CN113236507A - Yaw static error diagnosis method and system for wind turbine generator - Google Patents

Yaw static error diagnosis method and system for wind turbine generator Download PDF

Info

Publication number
CN113236507A
CN113236507A CN202110593768.4A CN202110593768A CN113236507A CN 113236507 A CN113236507 A CN 113236507A CN 202110593768 A CN202110593768 A CN 202110593768A CN 113236507 A CN113236507 A CN 113236507A
Authority
CN
China
Prior art keywords
yaw
static error
wind
turbine generator
yaw static
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110593768.4A
Other languages
Chinese (zh)
Other versions
CN113236507B (en
Inventor
杨建�
王力
宋冬然
董密
孙铭仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202110593768.4A priority Critical patent/CN113236507B/en
Publication of CN113236507A publication Critical patent/CN113236507A/en
Application granted granted Critical
Publication of CN113236507B publication Critical patent/CN113236507B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/046Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with learning or adaptive control, e.g. self-tuning, fuzzy logic or neural network
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/329Azimuth or yaw angle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

The embodiment of the invention discloses a method and a system for diagnosing yaw static errors of a wind turbine generator, wherein the method comprises the following steps: preprocessing wind power characteristic data and wind power plant environment data collected under the measured wind speed; according to a preset regression model, calculating the preprocessed wind power characteristic data and wind power plant environment data to obtain power parameters corresponding to the yaw static error of the wind turbine generator so as to determine a yaw static error interval under the measured wind speed; and processing a plurality of measured and calculated wind speed yaw static error intervals in the yaw control stage to serve as the yaw static error of the current wind turbine generator. The method realizes the rapid diagnosis of the yaw static error of the wind turbine generator through a machine learning algorithm; the yaw static error is diagnosed according to the data of the whole yaw control stage, and the diagnosis result is more reliable by considering different wind conditions; and the interval where the yaw static error is located is obtained, and the universality and reference value of the control of the wind turbine generator are improved.

Description

Yaw static error diagnosis method and system for wind turbine generator
Technical Field
The invention relates to the technical field of wind power plant power prediction, in particular to a wind turbine generator yaw static error diagnosis method based on a combined prediction theory.
Background
Wind energy is a renewable clean energy, and under the current global energy crisis and environmental crisis, wind power generation is generally valued and popularized.
Due to the limitation of wind resources in China, the annual average wind speed is low, the wind turbine generator operates in a yaw control stage most of time, and the yaw control technology and the sensor technology are not substantially developed in engineering application, so that the yaw error of the wind turbine generator is not eliminated, and the power generation performance of the wind turbine generator is seriously influenced.
The existing large number of control strategies and algorithms are characterized by dynamic errors when measuring and calculating the yaw errors, and actually, the influence of the yaw static errors is 2-3 times that of the dynamic errors, the yaw static errors are seriously influenced,
thus, there is a need for a solution that can compensate for the effects of yaw dynamic errors by correcting the yaw static errors.
Disclosure of Invention
In view of this, the present invention provides a method and a system for diagnosing a yaw static error of a wind turbine generator, so as to correct the yaw static error to compensate a yaw dynamic error.
A wind turbine generator yaw static error diagnosis method comprises the following steps:
preprocessing wind power characteristic data and wind power plant environment data collected under the measured wind speed;
according to a preset regression model, calculating the preprocessed wind power characteristic data and wind power plant environment data to obtain power parameters corresponding to the yaw static error of the wind turbine generator so as to determine a yaw static error interval under the measured wind speed;
and processing a plurality of measured and calculated wind speed yaw static error intervals in the yaw control stage to serve as the yaw static error of the current wind turbine generator.
Preferably, the preprocessing of the wind power characteristic data and the wind power plant environment data collected under the wind speed measurement and calculation includes:
determining the relation between the air density and the current temperature and the current altitude according to a preset first algorithm;
and correcting the output power value of the wind turbine generator according to a second algorithm.
Preferably, the diagnostic method further comprises:
and converting the output power value of the wind turbine generator into a wind energy utilization coefficient.
Preferably, the preprocessing of the wind power characteristic data and the wind power plant environment data collected under the wind speed measurement and calculation includes:
filtering concentrated wind speed and power abnormal data;
clearing abnormal values of equipment operation data;
and deleting the extreme value of the yaw angle.
Preferably, the diagnostic method further comprises:
and carrying out sample-based abnormity judgment on the concentrated wind speed and power, the equipment operation data and the yaw angle by adopting a SCiForest algorithm.
Preferably, the diagnostic method further comprises:
constructing a sparse Gaussian regression model, comprising:
dividing a sample data set into a training set and a test set according to a preset proportion;
and training the induction input to approximate to actual distribution by a conjugate gradient method to obtain a sparse Gaussian regression model.
Preferably, the processing of the plurality of estimated wind speed and yaw static error intervals in the yaw control phase includes:
calculating the mean value and the variance of the power coefficient corresponding to the yaw angle by using a sparse Gaussian regression model under a plurality of measured wind speeds;
taking the average value as the output of a regression model to obtain a first yaw static error;
c with 95% confidencepThe value is used as a second yaw static error obtained by the output of the regression model;
determining a yaw static error interval under a certain measurement wind speed according to the first yaw static error and the second yaw static error;
the method comprises the following steps of processing a plurality of wind speed and yaw static error measuring and calculating intervals in a yaw control stage, and specifically comprises the following steps:
and taking a union set of the yaw static error intervals obtained under the wind speeds measured and calculated as the interval of the yaw static error of the wind turbine generator.
A wind turbine generator yaw static error diagnostic system comprises:
the preprocessing module is used for preprocessing wind power characteristic data and wind power field environment data collected under the measured wind speed;
the model calculation module is used for calculating the preprocessed wind power characteristic data and the wind power plant environment data according to a preset regression model to obtain power parameters corresponding to the yaw static error of the wind turbine generator so as to determine a yaw static error interval under the measured and calculated wind speed;
and the yaw static error interval processing module is used for processing a plurality of yaw static error intervals for measuring and calculating wind speed in a yaw control stage as the yaw static error of the current wind turbine generator.
Preferably, the preprocessing module is specifically configured to:
determining the relation between the air density and the current temperature and the current altitude according to a preset first algorithm;
correcting the output power value of the wind turbine generator according to a second algorithm;
and the number of the first and second groups,
filtering concentrated wind speed and power abnormal data;
clearing abnormal values of equipment operation data;
and deleting the extreme value of the yaw angle.
Preferably, the yaw static error interval processing module is specifically configured to:
calculating the mean value and the variance of the power coefficient corresponding to the yaw angle by using a sparse Gaussian regression model under a plurality of measured wind speeds;
taking the average value as the output of a regression model to obtain a first yaw static error;
c with 95% confidencepValue obtained as an output of the regression modelTwo yaw static errors;
determining a yaw static error interval under a certain measurement wind speed according to the first yaw static error and the second yaw static error;
and taking a union set of the yaw static error intervals obtained under the wind speeds measured and calculated as the interval of the yaw static error of the wind turbine generator.
According to the technical scheme, the method and the system for diagnosing the yaw static error of the wind turbine generator set, provided by the embodiment of the invention, establish the sparse Gaussian regression model for the preprocessed data at different wind speeds, and obtain the average value and the variance of the power coefficient corresponding to the yaw angle. And respectively taking the power coefficients corresponding to the mean value and the 95% confidence coefficient as the output of the model, determining the yaw static error interval under the wind speed, and taking the union set of the diagnosis results of different wind speeds in the yaw control stage as the yaw static error of the wind turbine generator. According to the method, an accurate model can be established by using less data through a machine learning algorithm so as to diagnose the yaw static error, and the fast diagnosis of the yaw static error of the wind turbine generator is realized; the yaw static error is diagnosed according to the data of the whole yaw control stage, and the diagnosis result is more reliable by considering different wind conditions; and the interval where the yaw static error is located is obtained, and the universality and reference value of the control of the wind turbine generator are improved.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the description of the embodiments or the prior art will be briefly described below, it is obvious that the drawings in the following description are only some embodiments of the present invention, and for those skilled in the art, other drawings can be obtained according to the drawings without creative efforts.
FIG. 1 is a flow chart of a method for diagnosing yaw static errors of a wind turbine generator according to an embodiment of the present invention;
FIG. 2 is a flow chart of a preprocessing method in a wind turbine generator yaw static error diagnosis method disclosed by the embodiment of the invention;
FIG. 3 is a preprocessing flow chart of a method for diagnosing yaw static errors of a wind turbine generator, disclosed by an embodiment of the invention;
FIG. 4 is a flowchart of a model calculation method in a method for diagnosing yaw static errors of a wind turbine generator system according to an embodiment of the present invention;
FIG. 5 is a flowchart of a method for diagnosing a yaw static error of a wind turbine generator according to an embodiment of the present invention;
fig. 6 is a schematic structural diagram of a wind turbine generator yaw static error diagnosis system disclosed in an embodiment of the present invention.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
The embodiment of the invention discloses a method and a system for diagnosing yaw static errors of a wind turbine generator, which aim to respond to the short-term wind speed change condition of a complex and variable wind power plant and improve the prediction accuracy.
FIG. 1 shows a wind turbine yaw static error diagnosis method, which includes:
s11, preprocessing the collected wind power characteristic data and wind power plant environment data under the measured wind speed;
referring to FIG. 2, a diagram of the correction loop flow in pre-processing is shown:
in the yaw control phase of the wind turbine, the stall performance of the blades depends only on the wind speed, which can be adjusted as long as an aerodynamically determined wind speed is reached. However, since the regulation conditions are determined by the power under standard air, the actual output power of the wind turbine will be affected. Therefore, in diagnosing the yaw static error, it is necessary to correct the measurement data in consideration of the influence of the natural environment such as the actual temperature, the altitude, and the air density. And correcting the output power of the wind turbine generator according to the ambient temperature and the altitude data.
S21, determining the relation between the air density and the current temperature and the current altitude according to a preset first algorithm;
the relationship between air density and temperature and altitude can be obtained (3) from the krebs equation of equation (1) and the relationship between air pressure and altitude of equation (2).
BV=nRT (1)
Wherein B is pressure; v is the volume of gas; n is the amount of material of the gas; t is the thermodynamic temperature of the system; r is a proportionality constant having a value of 8.31441J/(mol. K).
B=e5.25885×In(288.15-0.0065h)-18.2573 (2)
Where h is the altitude at the hub.
Figure BDA0003090230830000061
Where ρ is the air density at the hub; m is the molar mass of air.
And S22, correcting the output power value of the wind turbine generator according to a second algorithm.
The expression for power correction is shown in equation (4):
Figure BDA0003090230830000062
wherein P is the actual measured power; pcIs the correction power; rhosIs the standard air density, and the value is 1.205Kg/m3。;psIs a standard atmospheric pressure; t is taIs the actual ambient temperature; t is tsIs the standard ambient temperature (20 ℃).
Preferably, the diagnostic method further comprises:
and S23, converting the output power value of the wind turbine generator into a wind energy utilization coefficient.
Because the output power of the wind turbine generator greatly changes under the same wind speed, in order to reduce modeling errors, according to the international standard IEC61400-12-1,conversion of Power into wind energy utilization factor G according to equation (5)p
