CN113224327B - 一种碳纳米管催化剂及其制备方法和应用 - Google Patents

一种碳纳米管催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN113224327B
CN113224327B CN202110433224.1A CN202110433224A CN113224327B CN 113224327 B CN113224327 B CN 113224327B CN 202110433224 A CN202110433224 A CN 202110433224A CN 113224327 B CN113224327 B CN 113224327B
Authority
CN
China
Prior art keywords
catalyst
nano tube
iron
carbon nano
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110433224.1A
Other languages
English (en)
Other versions
CN113224327A (zh
Inventor
刘兆清
王泽潘
苏航
欧阳婷
李楠
肖抗
蔡晶晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou University
Original Assignee
Guangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou University filed Critical Guangzhou University
Priority to CN202110433224.1A priority Critical patent/CN113224327B/zh
Publication of CN113224327A publication Critical patent/CN113224327A/zh
Application granted granted Critical
Publication of CN113224327B publication Critical patent/CN113224327B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明属于材料制备领域,具体公开了一种碳纳米管催化剂及其制备方法和应用,包括以下步骤:步骤(1)将有机氮源、有机碳源、铁盐和镍盐四种原材料混合,加入少量水充分混合均匀,加热搅拌蒸发,对产物进行充分研磨后,放置于管式炉中,在保护气体保护气氛下进行热处理,得到NCNTs@FeNi;步骤(2)将NCNTs@FeNi与一定量的硼酸混合并充分研磨后,在保护气体氛围下热处理,即得到本发明所述催化剂。该催化剂在碱性条件下具有优异的催化氧还原功能(ORR),也具有高效的催化析氧性能(OER),且所用原料价格低廉,工艺简单,适合批量生产。

Description

一种碳纳米管催化剂及其制备方法和应用
技术领域
本发明属于电催化技术领域,具体涉及碳纳米管催化剂及其制备方法和应用。
背景技术
随着科技的不断进步和人类社会的发展,当今世界面临着能源枯竭和环境污染两大难题,寻找绿色、无污染、可再生能源替代传统化石燃料成为当务之急。
为了解决这影响全球的科学难题,近年来,新型能源转换装置,包括燃料电池、锂离子电池、电解水、超级电容器等,利用催化剂将化学能转化成高效电能,有望解决资源和环境难题。在各种能源设备中,锌-空气电池以其较高的理论能量密度(1350Wh·kg-1)以及低成本、性能稳定、安全、零污染而被认为是一种很有发展前途的环保能源存储系统。可充电锌-空气电池的核心部分是阴极催化剂,在放电和充电过程中涉及到氧还原反应(ORR)和氧析出反应(OER),因而开发同时具有ORR和OER双功能催活性空气电极催化剂对提升锌空电池的性能有不可或缺的作用。目前,贵金属及其复合材料已经被证明是活性最高的ORR和OER电催化剂。但贵金属材料存在成本高、催化功能单一的缺点,无法大规模生产应用。因此,开发一种低成本、高催化活性的OER和ORR双功能催化剂就显得尤为迫切。
发明内容
本发明所要解决的第一个技术问题是:一种电催化活性高、和成本低廉的碳纳米管催化剂。
本发明所要解决的第二个技术问题是:一种上述碳纳米管催化剂的制备方法。
本发明所要解决的第三个技术问题是:上述碳纳米管催化剂在OER和或ORR反应中的应用。
为了解决上述第一个技术问题,本发明采用的技术方案为:所述碳纳米管催化剂中掺杂有铁镍合金与硼氮,所述碳纳米管催化剂为B-NCNTs@FeNi。
进一步地,所述铁镍合金内嵌于碳纳米管,硼氮掺杂于碳纳米管表面或内部。
进一步地,所述碳纳米管催化剂为介孔材料催化剂。
进一步地,所述碳纳米管催化剂的ID/IG值是0.90~1.03。
本发明的有益效果在于:本发明方案中碳纳米管具有高稳定性、低成本和易于制造的特点,同时在ORR和OER方面具有巨大潜力,是贵金属基催化剂的优秀替代品。在自催化制备碳纳米管过程中,选择了物美价廉的铁镍过渡金属盐,不仅可达到高产量的同时合成高质量的碳纳米管,还能够避免产物中只有碳黑和无定形碳存在。进一步,为了优化sp2杂化形式的碳基材料对ORR/OER中间体吸附/活化表现出的保护,可对其进行化学掺杂。使用B、N杂原子掺杂碳基材料可以修饰电子结构,多方面影响和促进非金属碳基材料的性能,同时Fe、Ni与B、N共掺杂相结合可以调节表面极性,从而显著提高催化剂的电催化性能。
为了解决上述第二个技术问题,本发明采用的技术方案为:一种上述碳纳米管催化剂的方法,包括以下步骤:
S1:将含有机氮源、有机碳源、铁盐和镍盐的原料溶液进行混合配位,经蒸发、烘干得复合前驱物;
S2:将该复合前驱物于保护气氛中热处理,得氮/铁镍合金碳纳米管;
S3:取氮/铁镍合金碳纳米管与硼酸混合,经研磨、热处理,得所述碳纳米管催化剂。
进一步地,所述有机氮源为三聚氰胺与二氰二胺的至少一种,所述有机碳源为葡萄糖,所述三聚氰胺和葡萄糖的质量分别比为3-5g:0.02-0.08g。
进一步地,所述的铁盐和镍盐独立选自为硝酸盐、乙酸盐、氯酸盐中的至少一种,所述铁盐优选为硝酸铁,所述镍盐优选为硝酸镍。
进一步地,所述的金属铁盐和金属镍盐的质量比为(1~5):1。
进一步地,S2中,所述保护气氛为氮气或氩气气氛,所述复合前驱物的热处理温度高于700℃,温度优选为800℃。
进一步地,S3中,所述氮/铁镍合金碳纳米管与硼酸的质量比为2-6:1-4。
合成氮/铁镍合金碳纳米管的具体原理为:金属铁盐和金属镍盐在高温下热解形成过渡金属颗粒,催化三聚氰胺、葡萄糖反应生成C3N4二维纳米片,当温度高于700℃时,C3N4二维纳米片在金属颗粒的诱导下进行卷曲并延伸生长,形成铁镍合金内嵌的N掺杂碳纳米管。
本发明的有益效果在于:本发明所提供的硼氮/铁镍合金碳纳米管,铁镍合金是在合成N掺杂碳纳米管的同时,原位内嵌其中,不需二次操作且本发明制备工艺简单、成本较低。
为了解决上述第三个技术问题,本发明采用的技术方案为:上述碳纳米管催化剂在OER和/或ORR反应中的应用,具体为:
催化ORR和OER反应的方法包括如下步骤:对于ORR反应,在氧气饱和的碱性溶液中,以碳纳米管催化剂为阳极催化剂,对氧气进行还原;对于OER反应,在碱性溶液中,以碳纳米管催化剂为阳极催化剂,将溶液中的OH-氧化为氧气析出。
本发明的有益效果在于:本发明所提供的碳纳米管催化剂可作为ORR和OER的电催化剂,在碱性溶液中对ORR和OER呈现良好的催化性能,具有较低的起始电势和优异的反应动力学行为。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为实施例1、对比例1和对比例2的扫描电镜(SEM)图。
图2(a)为实施例1、对比例1、对比例2和对比例3的XRD图、图2(b-d)为实施例1的催化剂不同倍率下的透射电镜(TEM)图、图2(e)为实施例1的EDS图。
图3为实施例1、对比例1、对比例2和对比例3的XPS全谱图。
图4和图5为实施例1和对比例3的Ni 2p和Fe 2p的高分辨XPS谱图。
图6-9分别为实施例1、对比例1、对比例2和对比例3的B1s、N 1s、O 1s和C1s的高分辨XPS谱图。
图10为实施例1、对比例1、对比例2和对比例3的BET氮气等温吸脱附曲线及孔径分布图。
图11为实施例1和对比例3的Raman图。
