CN113238426B - 一种基于量子点非线性的光限幅器件及其非线性薄膜制备方法 - Google Patents

一种基于量子点非线性的光限幅器件及其非线性薄膜制备方法 Download PDF

Info

Publication number
CN113238426B
CN113238426B CN202110537572.3A CN202110537572A CN113238426B CN 113238426 B CN113238426 B CN 113238426B CN 202110537572 A CN202110537572 A CN 202110537572A CN 113238426 B CN113238426 B CN 113238426B
Authority
CN
China
Prior art keywords
nonlinear
quantum dot
thin film
evaporation
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110537572.3A
Other languages
English (en)
Other versions
CN113238426A (zh
Inventor
张家雨
陈伟敏
项文斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202110537572.3A priority Critical patent/CN113238426B/zh
Publication of CN113238426A publication Critical patent/CN113238426A/zh
Application granted granted Critical
Publication of CN113238426B publication Critical patent/CN113238426B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • C23C14/0629Sulfides, selenides or tellurides of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3556Semiconductor materials, e.g. quantum wells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种基于量子点非线性的光限幅器件,该光限幅器件由周期性的高低折射率薄膜交替组成。其中,低折射率膜为利用双源蒸发和热退火技术制备的非线性薄膜;本发明还公开了一种基于量子点非线性的光限幅器件的非线性薄膜制备方法,该方法利用两个蒸发源同时蒸镀非线性材料和常规折射率材料,通过调节两个蒸发源的蒸发速率比,控制两种材料在目标基底上沉积的含量,然后通过退火处理,使非线性材料高温成核为量子点,从而获得量子点嵌入式薄膜。

Description

一种基于量子点非线性的光限幅器件及其非线性薄膜制备 方法
技术领域
本发明涉及光限幅器件技术领域,特别是涉及一种基于量子点非线性的光限幅器件及其非线性薄膜制备方法。
背景技术
光限幅器件是用于光交换的核心器件,在芯片内的信息互连、数据远距离传输、网络之间的光信号交换等领域发挥十分重要的作用。作为光网络中的重要元件,光限幅器件及其集成技术也已成为集成光芯片领域重要的发展方向。具有高速率、高可靠性、高对比度、高集成度的光限幅器件及其集成器件已展现出了巨大的发展潜力和市场应用前景。
半导体量子点是一种半径小于其激子玻尔半径的纳米晶,具有准分立的能级结构,其实质是一种准零维的半导体纳米颗粒。其量子限域效应使得量子点的电子-空穴波函数重叠程度增加,从而导致激子振子强度的增加,进而增强荧光量子产率和三阶非线性极化率。目前量子点已在LED,太阳能电池,生物标记,激光器与传感器中得到广泛应用。量子点的制备方法可以分为物理制备方法和化学制备方法,其中化学制备方法中比较有代表性的是化学气相沉积和胶体法,而胶体量子点合成法是目前最热门的一类,因为这种方法不但操作简单,而且量子点的尺寸和粒径分布都能得到很好地控制。但是该方法适合用于实验室科学研究,对于器件方面,由于溶液中量子点的不稳定性限制了其实际应用,无法进行工业化大规模生产。物理制备方法主要为分子束外延生长MBE,分子束外延的生长速率较慢,大约0.01~1nm/s。可实现单原子(分子)层外延,具有极好的膜厚可控性。但是生长速率比较慢,既是MBE的一个优点,同时也是它的不足,不适于厚膜生长,且设备昂贵精密,成本高,不适于大量成产。
发明内容
有鉴于此,本发明的目的在于提供一种基于量子点非线性的光限幅器件及其非线性薄膜制备方法,用以解决胶体量子点合成法不适合工业大规模生产,且分子束外延技术所有需要的设备昂贵,成本高的技术问题,本发明整个实验流程参数可控,精度较高,有利于推进工业化生产。
为了实现上述目的,本发明提供如下技术方案:
一种基于量子点非线性的光限幅器件,包括:基底,在所述基底上镀制有若干个周期构成的交替层叠薄膜结构,所述每个周期均包括依次交替的低折射率薄膜和高折射率薄膜,并且靠近所述基底一侧的为低折射率薄膜,其中,所述低折射率膜为通过同时对非线性材料和常规折射率材料进行双源蒸发处理,然后再经过退火处理之后得到的量子点嵌入的非线性薄膜;所述常规折射率材料为在可见光区域中的折射率1.3~1.5的低折射率材料;
所述高折射率薄膜为通过选择TiO2、SnO2、In2O3及其复合物进行单源蒸发处理到的线性薄膜;所述交替层叠薄膜结构的周期数为2~8。
进一步的,所述基底为石英、玻璃或者硅基片。
进一步的,所述常规折射率材料为SiO2或者MgF2
进一步的,所述非线性材料为GeSe、CdSe、CdS、CdTe、PbSe、PbS、ZnS、ZnTe以及上述材料中任意两种或者多种的复合材料。
进一步的,所述高折射率薄膜为采用电子束蒸发法制备获得。
一种基于量子点非线性的光限幅器件的非线性薄膜制备方法,包括如下步骤:
步骤S1、将清洗好的基底放置于真空镀膜机腔内,采用双源蒸发处理的方式,将非线性材料放置在阻蒸坩埚中,同时将常规折射率材料放置在电子束蒸发源坩埚中;
步骤S2、将镀膜机腔体抽真空至1×10-3Pa;
步骤S3、通过调节电子束蒸发电压至7800V~8200V,使得常规折射率材料沉积速率达到1.3A/s~1.7A/s,通过调节阻蒸电流至9A~11A,使得非线性材料沉积速率达到0.4A/s~0.5A/s;
步骤S4、蒸镀完毕后,利用管式炉加保护气体的方式对薄膜基底进行退火处理,使得非线性材料高温成核为量子点,即可获得量子点嵌入的非线性薄膜。
进一步的,在所述步骤S3中,通过调节电子束蒸发电压至8000V,使得常规折射率材料沉积速率达到1.5A/s,通过调节阻蒸电流至10A,使得非线性材料沉积达到0.5A/s。
进一步的,在所述步骤S4中,退火温度为300~700K,退火时间为30~120min,所述保护气体为氮气。
本发明的有益效果是:
1、本发明方法所制备的量子点嵌入式薄膜可根据实际应用需求制备多层膜结构,并进行工业化生产。由于非线性光学材料的折射率会随场强变化,包含有量子点材料的多层膜光学响应也随场强的变化而变化。并且由于布拉格谐振,入射激光的电场振幅在两种交替层中变得不均匀,并且在SiO2:QDs层中的电场强度远超过空间平均场强。这将大大地增强激发场和量子点之间的非线性作用。
2、本发明提供的光限幅器件,在弱光条件下的线性折射率到强光条件下的非线性折射率的巨大改变,实现明显增强的非线性响应,引起禁带边的移动,此时一大部分光将被反射无法透过多层膜,从而实现光限幅器件。
附图说明
图1为实施例1中提供的基于量子点非线性的光限幅器件结构示意图。
图2为实施例2中提供的基于量子点嵌入的非线性薄膜的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
参见图1,本实施例提供一种基于量子点非线性的光限幅器件,包括:基底,在基底上镀制有若干个周期构成的交替层叠薄膜结构,每个周期均包括依次交替的低折射率薄膜和高折射率薄膜,并且靠近基底一侧的为低折射率薄膜,其中,低折射率膜为通过同时对非线性材料和常规折射率材料进行双源蒸发处理,然后再经过退火处理之后得到的量子点嵌入的非线性薄膜;常规折射率材料为在可见光区域中的折射率1.3~1.5的低折射率材料;
高折射率薄膜为通过选择TiO2、SnO2、In2O3及其复合物进行单源蒸发处理到的线性薄膜;交替层叠薄膜结构的周期数为2~8。
具体的说,在本实施例中,基底可以为石英、玻璃或者硅基片。
具体的说,在本实施例中,常规折射率材料可以为SiO2或者MgF2
具体的说,在本实施例中,非线性材料为GeSe、CdSe、CdS、CdTe、PbSe、PbS、ZnS、ZnTe以及上述材料中任意两种或者多种的复合材料。
具体的说,在本实施例中,高折射率薄膜为采用电子束蒸发法对TiO2、SnO2、In2O3及其复合物进行单源蒸发处理到线性薄膜。
实施例2
参见图2,本实施例在实施例1的基础上,提供实施例1中量子点嵌入的非线性薄膜的制备方案,包括如下步骤:
步骤S1、将清洗好的基底放置于真空镀膜机腔内,采用双源蒸发处理的方式,将非线性材料放置在阻蒸坩埚中,同时将常规折射率材料放置在电子束蒸发源坩埚中;
步骤S2、将镀膜机腔体抽真空至1×10-3Pa;
步骤S3、通过调节电子束蒸发电压至7800V~8200V,使得常规折射率材料沉积速率达到1.3A/s~1.7A/s,通过调节阻蒸电流至9A~11A,使得非线性材料沉积速率达到0.4A/s~0.5A/s;
步骤S4、蒸镀完毕后,利用管式炉加保护气体的方式对薄膜基底进行退火处理,使得非线性材料高温成核为量子点,即可获得量子点嵌入的非线性薄膜。
具体的说,在本实施例中,在步骤S4中,退火温度为300~700K,退火时间为30~120min,保护气体为氮气。
具体的说,在本实施例中,通过调节电子束蒸发电压至8000V,使得常规折射率材料沉积速率达到1.5A/s,通过调节阻蒸电流至10A,使得非线性材料沉积达到0.5A/s
具体的说,在本实施例中,薄膜以约2A/s的速度在基底上沉积。
本发明未详述之处,均为本领域技术人员的公知技术。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (6)

1.一种基于量子点非线性的光限幅器件,其特征在于,包括:基底,在所述基底上镀制有若干个周期构成的交替层叠薄膜结构,每个周期均包括依次交替的低折射率薄膜和高折射率薄膜,并且靠近所述基底一侧的为低折射率薄膜,其中,所述低折射率薄膜为通过同时对非线性材料和常规折射率材料进行双源蒸发处理,然后再经过退火处理之后得到的量子点嵌入的非线性薄膜;所述常规折射率材料为在可见光区域中的折射率1.3~1.5的低折射率材料;
所述高折射率薄膜为通过选择TiO2、SnO2、In2O3及其复合物进行单源蒸发处理得到的线性薄膜;所述交替层叠薄膜结构的周期数为2~8;
所述常规折射率材料为SiO2或者MgF2
所述非线性材料为GeSe、CdSe、CdS、CdTe、PbSe、PbS、ZnS、ZnTe以及上述材料中任意两种或者多种的复合材料。
2.根据权利要求1所述的一种基于量子点非线性的光限幅器件,其特征在于,所述基底为石英、玻璃或者硅基片。
3.根据权利要求1所述的一种基于量子点非线性的光限幅器件,其特征在于,所述高折射率薄膜为采用电子束蒸发法制备获得。
4.根据权利要求1-3中任一权利要求所述的一种基于量子点非线性的光限幅器件的非线性薄膜制备方法,其特征在于,包括如下步骤:
步骤S1、将清洗好的基底放置于真空镀膜机腔内,采用双源蒸发处理的方式,将非线性材料放置在阻蒸坩埚中,同时将常规折射率材料放置在电子束蒸发源坩埚中;
步骤S2、将镀膜机腔体抽真空至1×10-3Pa;
步骤S3、通过调节电子束蒸发电压至7800V~8200V,使得常规折射率材料沉积速率达到1.3A/s~1.7A/s,通过调节阻蒸电流至9A~11A,使得非线性材料沉积速率达到0.4A/s~0.5A/s;
步骤S4、蒸镀完毕后,利用管式炉加保护气体的方式对薄膜基底进行退火处理,使得非线性材料高温成核为量子点,即可获得量子点嵌入的非线性薄膜。
5.根据权利要求4所述的一种基于量子点非线性的光限幅器件的非线性薄膜制备方法,其特征在于,在所述步骤S3中,通过调节电子束蒸发电压至8000V,使得常规折射率材料沉积速率达到1.5A/s,通过调节阻蒸电流至10A,使得非线性材料沉积速率达到0.5A/s。
6.根据权利要求5所述的一种基于量子点非线性的光限幅器件的非线性薄膜制备方法,其特征在于,在所述步骤S4中,退火温度为300~700K,退火时间为30~120min,所述保护气体为氮气。
CN202110537572.3A 2021-05-18 2021-05-18 一种基于量子点非线性的光限幅器件及其非线性薄膜制备方法 Active CN113238426B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110537572.3A CN113238426B (zh) 2021-05-18 2021-05-18 一种基于量子点非线性的光限幅器件及其非线性薄膜制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110537572.3A CN113238426B (zh) 2021-05-18 2021-05-18 一种基于量子点非线性的光限幅器件及其非线性薄膜制备方法

Publications (2)

Publication Number Publication Date
CN113238426A CN113238426A (zh) 2021-08-10
CN113238426B true CN113238426B (zh) 2022-12-09

Family

ID=77134996

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110537572.3A Active CN113238426B (zh) 2021-05-18 2021-05-18 一种基于量子点非线性的光限幅器件及其非线性薄膜制备方法

Country Status (1)

Country Link
CN (1) CN113238426B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619369A (en) * 1992-07-16 1997-04-08 Matsushita Electric Industrial Co., Ltd. Diffracting device having distributed bragg reflector and wavelength changing device having optical waveguide with periodically inverted-polarization layers
GB0123740D0 (en) * 2001-10-03 2001-11-21 Qinetiq Ltd Non-Linear Optical Devices
CN101452838A (zh) * 2007-12-05 2009-06-10 中国科学院微电子研究所 采用电子束蒸发方式制备硅纳米晶体的方法
CN103572218B (zh) * 2013-10-16 2016-08-17 江苏师范大学 一种光致稳定非线性硫系薄膜的制备方法
CN109343159B (zh) * 2018-12-26 2020-06-30 南京航空航天大学 一种基于一维光子晶体的非线性激光限幅结构

Also Published As

Publication number Publication date
CN113238426A (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
Shi et al. A review: preparation, performance, and applications of silicon oxynitride film
Bányai et al. Semiconductor quantum dots
Ballesteros et al. Pulsed laser deposition of Cu: Al 2 O 3 nanocrystal thin films with high third-order optical susceptibility
US5113473A (en) Nonlinear, optical thin-films and manufacturing method thereof
Liu et al. Optoelectronic properties of AZO/ZnO bilayer
Soci et al. Roadmap on perovskite nanophotonics
Lukong et al. Fabrication of vanadium dioxide thin films and application of its thermochromic and photochromic nature in self-cleaning: A review
CN113238426B (zh) 一种基于量子点非线性的光限幅器件及其非线性薄膜制备方法
Yu et al. Facile boosting light-scattering of ZnO nanorods in broadband spectrum region
Cui et al. Strategies to break the trade-off between infrared transparency and conductivity
Zhang et al. Progress in the synthesis and application of transparent conducting film of AZO (ZnO: Al)
Han et al. Optical nonlinearity of ZnO microcrystallite enhanced by interfacial state
Awodugba et al. Optical properties and band offsets of CuS/ZnS supperlattice
Zhao et al. Fast photovoltaic characteristic of silver nano-cluster doped ZnO thin films induced by 1.064 μm pulsed laser
Majchrowski et al. Microcrystalline Bi 2 ZnB 2 O 7-polymer composites with silver nanoparticles as materials for laser operated devices
Wen et al. A review of the preparation, properties and applications of VO2 thin films with the reversible phase transition
Ivanov et al. X-Ray Diffraction of Thin Polycrystalline Lithium-Fluoride Films with Silver Nanoparticles on Amorphous Substrates
Chen et al. Investigation of the properties of W-doped ZnO thin films with modulation power deposition by RF magnetron sputtering
JP2022551920A (ja) スペクトル変換のための光学コーティング
Kang et al. Matrix and thermal effects on photoluminescence from PbS quantum dots
Tüzemen et al. Experimental and theoretical insights on the structural and optical properties of GeOx thin films deposited via RF magnetron sputtering under varying oxygen percentage
KR102480374B1 (ko) 압광전 단일 소자 및 이의 제조방법
Alhattab et al. Investigation of structure and optical properties for copper oxide thin films on plastic substrate by helicon plasma DC magnetron sputtering technique
KR101489733B1 (ko) 은-알루미늄 복합 나노입자 및 이의 제조방법
Abed et al. Third Order Nonlinear Optical Properties of MgO Doped Co Thin Films by Dip Coating Technique

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant