CN113253246A - 一种激光雷达和相机的标定方法 - Google Patents

一种激光雷达和相机的标定方法 Download PDF

Info

Publication number
CN113253246A
CN113253246A CN202110607494.XA CN202110607494A CN113253246A CN 113253246 A CN113253246 A CN 113253246A CN 202110607494 A CN202110607494 A CN 202110607494A CN 113253246 A CN113253246 A CN 113253246A
Authority
CN
China
Prior art keywords
coordinate system
point
point cloud
camera
cloud data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110607494.XA
Other languages
English (en)
Other versions
CN113253246B (zh
Inventor
苏畅
张旸
陈诚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AutoCore Intelligence Technology Nanjing Co Ltd
Original Assignee
AutoCore Intelligence Technology Nanjing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AutoCore Intelligence Technology Nanjing Co Ltd filed Critical AutoCore Intelligence Technology Nanjing Co Ltd
Priority to CN202110607494.XA priority Critical patent/CN113253246B/zh
Publication of CN113253246A publication Critical patent/CN113253246A/zh
Application granted granted Critical
Publication of CN113253246B publication Critical patent/CN113253246B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明涉及一种激光雷达和相机的标定方法,包括以下步骤:激光雷达获取N帧包括标定板的点云数据,消除激光雷达的随机误差,找出标定板的边缘点;设定与雷达坐标系之间的转换矩阵为T1伪相机坐标系,将标定板的边缘点转换到伪相机坐标系下,并投影到伪相机的成像平面上,得到投影图像;从投影图像中找到标定板的角点位于伪相机坐标系下的2d坐标;获取标定板的角点在相机坐标系下的3d坐标,从而得到相机坐标系和伪相机坐标系之间的转换矩阵T2,进而得到激光雷达坐标系与相机坐标系之间的转换矩阵T=T2‑1*T1。本发明可以消除激光雷达扫描带来的随机误差,从而提高标注精度。

Description

一种激光雷达和相机的标定方法
技术领域
本发明涉及一种激光雷达和相机的标定方法,属于自动驾驶技术领域。
背景技术
相机和激光雷达是无人车中的两种重要传感器,它们为无人驾驶车辆提供周围环境的感知能力,由于每一种传感器有其自身的局限,比如相机无法获取深度信息,激光雷达无法获取目标的颜色信息。在实际应用中,常常是利用多种传感器,再对他们的感知结果做融合,对同一目标的感知结果是在不同坐标系下获得的。因此,为了完成相机和激光雷达的融合,就需要知道相机和激光雷达不同坐标系之间的转换关系,即对相机和激光雷达进行标定。
据申请人了解,现有的标定方法通常通过凹凸的立体标定板或平面标定板进行标定。使用立体标定板时,不但制作难度大,成本高,而且标定精度不高;使用平面标定板时,需要手工选择同一特征点在点云中和图像中的位置,但由于激光雷达固有的随机误差,以及手工操作的误差,此种方法需要选择的点较多,且操作复杂,精度不高。
发明内容
本发明要解决的技术问题是:提供一种可以消除激光雷达扫描带来的随机误差,从而提高标注精度的激光雷达和相机的标定方法。
为了解决上述技术问题,本发明提出的技术方案是:一种激光雷达和相机的标定方法,包括以下步骤:
步骤一、将ArUco码贴于标定板表面,将标定板固定在相机前方;
步骤二、激光雷达获取N帧包括标定板的点云数据,并记录下每一帧点云数据中每一个点的坐标及其对应的射线id;
步骤三、对N帧点云数据进行处理,消除激光雷达的随机误差,方法如下:
1)读取第1帧点云数据的射线0所扫到的所有点,记为数组pc0_r0;
2)读取第2帧点云数据的射线0所扫到的所有点,记为数组pc1_r0;
3)对数组pc1_r0中的任一点pn,计算其与数组pc0_r0中的每一个点的距离,找到距离最小的点记为pm,完成配对;
4)完成数组pc0_r0和数组pc1_r0中的每个点的配对后,形成新的数组pc_r0,其中数组pc_r0中每一个点的坐标为对应两个配对点坐标的均值;
5)对第1帧点云和第2帧点云中的其他射线,重复上述步骤,最终得到新的点云数据pc;
6)以点云数据pc作为第1帧点云数据,从第3,4,5,...,N帧点云数据中依次取一帧点云数据作为第2帧点云数据,不断重复上述步骤1)-5),最终可得新的点云数据pc_final;
步骤四、从点云数据pc_final中,找出标定板的边缘点;
步骤五、设定一伪相机坐标系,所述伪相机坐标系的原点为相机坐标系的原点,所述伪相机坐标系的光轴水平设置,且所述伪相机坐标系的光轴与相机坐标系的光轴位于同一竖直平面内;所述伪相机坐标系与雷达坐标系之间的转换矩阵记为T1;
步骤六、将步骤四中找到的所述标定板的边缘点转换到伪相机坐标系下,并投影到伪相机的成像平面上,得到投影图像;从投影图像中找到标定板的角点位于伪相机坐标系下的2d坐标;
获取标定板的角点在相机坐标系下的3d坐标;
步骤七、移动标定板,重复步骤二至步骤六,记录下多组标定板的角点位于伪相机坐标系下的2d坐标,以及在相机坐标系下相对应的3d坐标;
步骤八、根据多组标定板的角点位于伪相机坐标系下的2d坐标,以及在相机坐标系下相对应的3d坐标,得到相机坐标系和伪相机坐标系之间的转换矩阵,记为T2,从而得到激光雷达坐标系与相机坐标系之间的转换矩阵T=T2-1*T1。
本发明通过对激光雷达获取的N帧包括标定板的点云数据进行处理,以概率统计的方式消除了激光雷达扫描时所固有的随机误差,从而使得在后续扫描图像上的标定板角点位置非常准确,为快速方便地寻找标定板的角点位于伪相机坐标系下的2d坐标扫除了障碍,克服了现有技术中采用平面拟合算法ransac寻找标定板的角点的2d坐标时,需要调整较多参数的问题,且迭代次数不确定,平面拟合的效果比较依赖于样本数据的质量以及参数的选取等缺陷。因此,本发明的标注方法不但简单可靠,而且标注精度高。
附图说明
下面结合附图对本发明作进一步说明。
图1是过滤后的点云数据的示意图。
图2是标定板的边缘点示意图。
图3是投影图像的示意图。
具体实施方式
本实施例的激光雷达和相机的标定方法,包括以下步骤:
步骤一、选择标定板,例如:选择49cm*49cm的标定板。将ArUco码贴于标定板表面,将标定板固定在相机前方。ArUco码标定板为为常用的标定板,通过ArUco码可以方便地得到标定板的四个角点。在使用时,固定好标定板,在相机前方,保证标定板周围较为空旷,杂点较少。
步骤二、激光雷达获取N帧包括标定板的点云数据,并记录下每一帧点云数据中每一个点的坐标及其对应的射线id。由于激光雷达固有的误差存在,对同一位置点,每次扫描都会有微小的偏差,在记录下每一个点的坐标及其对应的射线id,存储N帧点云数据后,开始处理。
为了减小计算量,本实施例优选的,在接收激光雷达的点云数据时,配置待处理的点云范围,保证大部分点为扫描到标定板上的点;通过点云范围对点云数据进行过滤,形成过滤后的点云数据。这样,步骤三在消除激光雷达的随机误差时,采用过滤后的点云数据。
在配置待处理的点云范围,过滤掉不需要处理的点,形成新的点云时,可通过点云可视化工具(比如ros系统中的rviz工具),观察过滤后的点云数据,保证大部分点为扫描到标定板上的点,如图1所示。如果过滤后的点云数据仍然含有较多杂点,则调整配置文件中的待处理点云范围,直至过滤后的点云中大部分为标定板的点;由于有可视化工具的同步观察,这一步只需调整极少的次数即可完成。
步骤三、对N帧点云数据进行处理,消除激光雷达的随机误差,方法如下:
1)读取第1帧点云数据的射线0所扫到的所有点,记为数组pc0_r0;
2)读取第2帧点云数据的射线0所扫到的所有点,记为数组pc1_r0;
3)对数组pc1_r0中的任一点pn,计算其与数组pc0_r0中的每一个点的距离,找到距离最小的点记为pm,完成配对;
4)完成数组pc0_r0和数组pc1_r0中的每个点的配对后,形成新的数组pc_r0,其中数组pc_r0中每一个点的坐标为对应两个配对点坐标的均值;
5)对第1帧点云和第2帧点云中的其他射线,重复上述步骤,最终得到新的点云数据pc;
6)以点云数据pc作为第1帧点云数据,从第3,4,5,...,N帧点云数据中依次取一帧点云数据作为第2帧点云数据,不断重复上述步骤1)-5),最终可得新的点云数据pc_final。
本实施例中,点云数据pc_final中的点的坐标由N帧点云不断匹配,求均值而得到,从而消除了激光雷达的随机误差。根据概率统计的原理,通常N越大,激光雷达的随机误差的消除效果越好。根据申请人的试验表明,N大于6时,激光雷达的随机误差就可以消除至能够接受的范围。
步骤四、从点云数据pc_final中,找出标定板的边缘点,如图2所示。
边缘点可以采用图像识别的方式找出,本实施例优选采用以下方式:对点云数据pc_final中的每一个点,计算该点到雷达激光原点的欧式距离,记为该点的第一距离;对每一条射线扫描到的点,依次计算该点的第一距离与相邻点的第一距离之差,并求其绝对值,记为该点的第一距离差;第一距离差大于预设阈值的点即为标定板的边缘点。
以射线0扫到的点p1,p2,...,pm,.. .,pn为例,计算各个点到激光雷达原点的欧氏距离,记为d1,d2,...,dm,...,dn,根据计算结果再次计算相邻点的距离差(第一个点和最后一个点不计算),得到d1,d1-d2,...,d(m-1)-dm,...,对其求绝对值,记为D1,D2,...,Dm,...,依次判断每一个点,判断Dm与某一阈值t的大小,当Dm>t时,则认为点pm是边缘点。对射线1,2....扫到的点重复上述过程,找到每一条射线扫描到的标定板的边缘点。其中,t为经验值,可根据自己的激光雷达灵活选取,也可根据可视化工具进行调整。
步骤五、获取标定板的边缘点后,现有技术中由于激光雷达误差的存在,这些点可能并不在一个平面上,因此通常使用ransac算法去拟合出一个平面,但是ransac拟合平面有很多参数要调整,迭代次数也不确定,平面拟合的效果比较依赖于样本数据的质量和参数的选取。
本实施例另辟蹊径,设定一与相机方向大致相同的伪相机坐标系,所述伪相机坐标系的原点为相机坐标系的原点,所述伪相机坐标系的光轴水平设置,且所述伪相机坐标系的光轴与相机坐标系的光轴位于同一竖直平面内;所述伪相机坐标系与雷达坐标系之间的转换矩阵记为T1。
比如以前视相机为例,假设伪坐标系记为C,C与雷达坐标系L之间的转换矩阵T1,转换矩阵T1由旋转矩阵和平移矩阵构成,其中旋转矩阵初始化成用欧拉角的表达的形式如下(1.57,-1.57,0),平移矩阵初始化为(0,0,0)。
步骤六、将步骤四中找到的所述标定板的边缘点转换到伪相机坐标系下,并投影到伪相机的成像平面上,得到投影图像;从投影图像中找到标定板的角点位于伪相机坐标系下的2d坐标。仍以前视相机为例,提取出标定板的边缘点云(记为P_edge)后,将其转换到伪相机坐标系下的坐标,记为P_edge_fakec,将P_edge_fakec投影到伪相机的成像平面上,得到投影图像,记为I,如图3所示。通过可视化工具,在投影图像I上选取两点A1,A2,其连线记为L1,使L1穿过尽可能多左上边的边缘点,同理可得连线L2穿过右上边缘点,L3穿过右下边缘点,L4穿过左下边缘点。求解L1和L2的交点记为A,求解L2和L3的交点记为B,求解L3和L4的交点记为C,求解L4和L5的交点,记为D。至此,得到标定板的角点位于伪相机坐标系下的2d坐标。当然,标定板的角点也可以图像识别,或者通过现有技术,将投影图像I拟合成四边形,寻找四边形的四个顶点即得到标定板的四个角点。
获取标定板的角点在相机坐标系下的3d坐标,此为现有技术,比如在实施时,可使用ros中的包aruco_mapping等得到标定板角点在相机坐标系下的3d坐标。
步骤七、移动标定板,重复步骤二至步骤六,记录下多组标定板的角点位于伪相机坐标系下的2d坐标,以及在相机坐标系下相对应的3d坐标。
步骤八、根据多组标定板的角点位于伪相机坐标系下的2d坐标,以及在相机坐标系下相对应的3d坐标,得到相机坐标系和伪相机坐标系之间的转换矩阵,记为T2,从而得到激光雷达坐标系与相机坐标系之间的转换矩阵T=T2-1*T1。在实施时,转换矩阵T2可通过OpenCV中的solvePnP函数求解得到,此为现有技术,中参考相关文献,不再赘述。
需要说明的是,本发明是通过先在步骤二中,消除激光雷达的随机误差后,再寻找标定板的四个角点。由于消除了激光雷达的随机误差,投影图像I中的边缘点非常接近规则的四边形,因此可通过描线或其他方式准确地找到标定板的四个角点。而如果不消除激光雷达的随机误差,则投影图像I中的边缘点处于不规则的分布状态,因此很难准确地找出标定板的四个角点,这也就是现有技术中需要使用ransac算法先拟合出一个平面再寻找边缘点的原因,但ransac算法非常复杂,且需要调整很多的参数,给准确快速地寻找边缘点带来了困难。
本发明不局限于上述实施例所述的具体技术方案,除上述实施例外,本发明还可以有其他实施方式。对于本领域的技术人员来说,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等形成的技术方案,均应包含在本发明的保护范围之内。

Claims (8)

1.一种激光雷达和相机的标定方法,其特征在于,包括以下步骤:
步骤一、将ArUco码贴于标定板表面,将标定板固定在相机前方;
步骤二、激光雷达获取N帧包括标定板的点云数据,并记录下每一帧点云数据中每一个点的坐标及其对应的射线id;
步骤三、对N帧点云数据进行处理,消除激光雷达的随机误差,方法如下:
1)读取第1帧点云数据的射线0所扫到的所有点,记为数组pc0_r0;
2)读取第2帧点云数据的射线0所扫到的所有点,记为数组pc1_r0;
3)对数组pc1_r0中的任一点pn,计算其与数组pc0_r0中的每一个点的距离,找到距离最小的点记为pm,完成配对;
4)完成数组pc0_r0和数组pc1_r0中的每个点的配对后,形成新的数组pc_r0,其中数组pc_r0中每一个点的坐标为对应两个配对点坐标的均值;
5)对第1帧点云和第2帧点云中的其他射线,重复上述步骤,最终得到新的点云数据pc;
6)以点云数据pc作为第1帧点云数据,从第3,4,5,...,N帧点云数据中依次取一帧点云数据作为第2帧点云数据,不断重复上述步骤1)-5),最终可得新的点云数据pc_final;
步骤四、从点云数据pc_final中,找出标定板的边缘点;
步骤五、设定一伪相机坐标系,所述伪相机坐标系的原点为相机坐标系的原点,所述伪相机坐标系的光轴水平设置,且所述伪相机坐标系的光轴与相机坐标系的光轴位于同一竖直平面内;所述伪相机坐标系与雷达坐标系之间的转换矩阵记为T1;
步骤六、将步骤四中找到的所述标定板的边缘点转换到伪相机坐标系下,并投影到伪相机的成像平面上,得到投影图像;从投影图像中找到标定板的角点位于伪相机坐标系下的2d坐标;
获取标定板的角点在相机坐标系下的3d坐标;
步骤七、移动标定板,重复步骤二至步骤六,记录下多组标定板的角点位于伪相机坐标系下的2d坐标,以及在相机坐标系下相对应的3d坐标;
步骤八、根据多组标定板的角点位于伪相机坐标系下的2d坐标,以及在相机坐标系下相对应的3d坐标,得到相机坐标系和伪相机坐标系之间的转换矩阵,记为T2,从而得到激光雷达坐标系与相机坐标系之间的转换矩阵T=T2-1*T1。
2.根据权利要求1所述的激光雷达和相机的标定方法,其特征在于:步骤二中,在接收激光雷达的点云数据时,配置待处理的点云范围,保证大部分点为扫描到标定板上的点;通过点云范围对点云数据进行过滤,形成过滤后的点云数据;
步骤三中,对N帧点云数据进行处理,消除激光雷达的随机误差时,采用过滤后的点云数据。
3.根据权利要求1所述的激光雷达和相机的标定方法,其特征在于:步骤四中,对点云数据pc_final中的每一个点,计算该点到雷达激光原点的欧式距离,记为该点的第一距离;
对每一条射线扫描到的点,依次计算该点的第一距离与相邻点的第一距离之差,并求其绝对值,记为该点的第一距离差;第一距离差大于预设阈值的点即为标定板的边缘点。
4.根据权利要求1所述的激光雷达和相机的标定方法,其特征在于:步骤六中,将投影图像拟合成一个四边形,该四边形的四个顶点即为标定板的角点位于伪相机坐标系下的2d坐标。
5.根据权利要求1所述的激光雷达和相机的标定方法,其特征在于:步骤六中,通过可视化工具,将投影图像的四条边手工描线,四条边的四个交点即为标定板的角点位于伪相机坐标系下的2d坐标。
6.根据权利要求2所述的激光雷达和相机的标定方法,其特征在于:在配置待处理的点云范围时,通过点云可视化工具观察过滤后的点云数据,确保点云数据中的大部分点为扫描到标定板上的点。
7.根据权利要求1所述的激光雷达和相机的标定方法,其特征在于:步骤六中,通过ROS中的ArUco_mapping包获取标定板的角点在相机坐标系下的3d坐标。
8.根据权利要求1所述的激光雷达和相机的标定方法,其特征在于:步骤八中,通过OpenCV中的solvePnP函数求解可得相机坐标系和伪相机坐标系之间的转换矩阵。
CN202110607494.XA 2021-06-01 2021-06-01 一种激光雷达和相机的标定方法 Active CN113253246B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110607494.XA CN113253246B (zh) 2021-06-01 2021-06-01 一种激光雷达和相机的标定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110607494.XA CN113253246B (zh) 2021-06-01 2021-06-01 一种激光雷达和相机的标定方法

Publications (2)

Publication Number Publication Date
CN113253246A true CN113253246A (zh) 2021-08-13
CN113253246B CN113253246B (zh) 2021-09-10

Family

ID=77185712

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110607494.XA Active CN113253246B (zh) 2021-06-01 2021-06-01 一种激光雷达和相机的标定方法

Country Status (1)

Country Link
CN (1) CN113253246B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114543670A (zh) * 2022-01-28 2022-05-27 中国科学院长春光学精密机械与物理研究所 一种基于机器视觉的光学元件位姿辅助标定方法及标定系统
CN115131444A (zh) * 2022-08-30 2022-09-30 常州铭赛机器人科技股份有限公司 一种基于单目视觉点胶平台的标定方法
CN116359891A (zh) * 2023-06-01 2023-06-30 季华实验室 一种多传感器快速标定方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160070981A1 (en) * 2014-09-08 2016-03-10 Kabushiki Kaisha Topcon Operating device, operating system, operating method, and program therefor
CN110554405A (zh) * 2019-08-27 2019-12-10 华中科技大学 一种基于组合聚类的正态扫描配准方法和系统
CN110766716A (zh) * 2019-09-10 2020-02-07 中国科学院深圳先进技术研究院 一种空间未知运动目标的信息获取方法及系统
CN112212784A (zh) * 2020-09-01 2021-01-12 长春工程学院 一种点激光位移传感器与双目相机坐标融合的方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160070981A1 (en) * 2014-09-08 2016-03-10 Kabushiki Kaisha Topcon Operating device, operating system, operating method, and program therefor
CN110554405A (zh) * 2019-08-27 2019-12-10 华中科技大学 一种基于组合聚类的正态扫描配准方法和系统
CN110766716A (zh) * 2019-09-10 2020-02-07 中国科学院深圳先进技术研究院 一种空间未知运动目标的信息获取方法及系统
CN112212784A (zh) * 2020-09-01 2021-01-12 长春工程学院 一种点激光位移传感器与双目相机坐标融合的方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YOONSU PARK: ""Calibration between Color Camera and 3D LIDAR Instruments with a Polygonal Planar Board"", 《SENSORS 2014》 *
康国华 等: ""基于点云中心的激光雷达与相机联合标定方法研究"", 《仪器仪表学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114543670A (zh) * 2022-01-28 2022-05-27 中国科学院长春光学精密机械与物理研究所 一种基于机器视觉的光学元件位姿辅助标定方法及标定系统
CN115131444A (zh) * 2022-08-30 2022-09-30 常州铭赛机器人科技股份有限公司 一种基于单目视觉点胶平台的标定方法
CN115131444B (zh) * 2022-08-30 2022-11-15 常州铭赛机器人科技股份有限公司 一种基于单目视觉点胶平台的标定方法
CN116359891A (zh) * 2023-06-01 2023-06-30 季华实验室 一种多传感器快速标定方法及系统
CN116359891B (zh) * 2023-06-01 2023-09-12 季华实验室 一种多传感器快速标定方法及系统

Also Published As

Publication number Publication date
CN113253246B (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
CN113253246B (zh) 一种激光雷达和相机的标定方法
US10269141B1 (en) Multistage camera calibration
CN109300162B (zh) 一种基于精细化雷达扫描边缘点的多线激光雷达和相机联合标定方法
WO2021098608A1 (zh) 传感器的标定方法、装置、系统、车辆、设备及存储介质
US10019838B2 (en) Human body three-dimensional imaging method and system
CN109961468B (zh) 基于双目视觉的体积测量方法、装置及存储介质
CN112270713B (zh) 标定方法以及装置、存储介质、电子装置
CN107167788B (zh) 获取激光雷达校准参数、激光雷达校准的方法及系统
CN110517303B (zh) 一种基于双目相机和毫米波雷达的融合slam方法及系统
Alismail et al. Automatic calibration of a range sensor and camera system
CN109377551B (zh) 一种三维人脸重建方法、装置及其存储介质
CN111123242B (zh) 一种基于激光雷达和相机的联合标定方法及计算机可读存储介质
CN111383279A (zh) 外参标定方法、装置及电子设备
CN112132906A (zh) 一种深度相机与可见光相机之间的外参标定方法及系统
US10861173B2 (en) Hole-based 3D point data alignment
CN111950426A (zh) 目标检测方法、装置及运载工具
CN113034612B (zh) 一种标定装置、方法及深度相机
CN110458952B (zh) 一种基于三目视觉的三维重建方法和装置
CN110823252A (zh) 一种多线激光雷达和单目视觉的自动标定方法
CN110827361A (zh) 基于全局标定架的相机组标定方法及装置
JPH0680404B2 (ja) カメラ位置姿勢校正方法
KR20230003803A (ko) 라이다 좌표계와 카메라 좌표계의 벡터 정합을 통한 자동 캘리브레이션 방법
CN115294313A (zh) 基于3d-2d多模态融合的密集真彩点云数据采集方法及装置
CN116205961A (zh) 多镜头组合影像和激光雷达点云的自动配准方法及其系统
CN102968784B (zh) 一种多视角拍摄进行孔径合成成像方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 210012 room 401-404, building 5, chuqiaocheng, No. 57, Andemen street, Yuhuatai District, Nanjing, Jiangsu Province

Patentee after: AUTOCORE INTELLIGENT TECHNOLOGY (NANJING) Co.,Ltd.

Address before: 211800 building 12-289, 29 buyue Road, Qiaolin street, Pukou District, Nanjing City, Jiangsu Province

Patentee before: AUTOCORE INTELLIGENT TECHNOLOGY (NANJING) Co.,Ltd.