图12为实施例1、对比例1、对比例2和对比例3的OER相关测试图。
图13为实施例1、对比例1、对比例2和对比例3的ORR相关测试图。
具体实施方式
为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式予以说明。
实施例1
步骤1:称量4g三聚氰胺、0.05g葡萄糖、0.13g硝酸铁和0.07g硝酸镍置于烧杯中,加入少量水充分混合均匀。接着将烧杯放置在磁力搅拌器上,加热搅拌蒸发至干燥,用研钵充分研磨后倒入瓷舟,放置于管式炉中,在氮气保护气氛下,800℃煅烧2h,得到NCNTs@FeNi(2:1)。
步骤2:将40mg的NCNTs@FeNi(2:1)与10mg的硼酸混合并充分研磨后,在300℃氮气氛围下煅烧2h,得到产物B-NCNTs@FeNi(2:1),如图1(b)所示,(由于Fe盐和Ni盐的质量比例为2:1,本实施例得到的B-NCNTs@FeNi(2:1)采用B-NCNTs@M-2表示)。
对比例1
将实施例1中硝酸铁和硝酸镍的质量均换成0.1g,其余步骤与实施例1一致,得到产物B-NCNTs@FeNi(1:1),如图1(a)所示,(由于Fe盐和Ni盐的质量比例为1:1,本对比例得到的B-NCNTs@FeNi(1:1)采用B-NCNTs@M-1表示)。
对比例2
将实施例1中硝酸铁的质量换成0.15g、硝酸镍的质量换成0.05g,其余步骤与实施例1一致,得到产物B-NCNTs@FeNi(3:1),如图1(c)所示,(由于Fe盐和Ni盐的质量比例为3:1,本对比例得到的B-NCNTs@FeNi(3:1)采用B-NCNTs@M-3表示)。
对比例3
仅按实施例1的步骤1制备,得到产物NCNTs@FeNi(2:1)(本对比例得到的NCNTs@FeNi(2:1)采用NCNT@M表示)。
结构表征和性能测试:
图1为实施例1、对比例1和对比例2的SEM图,可以看出,它们均呈现管状结构,表面对碳纳米管的掺杂没有破坏其原有的构型。
图2(a)为实施例1、对比例1、对比例2和对比例3的XRD图,它们的衍射峰很好地匹配标准卡片(JCPDS No.47-1405)对应的(111)、(200)和(220)晶面,而在27°左右的衍射峰则对应碳基的标准卡片(JCPDS No.41-1487)上的(002)晶面。证明B原子掺杂后碳纳米管催化剂的物相不变,硼化能够在不改变晶型的前提下实现对催化剂的电子结构调控。
结合图2(b-e),可以看出,Ni和Fe很好地内嵌在碳纳米管中(图2(b-d)中颜色较深部分),且B和N也均匀地掺杂在碳纳米管中,表明成功合成经过修饰后的碳纳米管催化剂,其中图2(e)证明碳纳米管中存在Ni、Fe、B和N,与图2(a)互证。
在图3-9中,XPS图再次证明B原子成功掺杂进碳纳米管材料中,与EDS谱图一致。其中,图4和图5显示NCNTs@M和B-NCNTs@M-2中同时存在0价态的Fe和Ni,证明前驱体材料氮掺杂的碳纳米管和实施例1均是由双金属铁镍合金催化合成的。同时,B、N、O和C之间发生了不同类型的配位,表明各个元素并非简单的附着在一起,在多种配位下,产生更多活性中心促进催化过程。
图10中,实施例1、对比例1、对比例2和对比例3均为介孔分布,其中,B-NCNTs@M-2是硼化后比表面积最大的样品,大的比表面积可以提供更多的活性位点,从而提升ORR和OER性能。
图11表明硼化后的目标产物B-NCNTs@M-2的ID/IG值是1.03,证明B掺杂产生更多缺陷,导致不饱和碳原子生成,增加本证反应活性位点,为ORR/OER反应提供催化位点。
图12,在OER性能测试中,当电流密度为10mA cm-2时(Ej10),B-NCNTs@M-2具有最小的过电位(1.51V),优于NCNTs@M(Ej10=1.56V)和IrO2(Ej10=1.61V)。同时,B-NCNTs@M-2的Tafel斜率是62mV dec-1,远小于NCNTs@M(101mV dec-1)和IrO2(114mV dec-1)证明了B-NCNTs@M-2具有更好的OER动力学催化活性。同时,EIS结果表明,B-NCNTs@M-2的Rct小于Pt/C和NCNTs@M的Rct,证明了B,N共掺杂有利于提高电荷转移速率,B-NCNTs@M-2因此具有良好的导电性,从而展示出优异的电催化性能。由于ΔE值越小,催化剂的双功能电催化活性越高,因而B-NCNTs@M-2双功能电催化活性最高,证明B,N共掺杂的二元杂原子掺杂比N掺杂的单元杂原子掺杂具有更好的双功能电催化活性。
图13显示B-NCNTs@M-2的极限电流(JL=-5.57mA cm-2),Tafel斜率为88mV dec-1,优于其他对比例,高于Pt/C的极限电流(JL=-5.08mA cm-2),与Pt/C的Tafel斜率(86mVdec-1)相近,证明了B-NCNTs@M-2具有更高的ORR电催化活性。在ECSA测试结果中,与NCNTs@M(2.69mF cm-2)和Pt/C(1.18mF cm-2)相比,B-NCNTs@M-2具有最大的电化学活性表面积(4.13mF cm-2),证明了在B-NCNTs@M-2中有更多的催化活性位点被暴露。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等同变换,或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (5)

1.一种碳纳米管催化剂,其特征在于:所述碳纳米管催化剂中掺杂有铁镍合金与硼、氮;
所述碳纳米管催化剂的制备,包括以下步骤:
A1 将含有机氮源、有机碳源、铁盐和镍盐的原料溶液进行混合配位,经蒸发、烘干得复合前驱物;将所述复合前驱物于保护气氛中热处理,制备得到氮/铁镍合金碳纳米管;所述铁盐为硝酸铁,所述镍盐为硝酸镍;所述硝酸铁和硝酸镍的质量比为2:1;
A2 混合所述氮/铁镍合金碳纳米管与硼酸,经煅烧,得到所述碳纳米管催化剂;
所述复合前驱物的所述热处理的温度高于700℃;
所述碳纳米管催化剂的ID/IG值是1.03;
所述碳纳米管催化剂SBET=74.16m2g-1
所述铁镍合金内嵌于碳纳米管,所述硼、氮共掺杂于碳纳米管表面或内部。
2.根据权利要求1所述的碳纳米管催化剂,其特征在于,所述碳纳米管催化剂为介孔材料催化剂。
3.一种制备如权利要求1-2任一项所述碳纳米管催化剂的方法,其特征在于,包括以下步骤:
S1: 将含有机氮源、有机碳源、铁盐和镍盐的原料溶液进行混合配位,经蒸发、烘干得复合前驱物;
S2: 将所述复合前驱物于保护气氛中热处理,得到氮/铁镍合金碳纳米管;
S3: 取氮/铁镍合金碳纳米管与硼酸混合,经研磨、热处理,得所述碳纳米管催化剂。
4.根据权利要求3所述的方法,其特征在于,S3中,所述氮/铁镍合金碳纳米管与硼酸的质量比2-6:1-4。
5.如权利要求1-2任一项所述的碳纳米管催化剂在OER和或ORR反应中的应用。
CN202110433224.1A 2021-04-22 2021-04-22 一种碳纳米管催化剂及其制备方法和应用 Active CN113224327B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110433224.1A CN113224327B (zh) 2021-04-22 2021-04-22 一种碳纳米管催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110433224.1A CN113224327B (zh) 2021-04-22 2021-04-22 一种碳纳米管催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113224327A CN113224327A (zh) 2021-08-06
CN113224327B true CN113224327B (zh) 2022-10-04

Family

ID=77088301

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110433224.1A Active CN113224327B (zh) 2021-04-22 2021-04-22 一种碳纳米管催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113224327B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113991114A (zh) * 2021-10-22 2022-01-28 陕西科技大学 一种Zn掺杂Ni基/碳纳米管复合材料及其制备方法
CN114400336B (zh) * 2022-01-18 2023-04-18 天津理工大学 一种氮掺杂碳负载氯掺杂的铁镍氧化物析氧催化剂及其制备方法、应用
CN114420959A (zh) * 2022-03-11 2022-04-29 运城学院 一种生物质制备的FeNi3复合氮掺杂碳纳米管双功能电催化剂

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107829107A (zh) * 2017-09-25 2018-03-23 中国科学院山西煤炭化学研究所 一种石墨烯/碳纳米管负载单分散金属原子复合催化剂及其制备方法和应用
CN111816888A (zh) * 2020-06-24 2020-10-23 深圳航天科技创新研究院 合金纳米催化剂及其制备方法、燃料电池
CN111957339A (zh) * 2020-08-31 2020-11-20 郑州中科新兴产业技术研究院 B,N掺杂碳负载Pt3Fe合金纳米催化剂、制备方法及应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103050714A (zh) * 2011-10-17 2013-04-17 中国科学院大连化学物理研究所 一种燃料电池用掺杂纳米碳电催化剂及其应用
CN103560255B (zh) * 2013-10-23 2015-10-07 中国科学院金属研究所 一种锌空气电池用氧还原催化剂的载体材料及其制备方法
CN104370279A (zh) * 2014-10-15 2015-02-25 华中科技大学 一种碳纳米管、其制备方法及用途
CN108543545B (zh) * 2018-04-26 2019-11-19 大连理工大学 一种Fe、Ni、N三掺杂碳纳米管包覆型FeNi@NCNT催化剂、制备方法及其应用
CN109530714A (zh) * 2018-11-19 2019-03-29 广州大学 一种复合电极材料及其制备方法和应用
CN112517011B (zh) * 2020-12-10 2021-12-10 中国科学技术大学 一种碳基镍铁双金属析氧催化剂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107829107A (zh) * 2017-09-25 2018-03-23 中国科学院山西煤炭化学研究所 一种石墨烯/碳纳米管负载单分散金属原子复合催化剂及其制备方法和应用
CN111816888A (zh) * 2020-06-24 2020-10-23 深圳航天科技创新研究院 合金纳米催化剂及其制备方法、燃料电池
CN111957339A (zh) * 2020-08-31 2020-11-20 郑州中科新兴产业技术研究院 B,N掺杂碳负载Pt3Fe合金纳米催化剂、制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A facile method prepared nitrogen and boron doped carbon nano-tube based catalysts for oxygen reduction;Wei He et al;《international journal of hydrogen energy》;20170214;第42卷;第4123-4132页 *
Atomic Modulation of FeCo–Nitrogen–Carbon Bifunctional Oxygen Electrodes for Rechargeable and Flexible All-Solid-State Zinc–Air Battery;Chang-Yuan Su et al;《Adv. Energy Mater.》;20170220;第7卷(第13期);第1602420页 *

Also Published As

Publication number Publication date
CN113224327A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
Wang et al. Mo-doped Ni 2 P hollow nanostructures: highly efficient and durable bifunctional electrocatalysts for alkaline water splitting
Wang et al. Electrocatalytic nitrogen reduction to ammonia by Fe2O3 nanorod array on carbon cloth
CN113224327B (zh) 一种碳纳米管催化剂及其制备方法和应用
Chen et al. Nanocarbon/oxide composite catalysts for bifunctional oxygen reduction and evolution in reversible alkaline fuel cells: A mini review
Yang et al. Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting
Chen et al. Tungsten carbide/carbon composite synthesized by combustion-carbothermal reduction method as electrocatalyst for hydrogen evolution reaction
CN107346826B (zh) 一种单原子铁分散的氧还原电催化剂的制备方法
Duan et al. Nanosized high entropy spinel oxide (FeCoNiCrMn) 3 O 4 as a highly active and ultra-stable electrocatalyst for the oxygen evolution reaction
Li et al. Synthesis of nitrogen-rich porous carbon nanotubes coated Co nanomaterials as efficient ORR electrocatalysts via MOFs as precursor
CN109103462B (zh) 一种燃料电池用钴-氮共掺杂碳气凝胶催化剂及其制备方法
CN110611105B (zh) Orr催化剂的制备方法
Lin et al. Large-scale production of holey carbon nanosheets implanted with atomically dispersed Fe sites for boosting oxygen reduction electrocatalysis
Hou et al. The preparation of Ni/Mo-based ternary electrocatalysts by the self-propagating initiated nitridation reaction and their application for efficient hydrogen production
Zheng et al. An efficient metal-free catalyst derived from waste lotus seedpod for oxygen reduction reaction
Ma et al. Doping-induced morphology modulation for boosting the capacity and stability of nanocrystals assembled Ni1-xCoxSe2
Guo et al. Core-shell structured metal organic framework materials derived cobalt/iron–nitrogen Co-doped carbon electrocatalysts for efficient oxygen reduction
Xu et al. Co2P nanoparticles supported on cobalt-embedded N-doped carbon materials as a bifunctional electrocatalyst for rechargeable Zn-air batteries
CN111313042B (zh) 一种双功能氧化电催化剂及其制备方法
CN113174608A (zh) 一种双掺杂多孔磷化钴纳米片电催化材料的制备方法
Yao et al. High entropy alloy nanoparticles encapsulated in graphitised hollow carbon tubes for oxygen reduction electrocatalysis
CN116083949B (zh) MXene负载Ag-ZnO电催化剂及其制备方法、应用和测试方法
CN109097788B (zh) 一种双碳耦合过渡金属镍基量子点电催化剂及其制备方法
CN108963283B (zh) 高分散负载型核壳结构Pd@Ni/WC直接醇类燃料电池催化剂及其制备方法
CN111151281A (zh) 一种C3N4修饰的Co3O4自负载超薄多孔纳米片及其制备方法和应用
WO2024031917A1 (zh) 一种双金属单原子氮掺杂多孔碳电催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant