CN113230460A - 一种引导口腔软硬组织一体化修复多孔支架及其制备方法 - Google Patents

一种引导口腔软硬组织一体化修复多孔支架及其制备方法 Download PDF

Info

Publication number
CN113230460A
CN113230460A CN202110497875.7A CN202110497875A CN113230460A CN 113230460 A CN113230460 A CN 113230460A CN 202110497875 A CN202110497875 A CN 202110497875A CN 113230460 A CN113230460 A CN 113230460A
Authority
CN
China
Prior art keywords
gelatin
hydroxyapatite
polycaprolactone
solution
heparin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110497875.7A
Other languages
English (en)
Inventor
邹琴
李玉宝
刘杰
林明玥
王晨鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202110497875.7A priority Critical patent/CN113230460A/zh
Publication of CN113230460A publication Critical patent/CN113230460A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/222Gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/112Phosphorus-containing compounds, e.g. phosphates, phosphonates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • A61L2300/414Growth factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/34Materials or treatment for tissue regeneration for soft tissue reconstruction

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明提供了一种引导口腔软硬组织一体化修复多孔支架的制备及运用。通过静电纺丝联合3D打印制备,形成一体化支架。该一体化支架组成和孔径呈梯度变化,上层为负载b‑FGF的肝素接枝聚己内酯/明胶微孔纤维膜,起屏障作用并用于引导软组织再生;下层为聚己内酯/明胶/羟基磷灰石大孔支架,用于引导硬组织再生。上层纤维膜与下层3D支架界面结合牢固,3D支架具有贯通多孔结构,抗压强度13.86MPa与人体的松质骨相近。上层纤维膜和下层支架均具有良好的细胞相容性,下层支架能有效促进BMSCs成骨分化。本发明制备了一种能有效引导体内软硬组织一体化修复多孔支架,可应用于牙周组织及牙槽骨缺损的同步再生。

Description

一种引导口腔软硬组织一体化修复多孔支架及其制备方法
技术领域
本发明涉及生物医用材料领域,具体涉及一种引导口腔软硬组织一体化修复多孔支架及其制备方法。
背景技术
牙周炎是最常见的口腔疾病,严重者可导致牙槽骨缺损、牙周附着丧失,牙齿脱落等牙周骨内缺损症状。引导组织再生术(guided tissue regeneration,GTR)是鉴于各类组织细胞迁移速度不同的特点,采用外科手段将具有屏障作用的生物膜置于软组织与骨缺损区之间,形成一个隔离空间,阻止干扰骨修复且迁移速度较快的上皮细胞和结缔组织细胞进入骨缺损区,避免这些细胞对具有潜在骨生成能力并且迁移速度较慢的前体成骨细胞形成竞争抑制,实现骨缺损区的修复性骨再生。利用静电纺丝技术制备的纤维膜具有类似细胞外基质(Extracellular matrix,ECM)的结构,使其成为GTR膜研制领域的研究热点之一,可以通过改进制作工艺,优化调控薄膜孔隙结构,模拟天然细胞外基质,増强膜表面与细胞的交互作用。
目前的屏障膜仍存在膜移位、膜暴露、空间维持能力不足等缺点,在成骨过程中由于膜向内塌陷,导致成骨体积缩小,骨再生受到影响。而植骨术则进一步在GTR基础上利用屏障膜分离牙周组织并采用生物相容性良好的骨或骨替代物填充骨缺损区。屏障膜为骨组织的再生提供较为稳定的环境,为骨替代物的植入提供初步的物理固定,骨替代物对上方的屏障膜也起到了支撑作用,从而避免屏障膜的塌陷和移位情况的发生,两者之间具有协同作用,可诱导血管再生并稳定凝血块,使牙周前体细胞重新附着于受损部位,从而修复牙周组织。将Bio-Gide胶原膜联合Bio-Oss骨粉使用,为目前临床上较常用的再生方式。Bio-Gide覆盖在骨粉上为骨粉的植入提供物理固定,但对于较大的牙槽骨缺损,植入的骨粉容易移位,而任何微小的移动都会对骨再生的效果产生一定的影响。基于此,本发明构建了一种集引导组织再生膜和骨填充双重作用一体化的复合支架。
发明内容
本发明的目的在于:本发明提供一种一体化多孔复合支架及其制备方法,解决现有技术中较大的牙槽骨缺损,植入的骨粉容易移位,而任何微小的移动都会对骨再生的效果产生一定的影响的技术问题。
本发明采用的技术方案如下:
一种一体化多孔复合支架,包括上、下两层,所述上层为负载b-FGF的肝素接枝聚己内酯/明胶微孔纤维膜,厚度为0.1-0.2mm,其中明胶含量为40-60wt%,肝素含量90-115ug/mg,b-FGF负载率3-6wt%;所述下层为3D支架,所述3D支架为贯通多孔结构,直径为5-6mm,高度为4-5mm,其中明胶含量为15-25wt%,纳米羟基磷灰石含量10-30wt%。
工作原理:
上层微孔纤维膜的微孔结构可防止牙龈成纤维细胞向根面迁移从而起到机械屏障作用,并用于引导软组织再生。下层3D支架的大孔结构可引导硬组织长入。上层微孔纤维膜与下层3D支架界面结合牢固,可防止上层微孔纤维膜移位。上层微孔纤维膜通过接枝肝素增加微孔纤维膜表面的亲水性,通过负载b-FGF生长因子加快软组织再生。成纤维细胞在上层微孔纤维膜上铺展良好,胞浆充盈,细胞之间伪足有接触,表明活跃的细胞间活动。下层3D支架中的明胶可促进来源于软组织的细胞黏附、生长,可调控下层支架的降解速率;下层3D支架中添加的羟基磷灰石能有效促进BMSCs细胞的成骨分化。
上述的一体化多孔复合支架的制备方法,包括以下步骤:
S1.将明胶和聚己内酯按照明胶含量为40-60wt%混合,在25-35℃,不断搅拌作用下将明胶/聚己内酯混合物溶于有机溶剂中,其中明胶/聚己内酯与有机溶剂的质量体积比为8-16g:100mL;
S2.将步骤S1所得混合液中滴加1-3vt%的乙酸溶液并充分搅拌,得到纺丝溶液;
S3.将S2步骤所得纺丝溶液通过静电纺丝法制备上层微孔纤维膜;
S4.将S3步骤所得上层微孔纤维膜干燥后置于交联溶液中交联0-30min,清洗干燥后得到交联后的微孔纤维膜;
S5.将肝素溶解在含有活化剂的缓冲溶液中得到肝素溶液,浓度为0.02-0.12mg/mL;
S6.将步骤S4所得交联后的微孔纤维膜浸入步骤S5所得肝素溶液中3-5h,得到肝素接枝的微孔纤维膜,微孔纤维膜与肝素溶液的质量体积比为8-16g:100mL;
S7.将羟基磷灰石分散于二氯甲烷溶剂中进行超声分散,得到含羟基磷灰石的有机溶剂,其中羟基磷灰石与有机溶剂的质量体积比为0.5-3.5g:50mL;
S8.将步骤S7所得含有羟基磷灰石的有机溶剂高速搅拌,先将明胶加入到羟基磷灰石悬浊液中,得到明胶/羟基磷灰石混合液,其中明胶的质量占含明胶/羟基磷灰石总质量的40-60%;
S9.将步骤S8所得明胶/羟基磷灰石混合液高速搅拌,将聚己内酯加入到明胶/羟基磷灰石混合液中,待聚己内酯完全溶解后,得到聚己内酯/明胶/羟基磷灰石混合溶液,其中聚己内酯的质量占含聚己内酯/明胶/羟基磷灰石总质量的50-70%;
S10.待上述步骤S9所得聚己内酯/明胶/羟基磷灰石混合溶液中溶剂部分挥发,具有粘度后,得到3D打印墨水;
S11.将步骤S6所得肝素接枝微孔纤维膜清洗干燥后,置于生物3D打印机平台上,使用步骤S10所得3D打印墨水通过生物3D打印机在肝素接枝微孔纤维膜上打印3D支架,构建微孔纤维膜与3D支架复合的一体化支架。
S12.将碱性成纤维细胞生长因子(b-FGF)溶解在磷酸盐缓冲溶液中(PBS)得到浓度为5-10μg/mL的b-FGF溶液;
S13.将步骤S11所得一体化支架干燥、灭菌后,将一体化支架的上层纤维膜浸入步骤S12所得b-FGF溶液中4-6h,得到负载b-FGF的一体化支架;一体化支架与b-FGF溶液的质量体积比为8-16g:100mL;
本发明的一体化多孔复合支架为上,下两层结构。上、下两层界面结合紧密,防止上层膜移位。上层结构为负载b-FGF的肝素接枝聚己内酯/明胶微孔纤维膜层,微孔纤维膜层表面接枝肝素改善其生物相容性与组织相容性,负载b-FGF生长因子能有效引导软组织再生,微孔纤维膜层的微孔结构,起屏障作用,能够有效阻止纤维结缔组织浸入骨缺损区;下层结构为聚己内酯/明胶/羟基磷灰石3D支架,聚己内酯、明胶与羟基磷灰石三者比例不同,其力学性能、降解行为可调控,多孔3D支架对上层微孔纤维膜起力学支撑作用,防止上层微孔纤维膜坍塌,影响骨再生效果,含有的羟基磷灰石促进骨组织再生。
进一步的,所述步骤S1中明胶/聚己内酯与有机溶剂的质量体积比为11-13g:100mL。
进一步的,所述步骤S5中肝素溶液,浓度为0.08-0.12mg/mL。
进一步的,所述步骤S6中纤维膜与肝素溶液的质量体积比为11-13g:100mL。
进一步的,所述步骤S7中羟基磷灰石与有机溶剂的质量体积比为1.5-2.5g:50mL。
进一步的,所述步骤S12中b-FGF溶液,浓度为5-8μg/mL。
进一步的,所述步骤S13中一体化支架与b-FGF溶液的质量体积比为11-13g:100mL。
进一步地,步骤S1中明胶来源于猪皮,步骤S1中溶剂为三氟乙醇。
进一步地,步骤S3中静电纺丝的电压为7-9kV、接收距离为13-17cm、推注速度为0.3-0.6mL/h;其中,优选的工艺参数为电压8kV、接收距离15cm、推注速度0.45mL/h。
进一步地,步骤S4中交联温度为0-5℃,交联剂为浓度25mM/10mM的1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐/N-羟基代琥珀酰亚胺(EDC/NHS)乙醇交联剂。
进一步地,步骤S5中活化剂为浓度25mM/10mM的EDC/NHS溶液。
进一步地,步骤S5中缓冲液浓度为0.1moL/L,缓冲剂为2-(N-吗啡啉)乙磺酸。
进一步地,步骤S7中超声功率为200-300W,超声时间10-30min,
进一步地,步骤S11中通过生物3D打印技术制备3D支架层,所述3D打印工艺参数设置挤出丝直径为0.26-0.40mm、打印气压0.20-0.55MPa、打印速度4-8mm/s、层厚0.21-0.32mm、丝间距0.5-1.0mm;其中,优选的工艺参数为挤出丝直径0.40mm、打印气压0.40-0.55MPa、打印速度6-8mm/s、层厚0.32mm、丝间距0.9mm,支架形状为圆柱体。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1、本发明的一体化多孔复合支架为静电纺丝微孔纤维膜与生物3D支架层复合构建的功能梯度材料。微孔纤维膜层厚度为0.1-0.2mm,纤维直径分布在300-600nm之间,纤维膜层孔直径小于5μm,具有相对致密的微孔结构,能够作为机械屏障膜阻止牙龈成纤维细胞向根面迁移,同时引导牙周软组织修复。3D支架层直径为5-6mm,高度为4-5mm,3D支架孔径大小为300-900μm,能引导牙槽骨再生,从而实现口腔软硬组织一体化修复;
2、本发明通过添加降解速度快的明胶来调节聚己内酯纤维膜和聚己内酯支架的降解行为,且通过调控明胶的添加量调控材料的降解速率;然后在纤维表面接枝肝素来改善上层微孔纤维膜的生物学性能;
3、本发明通过上层膜和下层支架均含有的聚己内酯/明胶组分实现牢固的界面结合,防止上层膜移位,影响软组织再生效果;
4、本发明以聚己内酯为高分子基体,在其中引入降解较快的明胶组分,改善纯聚己内酯纤维的降解性能,同时在纤维表面接枝肝素获得具有良好生物学性能的微孔纤维膜。另一方面在肝素接枝的微孔纤维膜下引入3D打印技术制备的3D骨支架,3D支架选用力学强度较好的聚己内酯和降解较快的明胶作为有机成分,选用具有骨传导性的纳米羟基磷灰石(n-HA)作为无机成分,制备一种具有一定力学强度、降解性和生物相容性良好的功能性一体化多孔复合支架,从而实现上层微孔纤维膜阻止结缔组织向骨缺损部位长入的同时,下层3D支架用于修复骨缺损。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为一体化多孔复合支架结构示意图;
图2为一体化多孔复合支架光镜图;
图3为肝素接枝的聚己内酯/明胶复合微孔纤维膜的扫描电镜图;
图4为肝素接枝的聚己内酯/明胶复合微孔纤维膜的纤维直径分布图;
图5为聚己内酯/明胶/羟基磷灰石支架的扫描电镜图;
图6为一体化多孔复合支架断面的扫描电镜图;
图7为小鼠成纤维细胞在肝素接枝的聚己内酯/明胶复合微孔纤维膜上培养7天的细胞形貌图;
图8为骨髓基质干细胞在聚己内酯/明胶/羟基磷灰石支架上培养7天的细胞形貌图;
图9为负载b-FGF的一体化复合支架植入兔上腭软硬组织缺损处手术过程图;
图10为负载b-FGF的一体化复合支架植入兔上腭软硬组织缺损处2周后形态学观察图。
具体实施方式:
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当指出,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
下面结合具体实施例,进一步阐述本发明。
实施例1:
本发明较佳实施例提供的一种引导牙周软硬组织再生梯度材料的制备方法,原料包括:上海阿拉丁试剂有限公司的猪皮明胶,三氟乙醇,肝素钠,广州易生有限公司的聚己内酯,具体步骤如下:
S1:分别称取聚己内酯和明胶各0.3g,共同加至5ml的三氟乙醇中,于25℃的水浴中搅拌至完全溶解,转速为300rpm;
S2.在混合溶液中滴加0.015mL乙酸溶液并充分搅拌得到无明显分相的稳定高分子共混溶液,作为纺丝液;
S3:利用静电纺丝工艺将步骤S2的纺丝液纺丝,制备上层微孔纤维膜,所用针头为平头针22G,金属平板接收得到微孔纤维膜,纺丝参数为:电压正极8kV、负极-2kV,接收距离15cm,推注速度0.45mL/h;
S4:将步骤S3所得微孔纤维膜置于真空、25℃下干燥24h,然后在含有25mM EDC/10mM NHS的乙醇溶液中交联15min,交联完成后用无水乙醇清洗数次,置于真空、25℃下干燥24h;
S5:称取适量2-(N-吗啡啉)乙磺酸(MES),将其溶于蒸馏水中配制成0.1moL/L的MES缓冲溶液(pH=5.5),然后再称取适量EDC/NHS,将其溶于MES缓冲溶液中配制成25mMEDC/10mMNHS溶液,最后称取50mg肝素钠,将其溶于50mL上述溶液中,4℃活化反应4h得到肝素溶液;
S6:将步骤S4制备的微孔纤维膜浸入S5所得肝素溶液中进行肝素的接枝反应,反应进行4h后,用蒸馏水洗涤数次除去杂质,再干燥,得到肝素接枝的微孔纤维膜;
用游标卡尺测定制备的生物膜的厚度为0.1-0.2mm,使用扫描电镜观察肝素接枝的聚己内酯/明胶微孔纤维膜的形貌,结果如图3所示,纤维光滑、无串珠形成;测量其直径分布,结果如图4所示,纤维平均直径为535.70±144.58nm,肝素接枝的纤维形貌良好。
S7:称取0.2g纳米羟基磷灰石分散于5mL二氯甲烷中,用超声细胞粉碎机超声分散20min,得到含羟基磷灰石的有机溶剂;
S8:将0.2g明胶加入到S7中的羟基磷灰石悬浊液中,高速搅拌下,再加入0.6g聚己内酯,待其完全溶解,得到明胶/羟基磷灰石混合液;
S9:将步骤S8所得明胶/羟基磷灰石混合液高速搅拌,将聚己内酯加入到明胶/羟基磷灰石混合液中,待聚己内酯完全溶解后,得到聚己内酯/明胶/羟基磷灰石混合溶液;
S10:将步骤S9所得聚己内酯/明胶/羟基磷灰石混合溶液中溶剂部分挥发,测量其粘度为40±10mPa·s,得到3D打印墨水;
S11:将步骤S6所得肝素接枝微孔纤维膜置于生物3D打印机平台上,使用步骤S10所得3D打印墨水通过生物3D打印机在肝素接枝微孔纤维膜上打印3D支架,制备肝素接枝聚己内酯/明胶-聚己内酯/明胶/羟基磷灰石一体化多孔复合支架,所用针头为锥形针头,内径0.21-0.41mm,3D打印参数设置为:支架尺寸12×12×5mm3,推出气压4bar,针头温度25℃,接收平台温度25℃,针头速度4mm/s,初始针头平台距离0.32mm,层间距0.32mm,打印丝间距0.6-1.0mm,将打印的一体化多孔复合支架置于真空干燥箱中干燥7天,然后将其裁成直径为5mm,高为5mm的圆柱体,经过灭菌后,得到肝素接枝聚己内酯/明胶-聚己内酯/明胶/羟基磷灰石一体化多孔复合支架;
S12:称取适量碱性成纤维细胞生长因子(b-FGF),将其溶于磷酸盐缓冲溶液中(PBS),配制成浓度为8μg/mL的b-FGF溶液。
S13:将步骤S11所得一体化支架的上层纤维膜浸入步骤S12所得b-FGF溶液中6h,得到本发明所述负载b-FGF的一体化支架;
使用扫描电镜观察制备的聚己内酯/明胶/羟基磷灰石支架的表面形貌,结果如图5所示,支架的纤维排列整齐有序,成网格状,丝线直径约为300μm,孔径尺寸约为500μm,内孔形状相似,大小均一,相互贯通。
使用光学显微镜观察肝素接枝聚己内酯/明胶-聚己内酯/明胶/羟基磷灰石一体化多孔复合支架的形貌,结果如图2所示,整体结构为圆柱形,上层微孔纤维膜表面平整,其与下层3D支架紧密结合为一体。
对本发明实施例1制得的一体化多孔复合支架断面进行扫描电镜观察,结果如图6所示,可见上层微孔纤维膜与下层3D支架界面结合紧密,未出现分层现象。
用小鼠成纤维细胞在肝素接枝的聚己内酯/明胶微孔纤维膜上培养,培养7天后进行扫描电镜观察,结果如图7所示,可知小鼠成纤维细胞在微孔纤维膜上生长良好。
用骨髓间充质干细胞在聚己内酯/明胶/羟基磷灰石3D支架上培养,培养7天后进行扫描电镜观察,结果如图8所示,可知骨髓间充质干细胞在下层3D支架上生长良好。
在新西兰大耳白兔口腔上腭距离门齿9mm,作为软硬组织缺损建模的中心点,制造直径5mm,深度5mm的圆柱型缺损。将上述负载b-FGF的一体化复合支架植入圆柱型缺损区,动物手术过程如图9所示,术后2周形态学观察结果如图10所示,可知创面上皮覆盖基本完成,创面边缘见少量瘢痕形成。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种引导口腔软硬组织一体化修复多孔支架,其特征在于,包括上、下两层,所述上层为负载b-FGF肝素接枝的合成高分子/天然高分子微孔纤维膜;下层为合成高分子/天然高分子/羟基磷灰石复合3D支架,所述微孔纤维膜与所述3D支架界面结合牢固,所述3D支架为贯通多孔结构。
2.根据权利要求1所述的一体化多孔复合支架,其特征在于,所述上层为厚度0.1-0.2mm的负载b-FGF的肝素接枝聚己内酯/明胶微孔纤维膜,其中明胶含量为40-60wt%,肝素接枝量为90-115ug/mg;所述下层原料为聚己内酯/明胶/羟基磷灰石,所述下层厚度为4-5mm的3D支架,其中明胶含量为15-25wt%,羟基磷灰石含量为10-30wt%。
3.权利要求1所述的一体化多孔复合支架的制备方法,其特征在于,包括以下步骤:
S1.将明胶和聚己内酯按照明胶含量为40-60wt%混合,在不断搅拌作用下将聚己内酯/明胶混合物溶于有机溶剂中,其中聚己内酯/明胶与有机溶剂的质量体积比为8-16g:100mL;
S2.在S1步骤所得混合液中滴加1-3vt%的乙酸溶液并充分搅拌,得到纺丝液;
S3.将S2步骤所得纺丝液通过静电纺丝法制备上层微孔纤维膜;
S4.将S3步骤所得上层微孔纤维膜干燥后置于交联溶液中交联0-30min,清洗干燥后得到交联后的上层微孔纤维膜;
S5.将肝素溶解在含有活化剂的缓冲溶液中得到浓度为0.02-0.12mg/mL的肝素溶液;
S6.将S4步骤所得微孔纤维膜清洗干燥后,浸入步骤S5所得肝素溶液中3-5h,得到肝素接枝的微孔纤维膜;微孔纤维膜与肝素溶液的质量体积比为8-16g:100mL;
S7.将羟基磷灰石加入有机溶剂中进行超声分散,得到含羟基磷灰石的有机溶剂,其中羟基磷灰石与有机溶剂的质量体积比为0.5-3.5g:50mL;
S8.将步骤S7所得含有羟基磷灰石的有机溶剂高速搅拌,先将明胶加入到羟基磷灰石悬浊液中,得到明胶/羟基磷灰石混合液,其中明胶的质量占含明胶/羟基磷灰石总质量的40-60%;
S9.将步骤S8所得明胶/羟基磷灰石混合液高速搅拌,将聚己内酯加入到明胶/羟基磷灰石混合液中,待聚己内酯完全溶解后,得到聚己内酯/明胶/羟基磷灰石混合溶液,其中聚己内酯的质量占含聚己内酯/明胶/羟基磷灰石总质量的50-70%;
S10.待上述步骤S9所得聚己内酯/明胶/羟基磷灰石混合溶液中溶剂部分挥发,具有粘度后,得到3D打印墨水;
S11.将步骤S6所得肝素接枝微孔纤维膜清洗、干燥后,置于生物3D打印机平台上,使用步骤S10所得3D打印墨水通过生物3D打印机在肝素接枝的微孔纤维膜上打印3D支架,构建微孔纤维膜与3D支架复合的一体化支架。
S12.将碱性成纤维细胞生长因子(b-FGF)溶解在磷酸盐缓冲溶液中(PBS)得到浓度为5-10μg/mL的b-FGF溶液;
S13.将步骤S11所得一体化支架干燥、灭菌后,将一体化支架的上层纤维膜浸入步骤S12所得b-FGF溶液中4-6h,得到负载b-FGF的一体化支架;一体化支架与b-FGF溶液的质量体积比为8-16g:100mL。
4.根据权利要求3所述的一体化多孔复合支架的制备方法,其特征在于:所述明胶为猪皮明胶、I型胶原、II型胶原、III型胶原、IV型胶原、VI型胶原、X型胶原和XI型胶原中的一种。
5.根据权利要求3所述的一体化多孔复合支架的制备方法,其特征在于:所述羟基磷灰石粒径为20-200nm。
6.根据权利要求3所述的一体化多孔复合支架的制备方法,其特征在于:所述S1步骤有机溶剂为三氟乙醇,所述S7步骤有机溶剂为二氯甲烷。
7.根据权利要求3所述的一体化多孔复合支架的制备方法,其特征在于:所述静电纺丝的电压为4-10kV,接收板距离为10-20cm,推注速度为0.1-0.5mL/h。
8.根据权利要求3所述的一体化多孔复合支架的制备方法,其特征在于:所述S4步骤中的交联剂为1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和N-羟基琥珀酰亚胺,浓度10-30mM的乙醇混合溶液,交联温度为0-5℃。
9.根据权利要求3所述的一体化多孔复合支架的制备方法,其特征在于:所述步骤S5中缓冲剂为2-(N-吗啡啉)乙磺酸,缓冲液浓度为0.1-0.2moL/L,活化剂为1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和N-羟基琥珀酰亚胺。活化溶液浓度为10-30mM。
10.根据权利要求3所述的一体化多孔复合支架的制备方法,其特征在于:所述步骤S7中超声功率为200-300W,超声时间10-30min。
CN202110497875.7A 2021-05-07 2021-05-07 一种引导口腔软硬组织一体化修复多孔支架及其制备方法 Pending CN113230460A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110497875.7A CN113230460A (zh) 2021-05-07 2021-05-07 一种引导口腔软硬组织一体化修复多孔支架及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110497875.7A CN113230460A (zh) 2021-05-07 2021-05-07 一种引导口腔软硬组织一体化修复多孔支架及其制备方法

Publications (1)

Publication Number Publication Date
CN113230460A true CN113230460A (zh) 2021-08-10

Family

ID=77132373

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110497875.7A Pending CN113230460A (zh) 2021-05-07 2021-05-07 一种引导口腔软硬组织一体化修复多孔支架及其制备方法

Country Status (1)

Country Link
CN (1) CN113230460A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114099778A (zh) * 2021-09-30 2022-03-01 上海市浦东新区人民医院 骨组织工程学的复合支架
CN114129772A (zh) * 2021-09-30 2022-03-04 上海浩渤医疗科技有限公司 骨组织工程学的复合支架的制备方法
CN114288476A (zh) * 2022-01-05 2022-04-08 奥精医疗科技股份有限公司 一种人工硬脑膜及其制备方法
CN114533231A (zh) * 2022-04-27 2022-05-27 杭州锐健马斯汀医疗器材有限公司 球囊体及其制备方法和应用
CN114949350A (zh) * 2022-05-31 2022-08-30 西岭(镇江)医疗科技有限公司 一种负载碱性成纤维细胞生长因子的胶原蛋白支架
CN115105643A (zh) * 2022-07-05 2022-09-27 四川大学 一种负载不同生长因子的三相仿生支架及制备方法与应用
CN115581816A (zh) * 2022-10-09 2023-01-10 深圳先进技术研究院 生物活性多级结构引导组织再生膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016049682A1 (en) * 2014-09-29 2016-04-07 Griffith University Periodontal tissue grafts
CN110141687A (zh) * 2019-05-30 2019-08-20 四川大学 一种引导牙周硬软组织再生梯度材料及其制备方法
CN110193098A (zh) * 2019-06-21 2019-09-03 四川大学 一种多层梯度生物膜及其制备方法
CN111759544A (zh) * 2020-07-24 2020-10-13 苏州晶俊新材料科技有限公司 一种口腔骨再生修复系统及其制备方法
US20210077359A1 (en) * 2017-05-10 2021-03-18 Marquette University Medical and Dental Integrated Multiphasic Biomaterials for Single or Multi-Tissue Reconstruction/Regeneration
CN112675361A (zh) * 2020-12-28 2021-04-20 浙江大学 一种区域功能特异性临床牙周缺损修复模块的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016049682A1 (en) * 2014-09-29 2016-04-07 Griffith University Periodontal tissue grafts
US20210077359A1 (en) * 2017-05-10 2021-03-18 Marquette University Medical and Dental Integrated Multiphasic Biomaterials for Single or Multi-Tissue Reconstruction/Regeneration
CN110141687A (zh) * 2019-05-30 2019-08-20 四川大学 一种引导牙周硬软组织再生梯度材料及其制备方法
CN110193098A (zh) * 2019-06-21 2019-09-03 四川大学 一种多层梯度生物膜及其制备方法
CN111759544A (zh) * 2020-07-24 2020-10-13 苏州晶俊新材料科技有限公司 一种口腔骨再生修复系统及其制备方法
CN112675361A (zh) * 2020-12-28 2021-04-20 浙江大学 一种区域功能特异性临床牙周缺损修复模块的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIE LIU等: "Heparin conjugated PCL/Gel -PCL/Gel/n-HA bilayer fibrous membrane for potential regeneration of soft and hard tissues", 《JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114099778A (zh) * 2021-09-30 2022-03-01 上海市浦东新区人民医院 骨组织工程学的复合支架
CN114129772A (zh) * 2021-09-30 2022-03-04 上海浩渤医疗科技有限公司 骨组织工程学的复合支架的制备方法
WO2023051093A1 (zh) * 2021-09-30 2023-04-06 上海市浦东新区人民医院 骨组织工程学的复合支架
CN114288476A (zh) * 2022-01-05 2022-04-08 奥精医疗科技股份有限公司 一种人工硬脑膜及其制备方法
CN114288476B (zh) * 2022-01-05 2022-08-12 奥精医疗科技股份有限公司 一种人工硬脑膜及其制备方法
CN114533231A (zh) * 2022-04-27 2022-05-27 杭州锐健马斯汀医疗器材有限公司 球囊体及其制备方法和应用
CN114533231B (zh) * 2022-04-27 2022-11-29 杭州锐健马斯汀医疗器材有限公司 球囊体及其制备方法和应用
CN114949350A (zh) * 2022-05-31 2022-08-30 西岭(镇江)医疗科技有限公司 一种负载碱性成纤维细胞生长因子的胶原蛋白支架
CN114949350B (zh) * 2022-05-31 2024-04-02 西岭(镇江)医疗科技有限公司 一种负载碱性成纤维细胞生长因子的胶原蛋白支架
CN115105643A (zh) * 2022-07-05 2022-09-27 四川大学 一种负载不同生长因子的三相仿生支架及制备方法与应用
CN115581816A (zh) * 2022-10-09 2023-01-10 深圳先进技术研究院 生物活性多级结构引导组织再生膜及其制备方法

Similar Documents

Publication Publication Date Title
CN113230460A (zh) 一种引导口腔软硬组织一体化修复多孔支架及其制备方法
Wang et al. Cartilaginous extracellular matrix derived from decellularized chondrocyte sheets for the reconstruction of osteochondral defects in rabbits
CN110141687B (zh) 一种引导牙周硬软组织再生梯度材料及其制备方法
Scotchford et al. Osteoblast responses to collagen-PVA bioartificial polymers in vitro: the effects of cross-linking method and collagen content
Xu et al. Accurately shaped tooth bud cell–derived mineralized tissue formation on silk scaffolds
US8734827B2 (en) Bioengineered intervertebral discs and methods for their preparation
Rowe et al. Dimensionally stable and bioactive membrane for guided bone regeneration: An in vitro study
Zhang et al. Preparation and biocompatibility evaluation of apatite/wollastonite-derived porous bioactive glass ceramic scaffolds
Zhang et al. Tissue engineering using 3D printed nano-bioactive glass loaded with NELL1 gene for repairing alveolar bone defects
Atila et al. Coaxial electrospinning of composite mats comprised of core/shell poly (methyl methacrylate)/silk fibroin fibers for tissue engineering applications
CN110169959A (zh) 生长因子缓释微球、组织工程软骨复合支架及制备方法
He et al. Osteogenic induction of bone marrow mesenchymal cells on electrospun polycaprolactone/chitosan nanofibrous membrane
Ercal et al. A current overview of scaffold-based bone regeneration strategies with dental stem cells
Yamada et al. Scaffolds in periodontal regenerative treatment
Liu et al. Vascularized bone tissue formation induced by fiber-reinforced scaffolds cultured with osteoblasts and endothelial cells
Schulz et al. Nonwoven-based gelatin/polycaprolactone membrane proves suitability in a preclinical assessment for treatment of soft tissue defects
Zhu et al. Three-dimensionally printed porous biomimetic composite for sustained release of recombinant human bone morphogenetic protein 9 to promote osteointegration
JP2010524458A (ja) 細胞由来細胞外マトリックス支持体の製造方法
Zhang et al. Effect of 3-dimensional Collagen Fibrous Scaffolds with Different Pore Sizes on Pulp Regeneration
WO2006110110A1 (en) Tissue construct and method thereof
Nacer et al. Castor oil polyurethane containing silica nanoparticles as filling material of bone defect in rats
CN111560709A (zh) 一种含有阿西替尼的纳米纤维电纺膜及其制备方法和应用
Wang et al. Application of nanomaterials in regulating the fate of adipose-derived stem cells
Tan et al. Research on the osteogenesis and biosafety of ECM–Loaded 3D–Printed Gel/SA/58sBG scaffolds
EP3482781B1 (en) Method for preparing fibrous scaffold for personalized tissue engineering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210810

RJ01 Rejection of invention patent application after publication