CN113241376B - 一种全环绕沟道场效应晶体管、制备方法及应用 - Google Patents

一种全环绕沟道场效应晶体管、制备方法及应用 Download PDF

Info

Publication number
CN113241376B
CN113241376B CN202110538267.6A CN202110538267A CN113241376B CN 113241376 B CN113241376 B CN 113241376B CN 202110538267 A CN202110538267 A CN 202110538267A CN 113241376 B CN113241376 B CN 113241376B
Authority
CN
China
Prior art keywords
gas
field effect
effect transistor
channel field
fully
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110538267.6A
Other languages
English (en)
Other versions
CN113241376A (zh
Inventor
余林蔚
宋晓攀
刘宗光
王军转
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202110538267.6A priority Critical patent/CN113241376B/zh
Publication of CN113241376A publication Critical patent/CN113241376A/zh
Application granted granted Critical
Publication of CN113241376B publication Critical patent/CN113241376B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4141Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4146Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS involving nanosized elements, e.g. nanotubes, nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/22Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明公开一种全环绕沟道场效应晶体管,包括衬底,所述衬底表面设置有悬空高导电性微米或纳米线状材料作为栅,所述栅的外层依次设有介质层和气体敏感层;所述栅的一端和外层气体敏感层两端分别沉积金属电极用于连接外部测试电路。本发明适用范围广,可定位可集成的CAA背栅场效应晶体管并用于气体传感器领域,改善气体传感器的气敏性能。

Description

一种全环绕沟道场效应晶体管、制备方法及应用
技术领域
本发明涉及一种全环绕沟道场效应晶体管传感器技术领域,具体涉及到全环绕沟道场效应晶体管的结构及气体传感应用。可广泛应用于半导体微纳电子器件,尤其针对柔性/可穿戴电子和场效应化学气体传感器件。
背景技术
气体传感器是实时、原位获取气体信息的最有效途径之一,在环境保护和安防报警等领域发挥着不可替代的重要作用。当前,随着物联网市场的快速发展,对低成本和可集成的气体传感器需求显著增加,但是很多类型的气体传感器受限于灵敏度、集成度以及功耗,难以提高多组分复杂气氛环境适用性与可靠性。近期,基于场效应晶体管(FET)的气体传感器在高灵敏及紧凑集成传感器方面提供了极大的优势而成为了气体传感器领域研究热点之一,其主要优势为:该类型的传感器可在小电流、低电压工作条件下运行,利于阵列集成化;通过施加栅极电压,即可实现对沟道电流的进行大幅调制,因此当在亚阈值区操控传感器时,可通过电导的改变显著提升灵敏度。
目前,基于场效应晶体管的气体传感器有很多,大部分是基于背栅结构的气体传感器,其中敏感材料的种类有很多包括半导体纳米线(David K. Kim et al, ACS NANO,2011, 5(12): 10074-10083;Xuming Zou et al, Nano Lett. 2013, 13: 3287-3292),有机材料(Shijiao Han et al, Sensors and Actuators B: Chemical, 2014, 203: 9-16;Jingjing Lu et al, Adv. Funct. Mater. 2017, 27: 1700018),各种异质结敏感材料(Hongyu Tang et al, ACS Appl. Mater. Interfaces 2019, 11: 40850-40859)。然而,背栅场效应晶体管气体传感器主要存在以下问题:(1)共用的大面积背栅电极无法精确调控指定的沟道,即一个栅电极调控整个平面上的所有FET器件;(2)由于敏感材料大多都依附于衬底材料,使得气体分子与敏感材料的接触面积较小,气敏性能大大降低,此外,材料和衬底依附后有可能会吸附上衬底上的杂质及电荷,严重影响气敏性能。
因此,亟需开发一种栅控可精确定位、敏感材料可与气体分子最大面积接触且利于集成的高气敏性能的场效应晶体管传感器。
发明内容
发明目的:针对现有技术中存在的问题与不足,本发明提供一种场效应最佳效果、适用范围广,可定位可集成的CAA背栅场效应晶体管并用于气体传感器领域,改善气体传感器的气敏性能。
技术方案:一种全环绕沟道场效应晶体管,包括衬底,其特征在于:所述衬底表面设置有悬空高导电性微米或纳米线状材料作为栅,所述栅的外层依次设有介质层和气体敏感层;所述外层气体敏感层的两端及栅的至少一端沉积有金属电极用于连接外部测试电路。
本发明进一步限定的技术方案为:所述衬底上设有凹槽,所述栅悬空于所述衬底凹槽上方,其两端分别延伸至所述凹槽两侧衬底台阶上;至少栅的一端沉积有栅电极引出层,所述栅电极引出层上及栅的外层依次设有介质层和气体敏感层;位于所述栅两端的气体敏感层上分别沉积有源漏电极层。
作为优选,所述高导电性微米或纳米线状材料为重掺杂硅纳米线、金属掺杂硅纳米线、银纳米线、铜纳米线、金纳米棒或合金纳米线。
作为优选,所述衬底材料为氮化硅、氧化硅或聚合物材料如聚酰亚胺,聚对苯二甲酸乙二酯,聚二甲基硅氧烷等。
作为优选,所述介质层材料为氧化硅、氧化铪、氧化铝或氮化硅。
作为优选,所述气体敏感层为金属氧化物、异质结材料、二维材料或有机材料。
作为优选,所述金属氧化物为氧化锌,氧化锡或氧化铁;所述异质结材料为p-n异质结、n-n异质结、或肖特基结;所述二维材料为二硫化钼或石墨烯。
本发明还公开了一种全环绕沟道场效应晶体管的制备方法,其特征在于:包括如下步骤:
第一步,通过光刻、刻蚀和沉积工艺在悬空于衬底凹槽上的芯部微米或纳米线状材料一端选择性沉积纳米金属作为栅电极的引出电极;
第二步,通过原子层沉积、磁控溅射工艺在引出电极和芯部微米或纳米线状材料外层沉积介质层、气体敏感层;
第三步,通过光刻、刻蚀和沉积工艺在外层气体敏感层两端选择性沉积金属作为源、漏电极。
作为优选,第三步中,所述源、漏电极的距离为200 nm~8 μm,以实现场效应调控效果。
本发明还公开了一种全环绕沟道场效应晶体管的应用,采用上述全环绕沟道场效应晶体管,其特征在于:包括以下步骤:
第一步,将全环绕沟道场效应晶体管器件放入密闭的气体检测室中,将所述器件的三端电极与源表相连接所述悬空高导电性微米或纳米线状材料的金属电极一端施加电压用于栅调控,所述气体敏感层之上的两侧金属电极分别施加源漏电压;
第二步,对所述气体检测室进行抽真空和加热预处理,排除腔体内杂质气体及水汽,然后关闭加热电源,自然冷却至室温;
第三步,将待测气体及所需的载气空气通过流量计计算比例后,通入混气室进行混合,通入的气体根据所需气体浓度进行配置;
第四步,施加不同Vds及不同Vgs,记录气体通入前后源漏电极的电流变化以检测全环绕沟道场效应晶体管的气敏性能。在系统内通入待测气体如氨气,氮氧化物,氢气后,与表面的气体敏感层发生电荷交换,对器件的栅调控产生影响,测试通过源漏电极的电流的变化即可实现对气体含量的检测。
有益效果:与现有技术相比,本发明具有以下优点:
1、本发明在现有的背栅场效应FET传感器制备工艺的基础上,结合高导电性的硅纳米线等,提出了一种新颖的可精准定位栅电极的新型场效应传感器及其制备方法。
2、本发明通过将制备的高导电性纳米线等悬空设计,并逐层沉积介质层和敏感层,大幅增加气体吸附的活性位点,减少衬底与材料之间吸附杂质影响,显著增强气敏性能。
3、本发明制备的CAA背栅场效应传感器结构,相比于传统的电阻型传感器,不仅可实现大面积定位集成,还可通过调控栅电压在亚阈值摆幅区域,实现超高灵敏度检测。
附图说明
图1为本发明实施例1中铟镓合金硅纳米线CAA背栅FET传感器制备流程图;
图2为本发明实施例2中银纳米线CAA背栅FET传感器制备流程图;
图3为本发明实施例3中CAA背栅FET传感器气敏测试电路图;
图4为本发明实施例1-3中CAA 场效应晶体管器件的结构主视图;
图5为图4中CAA场效应晶体管器件的剖面示意图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明。
实施例1
本实施例提供一种全环绕沟道场效应晶体管,如图1、4及图5所示,包括衬底1,衬底上设有凹槽,衬底凹槽上方悬空设置高导电性纳米线状材料作为栅3,栅3两端分别延伸至凹槽两侧衬底台阶上;且其两端均沉积有栅电极引出层2,栅电极引出层2上及栅3的外层依次设有介质层4和气体敏感层5;位于栅3两端的气体敏感层5上分别沉积有源电极层7、漏电极层6,用于连接外部测试电路。
本实施例还公开了全环绕沟道场效应管的制备方法,具体有以下步骤:
A、利用光刻技术在聚酰亚胺衬底上定义引导台阶;再用电感耦合等离子体(ICP)刻蚀方法在衬底一侧刻蚀出台阶结构;刻蚀过程中可使用O2气体进行刻蚀,过程中可调节ICP功率及气体流量等因素,刻蚀沟道深度为110 nm;
B、利用光刻工艺和蒸发溅射金属淀积工艺,在台阶一端制备铟镓合金催化金属层,此端点作为纳米线的生长起点位置;随后在还原性气体H2的等离子体作用下,在高于金属熔点的温度进行处理,使覆盖在引导沟道上的铟镓合金催化金属层转变成为分离的铟镓合金金属纳米颗粒;
C、通过等离子体增强化学气相沉积(PECVD)技术在样品表面覆盖非晶硅,直接生长高导电性的合金硅纳米线,残余非晶硅层通过反应离子刻蚀(RIE)工艺清除;
D、通过光刻、电子束蒸发(EBE)工艺选择性沉积金电极,厚度为50 nm;该电极与合金硅纳米线接触良好;
E、利用金属掩膜,通过ICP技术,利用O2等离子体刻蚀衬底表面,使得硅纳米线悬空;
F、通过原子层沉积(ALD)沉氧化铪介质层,介质层厚度为20 nm;
G、通过磁控溅射,沉积30 nm 氧化锌薄膜气体敏感层;
H、通过光刻、EBE工艺沉积Ti/Au(5/55 nm)作为源漏电极,即可获得CAA场效应晶体管。
实施例2
本实施例提供一种全环绕沟道场效应晶体管制备方法,如图2所示,具体有以下步骤:
A、将高导电性的银纳米线转移至聚酰亚胺衬底表面;
B、利用通过光刻、电子束蒸发(EBE)工艺选择性沉积金电极,厚度为50 nm;该电极与银纳米线接触良好;
C、利用金属掩膜,通过ICP技术,利用O2等离子体刻蚀衬底表面,使得硅纳米线悬空;
D、通过ALD沉积氧化铝介质层,介质层厚度为20 nm;
E、通过磁控溅射,沉积30 nm的氧化锡薄膜气体敏感层;
F、通过光刻、EBE工艺沉积Pt/Au(5/55 nm)作为源漏电极,即可获得CAA场效应晶体管。
实施例3
本实施例提供一种全环绕沟道场效应晶体管的气体传感应用,全环绕沟道场效应晶体管结构如图1、3所示,具体包括以下步骤:
A、将所制备的CAA场效应晶体管器件放入一个密闭的气体检测室中,并将器件的三端电极与源表相连接;
B、然后对该气体检测室进行抽真空和加热等预处理,排除腔体内杂质气体及水汽,然后关闭加热电源,自然冷却至室温;
C、将待测气体NH3及所需的载气空气通过流量计计算比例后,通入混气室进行混合,通入的气体可根据所需的气体浓度进行配置,然后施加不同Vds及不同Vgs等,通过记录气体通入前后电流变化来检测CAA场效应晶体管器件的气敏性能。
本实施例提供的全环绕沟道(Channel-All-Around, CAA)的场效应晶体管及应用,其以悬空的高导电性微米或纳米线状结构为栅极,外侧包覆介质层,最外层为沟道材料,并将其应用于气体分子的传感与探测。本发明专利是理想的高性能场效应传感器件结构,相比于传统衬底的背栅器件,其具有更大的沟道暴露面积、降低衬底吸附电荷及水汽等影响,实现更精确且全面的栅调控能力。
本发明列举的优选实施例1至3的实施方案是全环绕沟道场效应晶体管的制备及气体传感应用。该方法利用多种悬空导电的微米或纳米线结构为栅,外层依次沉积介质层和敏感层即沟道,并连接外接电路测试气体通入后对栅控的源漏电流的作用以测量气体含量。该发明完全悬空的外层敏感层为气体分子的吸附提供了更大的面积,减少材料与衬底之间的吸附杂质影响,并且栅极被完全包覆,可实现对外侧敏感层沟道材料的精准栅调控,以获得对气体的高精度检测。如依托平面硅纳米线的引导定位生长工艺,可实现与硅工艺兼容的批量生产,且成本低廉。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进,这些改进也应视为本发明的保护范围。

Claims (9)

1.一种全环绕沟道场效应晶体管,包括衬底,其特征在于:所述衬底表面设置有悬空高导电性微米或纳米线状材料作为栅,所述栅的外层依次设有介质层和气体敏感层;所述气体敏感层的两端及栅的至少一端沉积有金属电极用于连接外部测试电路;
所述衬底上设有凹槽,所述栅悬空于所述衬底凹槽上方,其两端分别延伸至所述凹槽两侧衬底台阶上;所述栅的至少一端沉积有栅电极引出层,所述栅电极引出层上及栅的外层依次设有介质层和气体敏感层;位于所述栅两端的气体敏感层上分别沉积有源漏电极层。
2.根据权利要求1所述的全环绕沟道场效应晶体管,其特征在于:所述高导电性微米或纳米线状材料为重掺杂硅微/纳米线、金属掺杂硅微/纳米线、银微/纳米线、铜微/纳米线、金纳米棒或合金纳米线。
3.根据权利要求1或2所述的全环绕沟道场效应晶体管,其特征在于:所述衬底材料为氮化硅、氧化硅或聚合物材料。
4.根据权利要求1或2所述的全环绕沟道场效应晶体管,其特征在于:所述介质层材料为氧化硅、氧化铪、氧化铝或氮化硅。
5.根据权利要求1或2所述的全环绕沟道场效应晶体管,其特征在于:所述气体敏感层为金属氧化物、异质结材料、二维材料或有机材料。
6.根据权利要求5所述的全环绕沟道场效应晶体管,其特征在于:所述金属氧化物为氧化锌,氧化锡或氧化铁;所述异质结材料为p-n异质结、n-n异质结、或肖特基结;所述二维材料为二硫化钼或石墨烯。
7.根据权利要求1所述的全环绕沟道场效应晶体管,其特征在于,其制备方法包括如下步骤:
第一步,通过光刻、刻蚀和沉积工艺在悬空于衬底凹槽上的芯部微米或纳米线状材料一端选择性沉积纳米金属作为栅电极的引出电极;
第二步,通过原子层沉积、磁控溅射工艺在引出电极和芯部微米或纳米线状材料外层沉积介质层、气体敏感层;
第三步,通过光刻、刻蚀和沉积工艺在外层气体敏感层两端选择性沉积金属作为源、漏电极。
8. 根据权利要求7所述的全环绕沟道场效应晶体管,其特征在于:第三步中,所述源、漏电极的距离为200 nm~8 μm。
9.根据权利要求1所述的全环绕沟道场效应晶体管其特征在于:其应用方法包括以下步骤:
第一步,将全环绕沟道场效应晶体管器件放入密闭的气体检测室中,将所述器件的三端电极与源表相连接所述悬空高导电性微米或纳米线状材料的金属电极一端施加电压用于栅调控,所述气体敏感层之上的两侧金属电极分别施加源漏电压;
第二步,对所述气体检测室进行抽真空和加热预处理,排除腔体内杂质气体及水汽,然后关闭加热电源,自然冷却至室温;
第三步,将待测气体及所需的载气空气通过流量计计算比例后,通入混气室进行混合,通入的气体根据所需气体浓度进行配置;
第四步,施加不同Vds及不同Vgs,记录气体通入前后源漏电极的电流变化以检测全环绕沟道场效应晶体管的气敏性能。
CN202110538267.6A 2021-05-18 2021-05-18 一种全环绕沟道场效应晶体管、制备方法及应用 Active CN113241376B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110538267.6A CN113241376B (zh) 2021-05-18 2021-05-18 一种全环绕沟道场效应晶体管、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110538267.6A CN113241376B (zh) 2021-05-18 2021-05-18 一种全环绕沟道场效应晶体管、制备方法及应用

Publications (2)

Publication Number Publication Date
CN113241376A CN113241376A (zh) 2021-08-10
CN113241376B true CN113241376B (zh) 2023-05-09

Family

ID=77135067

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110538267.6A Active CN113241376B (zh) 2021-05-18 2021-05-18 一种全环绕沟道场效应晶体管、制备方法及应用

Country Status (1)

Country Link
CN (1) CN113241376B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114199969B (zh) * 2021-12-03 2023-04-28 清华大学 一种基于核酸适配体的纳米电极生物传感器及其应用
CN115266879A (zh) * 2022-08-15 2022-11-01 清华大学 高灵敏度悬架二维纳米生物分子传感器及其用途
CN115901862A (zh) * 2022-11-04 2023-04-04 湖南元芯传感科技有限责任公司 一种延栅型场效应气体传感器及制备方法
CN116254521A (zh) * 2023-01-09 2023-06-13 福州大学 一种基于多孔aao制备垂直环绕沟道fet生物传感器的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7741197B1 (en) * 2005-12-29 2010-06-22 Nanosys, Inc. Systems and methods for harvesting and reducing contamination in nanowires
US7786024B2 (en) * 2006-11-29 2010-08-31 Nanosys, Inc. Selective processing of semiconductor nanowires by polarized visible radiation
US8022393B2 (en) * 2008-07-29 2011-09-20 Nokia Corporation Lithographic process using a nanowire mask, and nanoscale devices fabricated using the process
US20120036919A1 (en) * 2009-04-15 2012-02-16 Kamins Theodore I Nanowire sensor having a nanowire and electrically conductive film
US8368123B2 (en) * 2009-12-23 2013-02-05 Nokia Corporation Apparatus for sensing an event
CN108447915B (zh) * 2018-03-02 2020-11-24 华中科技大学 一种薄膜场效应晶体管型气体传感器及其制备方法

Also Published As

Publication number Publication date
CN113241376A (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
CN113241376B (zh) 一种全环绕沟道场效应晶体管、制备方法及应用
Pan et al. A fast-response/recovery ZnO hierarchical nanostructure based gas sensor with ultra-high room-temperature output response
Kim et al. Toward adequate operation of amorphous oxide thin-film transistors for low-concentration gas detection
Niu et al. Enhanced performance of flexible ZnO nanowire based room-temperature oxygen sensors by piezotronic effect
Jeong et al. Highly sensitive and selective room-temperature NO2 gas-sensing characteristics of SnOX-based p-type thin-film transistor
Zhuo et al. Humidity sensing properties of a single Sb doped SnO2 nanowire field effect transistor
Lin et al. IGZO nanoparticle-modified silicon nanowires as extended-gate field-effect transistor pH sensors
Okamura et al. Appropriate choice of channel ratio in thin-film transistors for the exact determination of field-effect mobility
Kokawa et al. Liquid-phase sensors using open-gate AlGaN∕ GaN high electron mobility transistor structure
CN109580725A (zh) 基于天线结构的二维过渡金属硫化物气体传感器及制备
Maity et al. Sensitive field-effect transistor sensors with atomically thin black phosphorus nanosheets
Cho et al. Ultra-high sensitivity pH-sensors using silicon nanowire channel dual-gate field-effect transistors fabricated by electrospun polyvinylpyrrolidone nanofibers pattern template transfer
KR20070121761A (ko) 게이트형 가스 센서
Zhou et al. High performance gas sensors with dual response based on organic ambipolar transistors
CN101540287A (zh) 一种背栅ZnO多纳米线沟道场效应晶体管的制作方法
Chung et al. Low-voltage and short-channel pentacene field-effect transistors with top-contact geometry using parylene-C shadow masks
Ahn et al. Pt-decorated graphene gate AlGaN/GaN MIS-HEMT for ultrahigh sensitive hydrogen gas detection
Cai et al. High-sensitivity pH sensor based on electrolyte-gated In 2 O 3 TFT
Porwal et al. Fabrication and ph sensing characteristics measurement of back gate zno thin film planar fet
Du et al. Low-voltage, flexible IGZO transistors gated by PSSNa electrolyte
Seetha et al. Nano-porous indium oxide transistor sensor for the detection of ethanol vapours at room temperature
Liu et al. Flexible In 2 O 3 nanowire transistors on paper substrates
Kumar Manoharan et al. A compact sensory platform based pH sensor using graphene field effect transistor
Awais et al. Effect of pH on transport characteristics of silicon carbide nanowire field-effect transistor (SiCNW-FET)
Yan et al. Electrochemical synthesis of ZnO nanorods/porous silicon composites and their gas-sensing properties at room temperature

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant