可以根据实际需要进行设置。在本实施例中,预设阈值可以是百分数值,例如2%,5%或10%等。
由于多像素比例指数数据与每一组径流数据都有一个相关系数,当径流数据是多组时,就有多个相关系数。然后可以对相关系数按照大小顺序进行排名,选择排名在预设阈值(例如前2%,5%或10%)内的径流数据对应的初始参数,将其记为有效参数。
步骤S160,对有效参数采用水量平衡滤波器进行过滤,以得到过滤参数。
步骤S170,根据过滤参数得到水文模型的率定参数。
具体地,在得到有效参数后,采用水量平衡滤波器来对有效参数进行过滤,从而得到过滤参数;然后根据过滤参数来确定率定参数。其中率定参数为对水文模型进行率定后得到的参数。
本申请实施例提供的无资料地区水文模型参数率定方法,首先获取待研究区域率定期内的至少一个近红外波段影像和根据水文模型随机生成的至少一组初始参数;然后计算各个近红外波段影像中参考区域和淹没区域的多像素比例指数,其中,多像素比例指数与河道流量具有相关性,能反应河道流量的动态变化;在得到每一个多像素比例指数之后,将这些多像素比例指数集合起来形成一组多像素比例指数数据;将每一组初始参数输入水文模型生成每一组径流数据;再计算多像素比例指数数据与每一组径流数据的相关系数;选择相关系数排名在预设阈值内的径流数据对应的初始参数,记为有效参数;由于相关系数能反应出多像素比例指数数据与径流数据之间线性或非线性相关性,根据相关性关系就可以选择出能反应河道流量变化的初始参数,将其记为有效参数;对有效参数采用水量平衡滤波器进行过滤,以得到过滤参数;根据过滤参数得到水文模型的率定参数。
该方法采用近红外波段对水体和非水体之间的光谱特性差异来反应小河流的河道流量变化特性,然后结合水量平衡原理来对水文模型的参数进行率定,使得率定结果更加精准;且在整个自动对水文模型参数进行率定,确保参数率定高效。
如图3所示,在一个实施例中,在执行步骤S120,计算各个近红外波段影像中参考区域和淹没区域的多像素比例指数,包括:
步骤S122,在每一个近红外波段影像中选择参考区域和淹没区域。
其中,近红外波段影像是指通过红外波(即NIR波)成像形成的数字图像。在数据图像中选择参考区域和淹没区域(如图4所示)。选择合适的参考区域是准确监测河流流量的关键。参考区域通常位于监测河流附近,具有稳定和高反射率。在本实施例中,可以选择高山缓坡或城市地区作为参考区域,即在近红外影像中选择山坡区域或城市区域作为参考区域。由于高山缓坡以及城市地域具有均匀的高反射率,植被不发达,无季节变化。
其次,参考区域中通常包括多个像素,参考区域至少包括一个像素。在实际使用中,为了保证反射率值的稳定性,通常选择大于4个像素的参考区域。在一种可选的实施方式中,选择100个像素的参考区域。
此外,本实施例中还提供了一种淹没区域的选择方法,具体描述如下:在近红外影像中选择河流区域作为淹没区域,其中淹没区域的位置与水文站的位置之间的距离大于或等于预设距离,淹没区域的长度在预设范围内,淹没区域的宽度小于或等于河道宽度最大值。
其中,淹没区域的反射率应该对河流流量变化敏感。淹没区域的选择考虑了三个因素(宽度、长度和位置)。淹没区域的宽度是指最大洪水覆盖的河道的平均宽度,它主要由实际河道宽度决定。确定淹没区域宽度的主要过程是从近红外影像中手动提取河流的中心线,然后根据中心线以适当的距离自动划定缓冲区,并确保覆盖整个河道。缓冲区等于或略小于河道宽度最大值(即最大洪水覆盖范围)。可以采用缓冲区的宽度用作淹没区域的宽度。
淹没区域的长度越长(包括更多像素),反射率越稳定,但对河流流量变化的灵敏度越低。因此,需要选择合适的长度,通常可以在一个预设范围中选择。在本实施例中,选择600米(20个陆地卫星像素的长度,30米×20)作为淹没区域长度。
另外,水文站对淹没区域的流量有所影响,因此在选择淹没区域时要考虑水文站的位置。预设距离为预先设置的值,通常选择1500-2000米。即淹没区域位置的选取一般为距离水文站的距离可以为1500-2000米,该地区水文站建设对河势的影响基本消失,监测流量与站测流量保持良好的一致性。
步骤S124,分别计算参考区域和淹没区域的反射率。
进一步地,参考区域和淹没区域的反射率可以通过多种方式实现,下面选择其中一种实现方式分别进行描述。
在一个实施例中,参考区域和淹没区域包括多个像素,分别计算参考区域和淹没区域的反射率,包括:分别获取参考区域和淹没区域中每一个像素的反射率;根据参考区域中每一个像素的反射率来计算参考区域的反射率;根据淹没区域中每一个像素的反射率、淹没区域的长度和淹没区域的宽度来计算淹没区域的反射率。
具体而言,在选择好参考区域和淹没区域后,分别计算参考区域的反射率和淹没区域的反射率。其中,参考区域的反射率是指参考区域中各像素的平均反射率;淹没区域的反射率是指淹没区域中各像素的平均反射率。具体计算过程为:分别获取参考区域和淹没区域中每一个像素的反射率;根据参考区域中每一个像素反射率来计算参考区域的反射率;根据淹没区域中每一个像素的反射率、淹没区域的长度和淹没区域的宽度来计算淹没区域的反射率。
步骤S126,根据参考区域的反射率和淹没区域的反射率计算多像素比例指数。
具体地,多像素比例指数是通过计算参考区域的反射率与淹没区域的反射率的比值而得到的,可以通过以下公式计算得到:
Figure 436566DEST_PATH_IMAGE001
其中P是
Figure 353706DEST_PATH_IMAGE002
Figure 468465DEST_PATH_IMAGE003
的反射比例,
Figure 925991DEST_PATH_IMAGE002
是参考区域反射率的平均值,
Figure 553413DEST_PATH_IMAGE003
是淹没区域反射率的平均值。项ij分别表示参考区域和淹没区域中的像素数。wl分别是淹没区的宽度和长度,测量单位是单个像素。
在一个实施例中,在执行步骤S160,对有效参数采用水量平衡滤波器进行过滤,以得到过滤参数,包括:
基于Budyko框架构建Budyko水量平衡滤波器;对有效参数采用Budyko水量平衡滤波器进行过滤,以得到过滤参数。
具体地,采用水量平衡滤波器可以过滤掉一部分有效参数,从而筛选得到过滤参数。根据水量平衡公式可知,在忽略年储水量的变化下,年径流深R可由实际年降水量P减去年实际蒸发量E得到。Budyko框架假设多年的水量平衡处于一个稳定的状态,而流域的实际蒸发量E是根据其水量平衡来确定:
E=P-R-𝛥S
其中,P、E和R分别表示降水、实际蒸发量、径流深,ΔS是流域储水量的变化情况。ΔS在多年情况下可以忽略不计,因此年平均降水量在长时间尺度的水量平衡中主要包括实际蒸发量E和径流深R。对Budyko方程而言(E/P=f (EP/P)),式中的EP是指流域的潜在蒸发量。气象学家傅抱璞基于流域水文气象的物理意义提出Budyko框架的微分形式,通过量纲分析及数学推算得到Budyko框架的解析表达式,具体表达式如下:
Figure 438192DEST_PATH_IMAGE004
式中的E为流域实际蒸发量,EP是指根据FAO-56(土壤水份胁迫指数计算模型)中Penman-Monteith公式计算的流域潜在蒸发量。
水热耦合参数𝜔是一个经验参数,反映Budyko曲线的形状,受到地表特征等其它因素的影响,气候季节性也会影响流域水和能量平衡。虽然土壤性质和地形在一定程度会影响水和能量的平衡,但对于流域来说是相对稳定的。因此,在实施例中选择植被动态(即植被覆盖度M)来代表下垫面条件的变化,忽略土壤和地形的影响。植被覆盖度M表示植被覆盖的地表面积占土地总面积的比例,它反映植被的茂密程度和进行光合作用面积的大小,具体计算公式如下:
Figure 705226DEST_PATH_IMAGE005
其中,NDVImaxNDVImin分别代表植被密集区域和土地贫瘠区域的NDVI值。NDVImaxNDVImin是与植被/土壤类型无关的常数,取0.8代表植被密集区NDVImax值,取0.05代表土地贫瘠区NDVImin值。采用半经验公式计算水热耦合控制参数𝜔,该公式仅基于遥感反演的NDVI指数可得,其具体计算公式如下:𝜔=2.36×M + 1.16。通过上面的水平衡过滤器可以过滤掉一部分有效参数,从而得到过滤参数。
在一个实施例中,水文模型包括CemaNeige-GR4J水文模型;在执行步骤S110,获取根据水文模型随机生成的至少一组初始参数,包括:采用超拉丁采样方法随机生成至少一组CemaNeige-GR4J水文模型的初始参数。
具体地,CemaNeige-GR4J水文模型是在GR4J水文模型的基础是加入降雪模块CemaNeige形成的。其中,GR4J水文模型包括4个参数,CemaNeige融雪模块包括2个参数。CemaNeige是一个度日积雪计算程序,它将研究的流域划分为五个高程段。CemaNeige-GR4J模型输入的气象因子为降水、气温等日尺度数据。CemaNeige-GR4J模型的参数如表1所示:
表1 CemaNeige-GR4J模型的参数含义及取值范围
Figure 215710DEST_PATH_IMAGE007
另外,在随机生成水文模型的初始参数时可以采用超拉丁采样方法。
为了便于理解,对GR4J水文模型结构进行详细说明。请参照图5,GR4J水文模型的流程分为两个阶段。计算过程涉及到两个非线性水库。一个是产流水库,另一个为汇流水库,包含四个参数,基本原理如下:
(1)产流阶段:通过流域的实测降水P及蒸发能力E来分别确定其模型输入的有效降水量Pn和剩余蒸发能力En若P>E,则Pn=P-EEn=0;反之,En=E-PPn=0。而产流水库的降水量Ps和蒸发量Es再由PnEn计算;当Pn>0时,有效降水量Pn分成了两部分,其中一部分直接进入汇流水库,剩余的补充到产流水库中,Ps计算公式如下:
Figure 946906DEST_PATH_IMAGE008
其中,Ps表示补充产流水库的降水量;S 表示产流水库蓄水量,
Figure 940270DEST_PATH_IMAGE009
表示产流水库蓄水容量。
Pn=0,则Es>0Es由下式计算:
Figure 507648DEST_PATH_IMAGE010
产流水库蓄水量S通过公式S=S-Es+Ps计算得到。产流水库的产流量Perc 则由下式计算得到:
Figure 306977DEST_PATH_IMAGE011
除去产流量Perc 后的产流水库蓄水量为:S=S-Perc;总产流量Pr为:Pr=Perc+Pn- Ps
(2)汇流阶段:该模型采用的汇流演算方法为时段单位线法,并基于径流成分的汇流时间不同,将模型的总产流量Pr分成两个部分:90%采用基于单位线UH1 估算,剩余的10%采用基于单位线UH2 估算。而UH1需要通过汇流水库的调节得到,UH2则直接流入流域出口站。此时引入时间参数x4进行时段单位线计算,对于单位线UH1而言,演算时间是x4天(x4> 0.5),由单位线SH1推算。对于单位线UH2而言,演算时间是2x4天,由单位线SH2推算。
汇流水库相应的蓄水量计算公式如下,即通过汇入单位线UH1 对应的水量以及地下水库交换量后获得的:R=max(0,Q9+F+R)。汇流水库的出流量Qr为:
Figure 141947DEST_PATH_IMAGE012
若汇流水库发生出流后其蓄水量变更为:R=R-Qr。基于单位线UH2 计算的水量与地下水交换量合流后,流入出口断面产生的出流量Qd为:Qd=max(0,Q1+F)。从而流域出口断面总流量Q为:Q=Qd +Qr
而CemaNeige-GR4J水文模型是在GR4J模型中降水输入模块中新增了CemaNeige融雪模块,即在实测降水P中加入降水降雪以及气温等数据,具体结构如图6所示。
应当理解,在水文模型不限于本实施例中提到的GR4J模型或CemaNeige-GR4J水文模型,根据本发明的技术启示,本领域技术人员还可以采用其他水文模型。
进一步地,在得到率定参数后,将率定参数代入水文模型生成率定后的水文模型,在得到率定后的水文模型后需要对模型效果进行评价,具体过程如下:
在一种可选实施方式中,通过计算率定后的水文模型的相对偏差BIAS、确定性系数R2和纳什效率系数NSE来评估率定后的水文模型的性能,具体公式如下:
Figure 634108DEST_PATH_IMAGE013
其中n为数据点个数,Q m,i 为时间步长时的实测径流量,Q s,i 为时间步长时的模拟径流量,分别为
Figure 875733DEST_PATH_IMAGE014
实测值和
Figure DEST_PATH_IMAGE015
模拟值的均值。计算得到的纳什效率系数越接近1,模型整体拟合精度越高,相对偏差越接近0,总体水量误差越小,模拟效果越好。
为了便于理解本申请方案,给出一个具体实施例。其中,在本实施例中,以CemaNeige-GR4J水文模型为例来对CemaNeige-GR4J水文模型的参数率定和模型验证过程进行说明。请参照图7所示,具体步骤如下:步骤S1:从Google Earth Engine平台提取待研究区域率定期内所有的Landsat 8的近红外波段(即波段5)影像。
步骤S2:对近红外波段(即波段5)影像进行预处理。
步骤S3:计算所有近红外波段(波段5)影像内参考区域和淹没区域的多像素比例指数(multiple pixel ratio,MPR)。
步骤S4:基于超拉丁采样(Latin hypercube sampling)生成100,000组CemaNeige-GR4J水文模型参数 (x1,x2,x3,x4,x5,x6)。
步骤S5:将步骤S4中生成的参数组代入CemaNeige-GR4J水文模型生成100, 000组径流数据。
步骤S6:计算所有近红外波段影像的多像素比例指数数据与100, 000组径流数据之间的斯皮尔曼等级相关系数(Spearman rank correlation coefficient, RSpear)。
步骤S7:取10,0000次运行中产生斯皮尔曼等级相关系数(RSpear)的前2%(2000个)初始参数作为有效参数。
步骤S8:利用水量平衡滤波器进一步过滤有效参数,得到过滤参数。
步骤S9:将过滤参数代入CemaNeige-GR4J水文模型并取模拟径流值的中位数作为模拟结果。计算模拟径流值与实测径流值之间的纳什效率系数、相对误差和确定性系数,从而来评价CemaNeige-GR4J水文模型的率定效果。
应该理解的是,虽然图2-图3 的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且图2-图3 中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
上述本申请公开的实施例中详细描述了一种无资料地区水文模型参数率定方法,对于本申请公开的上述方法可采用多种形式的设备实现,因此本申请还公开了对应上述方法的无资料地区水文模型参数率定装置,下面给出具体的实施例进行详细说明。
请参阅图8,为本申请实施例公开的一种无资料地区水文模型参数率定装置,主要包括:
信息获取模块810,用于获取待研究区域率定期内的至少一个近红外波段影像和根据水文模型随机生成的至少一组初始参数。
指数数据获取模块812,用于计算各个近红外波段影像中参考区域和淹没区域的多像素比例指数,以得到一组多像素比例指数数据。
径流数据生成模块814,用于将每一组初始参数输入水文模型生成每一组径流数据。
相关系数计算模块816,用于计算多像素比例指数数据与每一组径流数据的相关系数。
参数选择模块818,用于选择相关系数排名在预设阈值内的径流数据对应的初始参数,记为有效参数。
参数过滤模块8110,用于对有效参数采用水量平衡滤波器进行过滤,记为过滤参数。
率定参数获得模块8112,用于根据过滤参数得到水文模型的率定参数。
在一个实施例中,指数数据获取模块包括:区域选择模块、反射率计算模块和比例指数计算模块;
区域选择模块,用于在每一个近红外波段影像中选择参考区域和淹没区域。
反射率计算模块,用于分别计算参考区域和淹没区域的反射率。
比例指数计算模块,用于根据参考区域的反射率和淹没区域的反射率计算多像素比例指数。
在一个实施例中,反射率计算模块,用于分别获取参考区域和淹没区域中每一个像素的反射率;根据参考区域中每一个像素的反射率来计算参考区域的反射率;根据淹没区域中每一个像素的淹没区域的反射率、长度和淹没区域的宽度来计算淹没区域的反射率。
在一个实施例中,相关系数计算模块,用于计算多像素比例指数数据与每一组径流数据的斯皮尔曼等级相关系数。
在一个实施例中,参数过滤模块,用于基于Budyko框架构建Budyko水量平衡滤波器;对有效参数采用Budyko水量平衡滤波器进行过滤,以得到过滤参数。
在一个实施例中,水文模型包括CemaNeige-GR4J水文模型;
信息获取模块,用于采用超拉丁采样方法随机生成至少一组CemaNeige-GR4J水文模型的初始参数。
在一个实施例中,比例指数计算模块,用于计算参考区域的反射率与淹没区域的反射率的比值,记为多像素比例指数。
在一个实施例中,区域选择模块,用于在近红外影像中选择山坡区域或城市区域作为参考区域,其中参考区域包括至少一个像素;在近红外影像中选择河流区域作为淹没区域,其中淹没区域的位置与水文站的位置之间的距离大于或等于预设距离,淹没区域的长度在预设范围内,淹没区域的宽度小于或等于河道宽度最大值。
关于无资料地区水文模型参数率定装置的具体限定可以参见上文中对于方法的限定,在此不再赘述。上述装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于终端设备中的处理器中,也可以以软件形式存储于终端设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
请参考图9,图9其示出了本申请实施例提供的一种终端设备的结构框图。该终端设备90可以是计算机设备。本申请中的终端设备90可以包括一个或多个如下部件:处理器92、存储器94以及一个或多个应用程序,其中一个或多个应用程序可以被存储在存储器94中并被配置为由一个或多个处理器92执行,一个或多个应用程序配置用于执行上述应用于终端设备的方法实施例中所描述的方法,也可以配置用于执行上述应用于无资料地区水文模型参数率定方法实施例中所描述的方法。
处理器92可以包括一个或者多个处理核。处理器92利用各种接口和线路连接整个终端设备90内的各个部分,通过运行或执行存储在存储器94内的指令、程序、代码集或指令集,以及调用存储在存储器94内的数据,执行终端设备90的各种功能和处理数据。可选地,处理器92可以采用数字信号处理(Digital Signal Processing,DSP)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程逻辑阵列(Programmable LogicArray,PLA)中的至少一种硬件形式来实现。处理器92可集成中央处理器(Cen tralProcessingUnit,CPU)、埋点数据的上报验证器(Graphics Processing Unit,GPU)和调制解调器等中的一种或几种的组合。其中,CPU主要处理操作系统、用户界面和应用程序等;GPU用于负责显示内容的渲染和绘制;调制解调器用于处理无线通信。可以理解的是,上述调制解调器也可以不集成到处理器92中,单独通过一块通信芯片进行实现。
存储器94可以包括随机存储器(Random Access Memory,RAM),也可以包括只读存储器(Read-Only Memory)。存储器94可用于存储指令、程序、代码、代码集或指令集。存储器94可包括存储程序区和存储数据区,其中,存储程序区可存储用于实现操作系统的指令、用于实现至少一个功能的指令(比如触控功能、声音播放功能、图像播放功能等)、用于实现下述各个方法实施例的指令等。存储数据区还可以存储终端设备90在使用中所创建的数据等。
本领域技术人员可以理解,图9中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的终端设备的限定,具体的终端设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
综上,本申请实施例提供的终端设备用于实现前述方法实施例中相应的无资料地区水文模型参数率定方法,并具有相应的方法实施例的有益效果,在此不再赘述。
请参阅图10,其示出了本申请实施例提供的一种计算机可读取存储介质的结构框图。该计算机可读取存储介质100中存储有程序代码,程序代码可被处理器调用执行上述无资料地区水文模型参数率定方法实施例中所描述的方法,也可以被处理器调用执行上述无资料地区水文模型参数率定方法实施例中所描述的方法。
计算机可读取存储介质100可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。可选地,计算机可读取存储介质100包括非瞬时性计算机可读介质(non-transitory computer-readable storage medium)。计算机可读取存储介质100具有执行上述方法中的任何方法步骤的程序代码1002的存储空间。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。程序代码1002可以例如以适当形式进行压缩。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (11)

1.一种无资料地区水文模型参数率定方法,其特征在于,所述方法包括:
获取待研究区域率定期内的至少一个近红外波段影像和根据水文模型随机生成的至少一组初始参数;
计算各个所述近红外波段影像中参考区域和淹没区域的多像素比例指数,以得到一组多像素比例指数数据;
将每一组所述初始参数输入所述水文模型生成每一组径流数据;
计算所述多像素比例指数数据与每一组所述径流数据的相关系数;
选择所述相关系数排名在预设阈值内的所述径流数据对应的初始参数,记为有效参数;
对所述有效参数采用水量平衡滤波器进行过滤,以得到过滤参数;
根据所述过滤参数得到所述水文模型的率定参数。
2.根据权利要求1所述的方法,其特征在于,所述计算各个所述近红外波段影像中参考区域和淹没区域的多像素比例指数,包括:
在每一个所述近红外波段影像中选择参考区域和淹没区域;
分别计算所述参考区域和所述淹没区域的反射率;
根据所述参考区域的反射率和所述淹没区域的反射率计算所述多像素比例指数。
3.根据权利要求2所述的方法,其特征在于,所述分别计算所述参考区域和所述淹没区域的反射率,包括:
分别获取所述参考区域和所述淹没区域中每一个像素的反射率;
根据参考区域中每一个像素的反射率来计算所述参考区域的反射率;
根据淹没区域中每一个像素的反射率、所述淹没区域的长度和所述淹没区域的宽度来计算所述淹没区域的反射率。
4.根据权利要求1所述的方法,其特征在于,所述计算所述多像素比例指数数据与每一组所述径流数据的相关系数,包括:
计算所述多像素比例指数数据与每一组所述径流数据的斯皮尔曼等级相关系数。
5.根据权利要求1所述的方法,其特征在于,所述对所述有效参数采用水量平衡滤波器进行过滤,以得到过滤参数,包括:
基于Budyko框架构建Budyko水量平衡滤波器;
对所述有效参数采用所述Budyko水量平衡滤波器进行过滤,以得到过滤参数。
6.根据权利要求1-5任一项所述的方法,其特征在于,所述水文模型包括CemaNeige-GR4J水文模型;所述获取根据水文模型随机生成的至少一组初始参数,包括:
采用超拉丁采样方法随机生成至少一组CemaNeige-GR4J水文模型的初始参数。
7.根据权利要求2所述的方法,其特征在于,所述根据所述参考区域的反射率和所述淹没区域的反射率计算所述多像素比例指数,包括:
计算所述参考区域的反射率与所述淹没区域的反射率的比值,记为所述多像素比例指数。
8.根据权利要求2所述的方法,其特征在于,所述在每一个所述近红外波段影像中选择参考区域和淹没区域,包括:
在所述近红外影像中选择山坡区域或城市区域作为所述参考区域,其中所述参考区域包括至少一个像素;
在所述近红外影像中选择河流区域作为所述淹没区域,其中所述淹没区域的位置与水文站的位置之间的距离大于或等于预设距离,所述淹没区域的长度在预设范围内,所述淹没区域的宽度小于或等于河道宽度最大值。
9.一种无资料地区水文模型参数率定装置,其特征在于,所述装置包括:
信息获取模块,用于获取待研究区域率定期内的至少一个近红外波段影像和根据水文模型随机生成的至少一组初始参数;
指数数据获取模块,用于计算各个所述近红外波段影像中参考区域和淹没区域的多像素比例指数,以得到一组多像素比例指数数据;
径流数据生成模块,用于将每一组所述初始参数输入所述水文模型生成每一组径流数据;
相关系数计算模块,用于计算所述多像素比例指数数据与每一组所述径流数据的相关系数;
参数选择模块,用于选择所述相关系数排名在预设阈值内的所述径流数据对应的初始参数,记为有效参数;
参数过滤模块,用于对所述有效参数采用水量平衡滤波器进行过滤,以得到过滤参数;
率定参数获得模块,用于根据所述过滤参数得到所述水文模型的率定参数。
10.一种终端设备,其特征在于,包括:
存储器;一个或多个处理器,与所述存储器耦接;一个或多个应用程序,其中,一个或多个应用程序被存储在存储器中并被配置为由一个或多个处理器执行,一个或多个应用程序配置用于执行如权利要求1-8任一项所述的方法。
11.一种计算机可读存储介质,其特征在于,所述计算机可读取存储介质中存储有程序代码,所述程序代码可被处理器调用执行如权利要求1-8任一项所述的方法。
CN202110695306.3A 2021-06-23 2021-06-23 无资料地区水文模型参数率定方法、装置和终端设备 Active CN113254861B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110695306.3A CN113254861B (zh) 2021-06-23 2021-06-23 无资料地区水文模型参数率定方法、装置和终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110695306.3A CN113254861B (zh) 2021-06-23 2021-06-23 无资料地区水文模型参数率定方法、装置和终端设备

Publications (2)

Publication Number Publication Date
CN113254861A true CN113254861A (zh) 2021-08-13
CN113254861B CN113254861B (zh) 2021-09-24

Family

ID=77189307

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110695306.3A Active CN113254861B (zh) 2021-06-23 2021-06-23 无资料地区水文模型参数率定方法、装置和终端设备

Country Status (1)

Country Link
CN (1) CN113254861B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101319477B1 (ko) * 2011-10-11 2013-10-17 한국수자원공사 격자 기반의 대유역 장기 강우유출 모형
WO2014155330A2 (en) * 2013-03-29 2014-10-02 International Business Machines Corporation Automatic calibration of a model for a complex flow system
JP2016217966A (ja) * 2015-05-25 2016-12-22 株式会社ソニック 気象水文観測装置の較正方法及び気象水文観測システム
CN107330086A (zh) * 2017-07-04 2017-11-07 中国科学院新疆生态与地理研究所 一种提高无资料高海拔流域水文过程模拟精度的方法
CN108053049A (zh) * 2017-11-08 2018-05-18 河海大学 一种基于Budyko理论的水文随机插值径流预测方法
CN109086479A (zh) * 2018-06-20 2018-12-25 浙江大学 一种基于并行计算的分布式水文模型参数多目标率定方法
CN109815305A (zh) * 2019-01-18 2019-05-28 三峡大学 一种无资料地区场次洪水径流过程反演的方法
CN110570021A (zh) * 2019-08-15 2019-12-13 清华大学 径流模拟方法、装置以及计算机设备
CN110987063A (zh) * 2019-11-18 2020-04-10 广东岭秀科技有限公司 一种遥感监测河湖水文水生态要素的方法
CN111008941A (zh) * 2019-11-29 2020-04-14 中国农业科学院农业资源与农业区划研究所 基于高分卫星遥感影像农业洪涝灾害范围监测系统及方法
CN111898660A (zh) * 2020-07-17 2020-11-06 武汉大学 一种基于贝叶斯模式平均融合多源数据的水文模拟方法
CN111914431A (zh) * 2020-08-14 2020-11-10 贵州东方世纪科技股份有限公司 一种有资料地区水文模型参数自动率定方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101319477B1 (ko) * 2011-10-11 2013-10-17 한국수자원공사 격자 기반의 대유역 장기 강우유출 모형
WO2014155330A2 (en) * 2013-03-29 2014-10-02 International Business Machines Corporation Automatic calibration of a model for a complex flow system
JP2016217966A (ja) * 2015-05-25 2016-12-22 株式会社ソニック 気象水文観測装置の較正方法及び気象水文観測システム
CN107330086A (zh) * 2017-07-04 2017-11-07 中国科学院新疆生态与地理研究所 一种提高无资料高海拔流域水文过程模拟精度的方法
CN108053049A (zh) * 2017-11-08 2018-05-18 河海大学 一种基于Budyko理论的水文随机插值径流预测方法
CN109086479A (zh) * 2018-06-20 2018-12-25 浙江大学 一种基于并行计算的分布式水文模型参数多目标率定方法
CN109815305A (zh) * 2019-01-18 2019-05-28 三峡大学 一种无资料地区场次洪水径流过程反演的方法
CN110570021A (zh) * 2019-08-15 2019-12-13 清华大学 径流模拟方法、装置以及计算机设备
CN110987063A (zh) * 2019-11-18 2020-04-10 广东岭秀科技有限公司 一种遥感监测河湖水文水生态要素的方法
CN111008941A (zh) * 2019-11-29 2020-04-14 中国农业科学院农业资源与农业区划研究所 基于高分卫星遥感影像农业洪涝灾害范围监测系统及方法
CN111898660A (zh) * 2020-07-17 2020-11-06 武汉大学 一种基于贝叶斯模式平均融合多源数据的水文模拟方法
CN111914431A (zh) * 2020-08-14 2020-11-10 贵州东方世纪科技股份有限公司 一种有资料地区水文模型参数自动率定方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIACHAO CHEN等: "Evaluation of TMPA 3B42-V7 Product on Extreme Precipitation Estimates", 《REMOTE SENSING》 *
林峰 等: "基于SWAT模型的森林分布不连续流域水源涵养量多时间尺度分析", 《地理学报》 *
高真 等: "多源遥感降水评估及其在水文模拟中的应用", 《中国农村水利水电》 *

Also Published As

Publication number Publication date
CN113254861B (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
Anderson et al. Vegetation expansion in the subnival Hindu Kush Himalaya
Molero et al. SMOS disaggregated soil moisture product at 1 km resolution: Processor overview and first validation results
Lomba et al. Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant
Thapa et al. Potential of high-resolution ALOS–PALSAR mosaic texture for aboveground forest carbon tracking in tropical region
Marhaento et al. Attribution of changes in stream flow to land use change and climate change in a mesoscale tropical catchment in Java, Indonesia
Fathololoumi et al. Comparison of spectral and spatial-based approaches for mapping the local variation of soil moisture in a semi-arid mountainous area
Marsh et al. The Canadian Hydrological Model (CHM) v1. 0: a multi-scale, multi-extent, variable-complexity hydrological model–design and overview
Geleta et al. Evaluation of climate hazards group infrared precipitation station (CHIRPS) satellite‐based rainfall estimates over Finchaa and Neshe Watersheds, Ethiopia
Hosseini et al. Multi-index-based soil moisture estimation using MODIS images
Amani et al. A parametric method for estimation of leaf area index using landsat ETM+ data
Singh et al. Earth observation data sets in monitoring of urbanization and urban heat island of Delhi, India
Zhao et al. Model prediction of soil drainage classes over a large area using a limited number of field samples: A case study in the province of Nova Scotia, Canada
Ben Salah et al. Runoff and sediment yield modeling using SWAT model: case of Wadi Hatab basin, central Tunisia
Foulon et al. Equifinality and automatic calibration: What is the impact of hypothesizing an optimal parameter set on modelled hydrological processes?
de Lima Moraes et al. Steady infiltration rate spatial modeling from remote sensing data and terrain attributes in southeast Brazil
Verger et al. Accuracy assessment of fraction of vegetation cover and leaf area index estimates from pragmatic methods in a cropland area
Das et al. Reservoir Assessment Tool 2.0: Stakeholder driven improvements to satellite remote sensing based reservoir monitoring
Nourani et al. Hydrological model parameterization using NDVI values to account for the effects of land cover change on the rainfall–runoff response
Xingming et al. The temporal variation of farmland soil surface roughness with various initial surface states under natural rainfall conditions
Dungan et al. Alternative approaches for mapping vegetation quantities using ground and image data
Zahran et al. Remote sensing based water resources and agriculture spatial indicators system
Yu et al. Calibrating a hydrological model in ungauged small river basins of the northeastern Tibetan Plateau based on near-infrared images
Rostami et al. Determination of rainfed wheat agriculture potential through assimilation of remote sensing data with SWAT model case study: ZarrinehRoud Basin, Iran
Le et al. Robustness of gridded precipitation products for Vietnam basins using the comprehensive assessment framework of rainfall
Runke et al. Study on air temperature estimation and its influencing factors in a complex mountainous area

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
OL01 Intention to license declared