Figure BDA0003090230830000071
Where A is the swept surface area of the rotor.
Fig. 3 shows the abnormal data screening and detecting process in the preprocessing, and because the operation data of the wind turbine often contains abnormal data due to the influence of factors such as measurement, transmission, control, wind abandoning and electricity limiting in the actual operation process of the wind turbine, the operation data cannot accurately reflect the actual operation state of the wind turbine. Therefore, it is necessary to preprocess the operation data, accurately identify the abnormal data, and remove the abnormal data.
Firstly, by an intuitive method, some abnormal data can be intuitively identified and screened by observing a time sequence diagram and a scatter distribution diagram of wind turbine generator operation data, as shown in figure 3,
s31, filtering the concentrated wind speed and power abnormal data;
processing data with continuous and unchangeable wind speed and power in a data set, wherein the abnormal data are caused by factors such as wind abandonment and electricity limitation
S32, clearing abnormal values of the equipment operation data;
clearing abnormal values caused by communication equipment, measurement equipment, unplanned downtime and the like, and such data is usually stacked at the bottom of a power curve;
and S33, deleting the extreme value of the yaw angle.
And controlling the yaw angle to +/-50 degrees, and clearing the extreme value of the yaw angle.
Secondly, a SCiForest algorithm is used for carrying out sample-based abnormal judgment on the concentrated wind speed and power, the equipment operation data and the yaw angle, but the specific algorithm is adopted for judging the abnormal data, and the method is not limited. The SCiForest is an improvement of an isolated forest, and the defect that the isolated forest can only identify global anomalies is overcome. Because the wind power data is label-free data, whether a certain data is abnormal or not can not be directly obtained. The SCiForest conforms to the characteristic, does not directly judge whether the data is abnormal, but provides an abnormal probability for each data. In addition, the method does not need to calculate any density and distance and has low calculation complexity. Wherein the abnormality score of each data is represented by the formula (6):
Figure BDA0003090230830000081
wherein the average path length of the tree is
Figure BDA0003090230830000082
The sum h (i) ═ ln (i) + 0.5772156649.
After the abnormality score is calculated for each sample, a threshold value needs to be set for determination. If the abnormal score is smaller than the threshold value, the data point is regarded as normal data; the anomaly score is greater than a threshold, and the data point is considered anomalous data.
S12, calculating the preprocessed wind power characteristic data and the wind power plant environment data according to a preset regression model to obtain power parameters corresponding to the yaw static error of the wind turbine generator so as to determine a yaw static error interval under the measured wind speed;
referring to fig. 4, the present invention adopts machine learning to construct a sparse gaussian regression model, including:
the method not only inherits the advantages of a Bayes method and a kernel method, but also is a nonparametric model, and can extract complex implicit relations on a small data set, and the data in a yaw control selection stage are trained, the data set is subjected to binning processing according to a certain wind speed step length, a regression model is established in each bin, and the yaw angle and the power coefficient are determined.
S41, dividing the sample data set into training set and testing set according to preset proportion;
dividing the data in each box into a training set and a test set according to the proportion of 7:3, and applying the test set to a training model to obtain a result shown as a formula (7)
Figure BDA0003090230830000083
Wherein Z is the induction input, the induction input is M data points selected from the N data points of the training set (N > M),
and S42, training the induction input to be close to actual distribution through a conjugate gradient method to obtain a sparse Gaussian regression model.
Optimizing the position of the induction input by a conjugate gradient method to enable the position to be close to actual distribution; k (-) is a kernel function, in the present invention a Squared Explicit (SE) covariance function is chosen; i is an identity matrix; kMN=K(Z,X);KMM=K(Z,Z);KNN=K(X,X);KNM=K(X,Z)。
And S13, processing the multiple measured wind speed and yaw static error intervals in the yaw control stage to be used as the yaw static error of the current wind turbine generator.
Referring to fig. 5, a flow of processing a plurality of reckoned wind speed yaw static error intervals for a yaw control phase is shown, comprising:
after an SGPR model is established in each subdata set, according to the obtained theta-CpCurve, theoretical CpThe maximum point corresponds to θ being 0 °. However, theta is not zero when the yaw static error exists, and the value of theta at the moment is taken as the yaw static error value at the wind speed.
S51, calculating the average value and the variance of the power coefficient corresponding to the yaw angle by using a sparse Gaussian regression model under a plurality of measured wind speeds;
s52, taking the average value as the output of the regression model to obtain a first yaw static error;
according to the obtained result of the regression model, the yaw static error obtained by taking the average value as the output of the regression model is
Figure BDA0003090230830000091
S53, C with 95% confidencepValues are obtained as the output of the regression modelSecond yaw static error of (1);
c with 95% confidencepThe value obtained as the output of the regression model is the yaw static error
Figure BDA0003090230830000092
S54, determining a yaw static error interval under a certain measured wind speed according to the first yaw static error and the second yaw static error;
interval in which static error of yaw angle is located
Figure BDA0003090230830000093
Therefore, a plurality of wind speed and yaw static error intervals are measured and calculated in the yaw control stage, and the method is specifically realized as follows:
and taking a union set of the yaw static error intervals obtained under the wind speeds measured and calculated as the interval of the yaw static error of the wind turbine generator.
And taking the union of the intervals obtained by different boxes as the interval where the yaw static error of the wind turbine generator is located.
Figure BDA0003090230830000101
Wherein, thetazspAnd the yaw static error of the wind turbine generator is represented, and n represents the data bin number.
Referring to fig. 6, a wind turbine yaw static error diagnostic system is shown, comprising:
the preprocessing module 61 is used for preprocessing wind power characteristic data and wind power plant environment data collected under the measured wind speed;
the model calculation module 62 is used for calculating the preprocessed wind power characteristic data and the wind power plant environment data according to a preset regression model to obtain power parameters corresponding to the yaw static error of the wind turbine generator, so as to determine a yaw static error interval under the measured and calculated wind speed;
preferably, the preprocessing module 61 is specifically configured to:
determining the relation between the air density and the current temperature and the current altitude according to a preset first algorithm;
correcting the output power value of the wind turbine generator according to a second algorithm;
and the number of the first and second groups,
filtering concentrated wind speed and power abnormal data;
clearing abnormal values of equipment operation data;
and deleting the extreme value of the yaw angle.
And the yaw static error interval processing module 63 is used for processing a plurality of measured wind speed yaw static error intervals in the yaw control stage as the yaw static error of the current wind turbine generator.
Preferably, the yaw static error interval processing module 63 is specifically configured to:
calculating the mean value and the variance of the power coefficient corresponding to the yaw angle by using a sparse Gaussian regression model under a plurality of measured wind speeds;
taking the average value as the output of a regression model to obtain a first yaw static error;
c with 95% confidencepThe value is used as a second yaw static error obtained by the output of the regression model;
determining a yaw static error interval under a certain measurement wind speed according to the first yaw static error and the second yaw static error;
and taking a union set of the yaw static error intervals obtained under the wind speeds measured and calculated as the interval of the yaw static error of the wind turbine generator.
It is to be noted that, in the present specification, relational terms such as first and second, and the like are used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. Also, the terms "comprises," "comprising," or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Without further limitation, an element defined by the phrase "comprising an … …" does not exclude the presence of other identical elements in a process, method, article, or apparatus that comprises the element.
In summary, the following steps:
according to the method and the system for diagnosing the yaw static error of the wind turbine generator, a sparse Gaussian regression model is established for preprocessed data at different wind speeds, and the average value and the variance of power coefficients corresponding to a yaw angle are obtained. And respectively taking the power coefficients corresponding to the mean value and the 95% confidence coefficient as the output of the model, determining the yaw static error interval under the wind speed, and taking the union set of the diagnosis results of different wind speeds in the yaw control stage as the yaw static error of the wind turbine generator. According to the method, the accurate model can be established by using less data through the machine learning algorithm so as to diagnose the yaw static error, and the fast diagnosis of the yaw static error of the wind turbine generator is realized; the yaw static error is diagnosed according to the data of the whole yaw control stage, and the diagnosis result is more reliable by considering different wind conditions; and the interval where the yaw static error is located is obtained, and the universality and reference value of the control of the wind turbine generator are improved.
The embodiments in the present description are described in a progressive manner, each embodiment focuses on differences from other embodiments, and the same and similar parts among the embodiments are referred to each other. For the system disclosed by the embodiment, the description is relatively simple because the system corresponds to the method disclosed by the embodiment, and the relevant points can be referred to the method part for description.
Those of skill in the art would understand that information, messages, and signals may be represented using any of a variety of different technologies and techniques. For example, the messages and information mentioned in the above description can be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or any combination thereof.
Those of skill would further appreciate that the various illustrative elements and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both, and that the various illustrative components and steps have been described above generally in terms of their functionality in order to clearly illustrate this interchangeability of hardware and software. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the implementation. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.
The steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in Random Access Memory (RAM), memory, Read Only Memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the embodiments. Thus, the present embodiments are not intended to be limited to the embodiments shown herein but are to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (10)

1. A wind turbine generator yaw static error diagnosis method is characterized by comprising the following steps:
preprocessing wind power characteristic data and wind power plant environment data collected under the measured wind speed;
according to a preset regression model, calculating the preprocessed wind power characteristic data and wind power plant environment data to obtain power parameters corresponding to the yaw static error of the wind turbine generator so as to determine a yaw static error interval under the measured wind speed;
and processing a plurality of measured and calculated wind speed yaw static error intervals in the yaw control stage to serve as the yaw static error of the current wind turbine generator.
2. The method for diagnosing the yaw static error of the wind turbine generator set according to claim 1, wherein the preprocessing of the wind power characteristic data and the wind farm environment data collected under the measured wind speed comprises:
determining the relation between the air density and the current temperature and the current altitude according to a preset first algorithm;
and correcting the output power value of the wind turbine generator according to a second algorithm.
3. The wind turbine generator yaw static error diagnostic method of claim 2, further comprising:
and converting the output power value of the wind turbine generator into a wind energy utilization coefficient.
4. The method for diagnosing the yaw static error of the wind turbine generator set according to claim 1, wherein the preprocessing is performed on the wind power characteristic data and the wind farm environment data collected under the measured wind speed, and further comprising:
filtering concentrated wind speed and power abnormal data;
clearing abnormal values of equipment operation data;
and deleting the extreme value of the yaw angle.
5. The wind turbine generator yaw static error diagnostic method according to any one of claims 4, further comprising:
and carrying out sample-based abnormity judgment on the concentrated wind speed and power, the equipment operation data and the yaw angle by adopting a SCiForest algorithm.
6. The wind turbine generator yaw static error diagnostic method of claim 1, further comprising:
constructing a sparse Gaussian regression model, comprising:
dividing a sample data set into a training set and a test set according to a preset proportion;
and training the induction input to approximate to actual distribution by a conjugate gradient method to obtain a sparse Gaussian regression model.
7. The wind turbine generator yaw static error diagnosis method according to any one of claims 1 or 6, wherein the processing of the plurality of estimated wind speed yaw static error intervals in the yaw control stage comprises:
calculating the mean value and the variance of the power coefficient corresponding to the yaw angle by using a sparse Gaussian regression model under a plurality of measured wind speeds;
taking the average value as the output of a regression model to obtain a first yaw static error;
c with 95% confidencepThe value is used as a second yaw static error obtained by the output of the regression model;
determining a yaw static error interval under a certain measurement wind speed according to the first yaw static error and the second yaw static error;
the method comprises the following steps of processing a plurality of wind speed and yaw static error measuring and calculating intervals in a yaw control stage, and specifically comprises the following steps:
and taking a union set of the yaw static error intervals obtained under the wind speeds measured and calculated as the interval of the yaw static error of the wind turbine generator.
8. A wind turbine generator yaw static error diagnostic system comprises:
the preprocessing module is used for preprocessing wind power characteristic data and wind power field environment data collected under the measured wind speed;
the model calculation module is used for calculating the preprocessed wind power characteristic data and the wind power plant environment data according to a preset regression model to obtain power parameters corresponding to the yaw static error of the wind turbine generator so as to determine a yaw static error interval under the measured and calculated wind speed;
and the yaw static error interval processing module is used for processing a plurality of yaw static error intervals for measuring and calculating wind speed in a yaw control stage as the yaw static error of the current wind turbine generator.
9. The wind turbine generator yaw static error diagnostic system of claim 8, wherein the preprocessing module is specifically configured to:
determining the relation between the air density and the current temperature and the current altitude according to a preset first algorithm;
correcting the output power value of the wind turbine generator according to a second algorithm;
and the number of the first and second groups,
filtering concentrated wind speed and power abnormal data;
clearing abnormal values of equipment operation data;
and deleting the extreme value of the yaw angle.
10. The wind turbine generator yaw static error diagnostic system of claim 8, wherein the yaw static error interval processing module is specifically configured to:
calculating the mean value and the variance of the power coefficient corresponding to the yaw angle by using a sparse Gaussian regression model under a plurality of measured wind speeds;
taking the average value as the output of a regression model to obtain a first yaw static error;
c with 95% confidencepThe value is used as a second yaw static error obtained by the output of the regression model;
determining a yaw static error interval under a certain measurement wind speed according to the first yaw static error and the second yaw static error;
and taking a union set of the yaw static error intervals obtained under the wind speeds measured and calculated as the interval of the yaw static error of the wind turbine generator.
CN202110593768.4A 2021-05-28 2021-05-28 Yaw static error diagnosis method and system for wind turbine generator Active CN113236507B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110593768.4A CN113236507B (en) 2021-05-28 2021-05-28 Yaw static error diagnosis method and system for wind turbine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110593768.4A CN113236507B (en) 2021-05-28 2021-05-28 Yaw static error diagnosis method and system for wind turbine generator

Publications (2)

Publication Number Publication Date
CN113236507A true CN113236507A (en) 2021-08-10
CN113236507B CN113236507B (en) 2022-08-19

Family

ID=77135553

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110593768.4A Active CN113236507B (en) 2021-05-28 2021-05-28 Yaw static error diagnosis method and system for wind turbine generator

Country Status (1)

Country Link
CN (1) CN113236507B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113931808A (en) * 2021-10-25 2022-01-14 中国华能集团清洁能源技术研究院有限公司 Method and device for diagnosing yaw error of wind turbine generator

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104481804A (en) * 2014-12-05 2015-04-01 北京金风科创风电设备有限公司 Wind power generator group wind correction control method, device and system
CN106355512A (en) * 2016-08-26 2017-01-25 华北电力大学 Power curve fitting method of wind turbine generator based on optimizing maximum value of probability density
US20170198680A1 (en) * 2014-10-15 2017-07-13 Guodian United Power Technology Company Limited A wind turbine yaw control method and system
WO2018014825A1 (en) * 2016-07-21 2018-01-25 浙江运达风电股份有限公司 Method and device for automatically calibrating wind alignment error of wind power generation unit
CN108488038A (en) * 2018-03-27 2018-09-04 中南大学 A kind of Yaw control method of wind power generating set
CN108547736A (en) * 2018-03-27 2018-09-18 中南大学 The Yaw control method of wind speed and direction prediction technique and wind power generating set
CN109488528A (en) * 2018-11-23 2019-03-19 华润电力技术研究院有限公司 A kind of method of adjustment and device of fan yaw system
CN109667727A (en) * 2018-11-18 2019-04-23 浙江大学 A kind of identification of Wind turbines yaw error inherent variability and compensation method based on power curve analysis
CN110094310A (en) * 2019-05-13 2019-08-06 北京天泽智云科技有限公司 A method of identification wind driven generator yaw is not positive to wind
CN110761947A (en) * 2019-11-15 2020-02-07 华北电力大学 Yaw calibration method and system for wind turbine generator
US20200088171A1 (en) * 2018-09-17 2020-03-19 American Superconductor Corporation Yaw auto-calibration for a wind turbine generator
WO2020097944A1 (en) * 2018-11-18 2020-05-22 浙江大学 Real power curve-based method for discriminating and compensating yaw error inherent deviation of wind turbine generator set

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170198680A1 (en) * 2014-10-15 2017-07-13 Guodian United Power Technology Company Limited A wind turbine yaw control method and system
CN104481804A (en) * 2014-12-05 2015-04-01 北京金风科创风电设备有限公司 Wind power generator group wind correction control method, device and system
WO2018014825A1 (en) * 2016-07-21 2018-01-25 浙江运达风电股份有限公司 Method and device for automatically calibrating wind alignment error of wind power generation unit
CN106355512A (en) * 2016-08-26 2017-01-25 华北电力大学 Power curve fitting method of wind turbine generator based on optimizing maximum value of probability density
CN108488038A (en) * 2018-03-27 2018-09-04 中南大学 A kind of Yaw control method of wind power generating set
CN108547736A (en) * 2018-03-27 2018-09-18 中南大学 The Yaw control method of wind speed and direction prediction technique and wind power generating set
US20200088171A1 (en) * 2018-09-17 2020-03-19 American Superconductor Corporation Yaw auto-calibration for a wind turbine generator
WO2020061052A1 (en) * 2018-09-17 2020-03-26 American Superconductor Corporation Yaw auto-calibration for a wind turbine generator
CN109667727A (en) * 2018-11-18 2019-04-23 浙江大学 A kind of identification of Wind turbines yaw error inherent variability and compensation method based on power curve analysis
WO2020097944A1 (en) * 2018-11-18 2020-05-22 浙江大学 Real power curve-based method for discriminating and compensating yaw error inherent deviation of wind turbine generator set
CN109488528A (en) * 2018-11-23 2019-03-19 华润电力技术研究院有限公司 A kind of method of adjustment and device of fan yaw system
CN110094310A (en) * 2019-05-13 2019-08-06 北京天泽智云科技有限公司 A method of identification wind driven generator yaw is not positive to wind
CN110761947A (en) * 2019-11-15 2020-02-07 华北电力大学 Yaw calibration method and system for wind turbine generator
US20210148331A1 (en) * 2019-11-15 2021-05-20 North China Electric Power University Yaw calibration method and system for wind turbine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张伟等: "风电机组偏航校正分析方法研究", 《华电技术》 *
杨伟新等: "风电机组偏航静态偏差对发电性能的影响及优化方法", 《可再生能源》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113931808A (en) * 2021-10-25 2022-01-14 中国华能集团清洁能源技术研究院有限公司 Method and device for diagnosing yaw error of wind turbine generator

Also Published As

Publication number Publication date
CN113236507B (en) 2022-08-19

Similar Documents

Publication Publication Date Title
US11401913B2 (en) Yaw calibration method and system for wind turbine
EP3225837B1 (en) Method and arrangement for continuous calibration of a wind direction measurement
CN110362045B (en) Marine doubly-fed wind turbine generator fault discrimination method considering marine meteorological factors
CN110905732B (en) Method and system for identifying unbalance of wind wheel of wind turbine generator and storage medium
US20060074595A1 (en) Method and apparatus for improved fault detection in power generation equipment
CN113236507B (en) Yaw static error diagnosis method and system for wind turbine generator
CN113612237A (en) Method for positioning resonance-induced subsynchronous oscillation source in offshore wind farm
Song et al. Data and decision level fusion-based crack detection for compressor blade using acoustic and vibration signal
Mahmoodi et al. Outlier detection in ocean wave measurements by using unsupervised data mining methods
Yang et al. Incorporating environmental impacts into zero-point shifting diagnosis of wind turbines yaw angle
Bilendo et al. A normal behavior model based on power curve and stacked regressions for condition monitoring of wind turbines
Mehlan et al. Rotor imbalance detection and diagnosis in floating wind turbines by means of drivetrain condition monitoring
CN116771610A (en) Method for adjusting fault evaluation value of variable pitch system of wind turbine
Iungo et al. Machine-learning identification of the variability of mean velocity and turbulence intensity for wakes generated by onshore wind turbines: Cluster analysis of wind LiDAR measurements
US11209339B2 (en) Method and system for detecting performance of roll-to-roll device for processing flexible material and component thereof
CN113343562B (en) Fan power prediction method and system based on hybrid modeling strategy
CN115977874A (en) Wind turbine generator yaw self-adaptive calibration method and system based on laser wind finding radar
CN115859148A (en) Fan blade vibration alarm method and device
CN115617010A (en) Gas turbine sensor fault diagnosis method and system based on visual enhancement
Bao et al. Iterative modeling of wind turbine power curve based on least‐square B‐spline approximation
D'Amico et al. Influence of atmospheric conditions on measured infrasound from wind turbines
Hernández et al. Wind resource assessment in the surroundings of San Luis Potosi, Mexico
CN109751195B (en) Method and device for acquiring power curve of wind driven generator
Peco Chacon et al. Support vector machine and K-fold cross-validation to detect false alarms in wind turbines
CN117688497B (en) Data processing method for marine wind power wake interference based on backward trajectory model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant