CN113221274B - 基于对数平均温差及遗传算法的湿冷机组凝汽器经济背压计算方法 - Google Patents

基于对数平均温差及遗传算法的湿冷机组凝汽器经济背压计算方法 Download PDF

Info

Publication number
CN113221274B
CN113221274B CN202110512383.0A CN202110512383A CN113221274B CN 113221274 B CN113221274 B CN 113221274B CN 202110512383 A CN202110512383 A CN 202110512383A CN 113221274 B CN113221274 B CN 113221274B
Authority
CN
China
Prior art keywords
back pressure
condenser
cooling water
circulating cooling
genetic algorithm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110512383.0A
Other languages
English (en)
Other versions
CN113221274A (zh
Inventor
程江南
范双双
姚卫强
郑翔宇
李珍兴
王建刚
华民良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Wohua Intelligent Power Technology Co ltd
Original Assignee
Harbin Wohua Intelligent Power Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Wohua Intelligent Power Technology Co ltd filed Critical Harbin Wohua Intelligent Power Technology Co ltd
Priority to CN202110512383.0A priority Critical patent/CN113221274B/zh
Publication of CN113221274A publication Critical patent/CN113221274A/zh
Application granted granted Critical
Publication of CN113221274B publication Critical patent/CN113221274B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/126Evolutionary algorithms, e.g. genetic algorithms or genetic programming
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Software Systems (AREA)
  • Mathematical Optimization (AREA)
  • Genetics & Genomics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Medical Informatics (AREA)
  • Computational Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Mathematical Analysis (AREA)
  • Biomedical Technology (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

基于对数平均温差及遗传算法的湿冷机组凝汽器经济背压计算方法,涉及火电厂冷端系统经济性优化领域。本发明是为了计算湿冷机组凝汽器的最经济背压,以核算最经济背压的节能效果。本发明所述的基于对数平均温差及遗传算法的湿冷机组凝汽器经济背压计算方法,首先,建立循环冷却水变频泵功耗与凝汽器背压之间的函数;然后,基于该函数,计算机组供电功率变化量最大时所对应的背压,并将该背压作为凝汽器最经济背压。

Description

基于对数平均温差及遗传算法的湿冷机组凝汽器经济背压计 算方法
技术领域
本发明属于火电厂冷端系统经济性优化领域。
背景技术
湿冷机组凝汽器及冷却塔工作示意图如图1所示,循环冷却水泵驱动冷却水,在凝汽器内将低压缸排汽冷凝成水,形成真空,同时,循环冷却水在冷却塔内被空气冷却降温。当前湿冷机组的循环冷却水泵一般为工频泵,循环冷却水泵流量不变,凝汽器背压仅随着环境温度和低压缸排汽流量(机组负荷)变化:机组负荷降低则背压随之降低;环境温度降低则背压随之降低。因此,在环境温度低和机组负荷低时,背压远低于设计背压,此时循环冷却水过量,背压并不一定是最经济背压。
随着风电和太阳能等新能源大规模并网,火电机组发电份额逐年降低,单个火电机组的发电负荷越来越低,在低负荷运行时间大幅度增长,湿冷机组在低负荷下的背压经济性越来越受重视,开始将循环冷却水工频泵改造为变频泵,通过调节水泵流量来调整背压,以寻求更大的经济性。然而,现在对于湿冷机组凝汽器最经济背压的研究较少,无法获得湿冷机组凝汽器的最经济背压。
发明内容
本发明是为了计算湿冷机组凝汽器的最经济背压,以核算最经济背压的节能效果,现提供基于对数平均温差及遗传算法的湿冷机组凝汽器经济背压计算方法,能够针对凝汽器换热性能退化进行经济背压在线计算。
基于对数平均温差及遗传算法的湿冷机组凝汽器经济背压计算方法,包括以下步骤:
基于对数平均温差结合循环冷却水回水温度T1确定循环冷却水供水温度T2;
根据乏汽散热量Q、循环冷却水回水温度T1和循环冷却水供水温度T2,确定循环冷却水流量q2
利用循环冷却水流量q2计算循环冷却水变频泵功耗W;
建立循环冷却水变频泵功耗W与凝汽器背压pc之间的函数NQQJL:
W=NQQJL(q,T1,pc),
其中,q为主蒸汽流量;
结合函数NQQJL,利用遗传算法寻找机组供电功率变化量ΔN最大时所对应的背压pcn,并将该背压pcn作为凝汽器最经济背压pjj
进一步的,由于湿冷机组凝汽器换热守恒,则有凝汽器冷热端换热量与乏汽散热量Q相等,因此,选定凝汽器冷热端换热面积A和换热系数α,基于对数平均温差能够确定循环冷却水供水温度T2:
其中,TS为凝汽器背压pc的饱和蒸汽温度。
进一步的,上述获得乏汽散热量Q的具体方法为:
选定主蒸汽流量q和凝汽器背压pc
查寻水的物性函数表获得凝汽器背压pc对应的汽化潜热r,
根据汽化潜热r和主蒸汽流量q计算乏汽散热量Q。
进一步的,根据下式计算乏汽散热量Q:
Q=H(q)*r,
其中,H(q)为乏汽流量,是主蒸汽流量q的函数。
进一步的,根据下式确定循环冷却水流量q2
q2=Q/(T1-T2)/Cp
其中,Cp为冷却水的平均定压比热容。
进一步的,根据下式计算循环冷却水变频泵功耗W:
W=(q2/q0)3*W0
其中,q0为循环冷却水泵设计流量,W0为循环冷却水泵设计功率。
进一步的,上述利用遗传算法寻找机组供电功率变化量ΔN最大时所对应的背压pcn的具体方法为:
设背压pcn变化范围为[pcmin,pcbj],其中pcmin为凝汽器最低背压,pcbj为凝汽器警戒背压,
在背压pcn变化范围[pcmin,pcbj]内,以0.1kPa为间隔,利用遗传算法寻找机组供电功率变化量ΔN的最大值ΔNmax所对应的背压pcn
进一步的,上述机组供电功率变化量ΔN表达式如下:
ΔN=ΔP-[NQQJL(q,T1,pcn)-W0],
其中,W0为循环冷却水泵设计功率,ΔP为汽轮机微增功。
进一步的,根据下式计算汽轮机微增功ΔP:
其中,Pe为机组额定功率。
进一步的,上述遗传算法的调用格式为:
[-ΔNmax,pjj]=ga(-MAXΔN,5,[],[],[],[],[pcmin],[pcbj],[],options)
其中,MAXΔN为ΔN的取值函数,options为遗传算法的属性设置函数。
本发明所述的基于对数平均温差及遗传算法的湿冷机组凝汽器经济背压计算方法,建立了函数NQQJL用于计算不同主蒸汽流量q和循环冷却水回水温度T1的情况下,凝汽器背压pc与循环冷却水变频泵功耗W之间的对应函数关系。利用遗传算法的全局寻优能力,寻找机组供电功率变化量ΔN最大值对应的最经济背压。本发明所述的基于对数平均温差及的湿冷机组凝汽器经济背压计算方法,能够针对凝汽器换热性能退化计算湿冷机组凝汽器的最经济背压,进而便于核算最经济背压的节能效果。
附图说明
图1为湿冷机组凝汽器及冷却塔工作示意图;
图2为本发明所述的基于对数平均温差及遗传算法的湿冷机组凝汽器经济背压计算方法的流程图。
具体实施方式
在电厂中,供电功率N是发电机功率P与循环冷却水变频泵耗功W、其他设备耗功M之差,即:
N=P-W-M。
在分析经济背压时,通常认为其他设备的功耗不受背压变化的影响,即假设机组运行在一定负荷下,循环冷却水变频泵运行在设计功率,此时机组运行背压为pc0,机组发电机端发电功率为P0,循环冷却水变频泵耗功为W0,机组供电功率为N0。以此状态为基准,通过调节循环冷却水变频泵转速来调整机组背压至pc,在这过程中循环冷却水变频泵耗功的变化量为ΔW,发电机端发电功率变化量为ΔP,如果:
ΔN=ΔP-ΔW=(P-P0)-(W-W0)≥0,
那么调整背压对整机的供电功率是有提升的,因此,称这样的过程为背压调整收益过程,而在这个过程中,当调整到某一背压pc′时,使得:
ΔNmax=|ΔP-ΔW|max
称这个背压值pc′为该工况下的经济背压,产生的经济效益为ΔNmax
基于此,本实施方式首先建立了函数NQQJL,用于计算不同主蒸汽流量q(机组负荷)、循环冷却水回水温度T1的情况下,凝汽器背压pc与循环冷却水变频泵功耗W之间的对应函数关系。并再次基础上采用遗传算法的方式,寻找机组供电功率变化量ΔN最大值以及对应的凝汽器最经济背压pjj。具体步骤如下:
具体实施方式一:结合图2具体说明本实施方式,本实施方式所述的基于对数平均温差及遗传算法的湿冷机组凝汽器经济背压计算方法,具体为:
首先建立凝汽器机理模型,用于计算不同主蒸汽流量q(机组负荷)、循环冷却水回水温度T1的情况下,凝汽器背压pc与循环冷却水变频泵功耗W之间的对应函数关系:
1)确认工况环境,选定主蒸汽流量q、凝汽器背压pc、凝汽器冷热端换热面积A、循环冷却水回水温度T1和换热系数α。
2)根据凝汽器背压pc,查询水的物性函数表获得对应的汽化潜热r。
3)根据蒸汽冷凝时释放的汽化潜热r和主蒸汽流量q计算乏汽散热量Q:
Q=H(q)*r,
其中,H(q)为乏汽流量、是主蒸汽流量q的函数,且该函数为单调递增函数,由机组运行特性决定。乏汽散热量Q中忽略了乏汽的含湿量和冷凝水的过冷度。
4)确定循环冷却水供水温度T2。
由于凝汽器换热守恒,则凝汽器冷热端换热量与乏汽散热量Q相等,因此,凝汽器冷热端换热量的计算公式为:
根据上述就能够计算出循环冷却水供水温度T2。上式中,TS为凝汽器背压P的饱和蒸汽温度,由水的物性决定。
基于此,凝汽器工作状态稳定时有:
由于凝汽器运行时,凝汽器背压与冷却水流量一直处于动态变化中,并不是一直在稳定状态,不能直接用于计算系数。随着机组运行,凝汽器的换热性能逐渐退化,凝汽器冷热端换热面积A与换热系数α的乘积αA逐渐减小,经济背压会随之改变。本实施方式能够在线实时估计αA,并同步计算经济背压,保证凝汽器换热性能退化时,经济背压能及时跟进变化。因此,使用最小二乘法在线计算得到αA,来消除凝汽器工作状态动态变化对换凝汽器换热性能计算的影响。同时,为了避免数据饱和现象,保证αA能够及时跟踪凝汽器换热性能退化,采用渐消记忆递推最小二乘法,渐消对旧数据的记忆。
5)确定循环冷却水流量q2
根据乏汽散热量Q、循环冷却水回水温度T1和循环冷却水供水温度T2,确定循环冷却水流量q2
q2=Q/(T1-T2)/Cp
其中,Cp为冷却水的平均定压比热容。
6)确定循环冷却水变频泵功耗W。
循环冷却水变频泵功耗W与循环冷却水流量q2的三次方成正比,则循环冷却水变频泵功耗W=(q2/q0)3*W0,其中,q0为循环冷却水泵设计流量,W0为循环冷却水泵设计功率。
基于上述步骤,从而建立循环冷却水变频泵功耗W与凝汽器背压pc之间的函数NQQJL:
W=NQQJL(q,T1,pc)。
在凝汽器最低背压pcmin的基础上,当背压增加到pcn时,此时循环冷却水变频泵功耗从W0降低到W2n=NQQJL(q,T1,pcn),循环冷却水变频泵功耗的增加量为ΔW=W2n-W0
在背压变化时对汽轮机微增功估算,一般认为背压下降1kPa,汽轮机发电功率升高0.8%。因此,在凝汽器最低背压pcmin的基础上,增加背压达到pcn,汽轮机微增功其中Pe为机组的额定功率。
因此,在不同主蒸汽流量q、循环冷却水回水温度T1的情况下,背压从凝汽器最低背压pcmin升高到pcn,机组供电功率变化量ΔN与背压pcn的关系如下:
则设背压pcn变化范围为[pcmin,pcbj],pcbj为凝汽器警戒背压。在背压pcn变化范围[pcmin,pcbj]内,以0.1kPa为间隔,利用遗传算法的全局寻优能力,寻找机组供电功率变化量ΔN的最大值ΔNmax所对应的背压pcn,该背压pcn即为凝汽器最经济背压pjj
所述遗传算法的计算程序在MATLAB中的调用格式为:
[-ΔNmax,pjj]=ga(-MAXΔN,5,[],[],[],[],[pcmin],[pcbj],[],options),
其中,MAXΔN为ΔN的取值函数,options为遗传算法的属性设置函数。
[-ΔNmax,pjj]中,ΔNmax为当前设备特性和机组工况下,机组供电功率变化量ΔN的最大值,pjj为对应的最经济背压。

Claims (5)

1.基于对数平均温差及遗传算法的湿冷机组凝汽器经济背压计算方法,其特征在于,包括以下步骤:
基于对数平均温差结合循环冷却水回水温度T1确定循环冷却水供水温度T2;
根据乏汽散热量Q、循环冷却水回水温度T1和循环冷却水供水温度T2,确定循环冷却水流量q2
利用循环冷却水流量q2计算循环冷却水变频泵功耗W;
建立循环冷却水变频泵功耗W与凝汽器背压pc之间的函数NQQJL:
W=NQQJL(q,T1,pc),
其中,q为主蒸汽流量;
结合函数NQQJL,利用遗传算法寻找机组供电功率变化量ΔN最大时所对应的背压pcn,并将该背压pcn作为凝汽器最经济背压pjj
由于湿冷机组凝汽器换热守恒,则有凝汽器冷热端换热量与乏汽散热量Q相等,因此,选定凝汽器冷热端换热面积A和换热系数α,基于对数平均温差能够确定循环冷却水供水温度T2:
其中,TS为凝汽器背压pc的饱和蒸汽温度;
利用遗传算法寻找机组供电功率变化量ΔN最大时所对应的背压pcn的具体方法为:
设背压pcn变化范围为[pcmin,pcbj],其中pcmin为凝汽器最低背压,pcbj为凝汽器警戒背压,
在背压pcn变化范围[pcmin,pcbj]内,以0.1kPa为间隔,利用遗传算法寻找机组供电功率变化量ΔN的最大值ΔNmax所对应的背压pcn
机组供电功率变化量ΔN表达式如下:
ΔN=ΔP-[NQQJL(q,T1,pcn)-W0],
其中,W0为循环冷却水泵设计功率,ΔP为汽轮机微增功;
根据下式计算汽轮机微增功ΔP:
其中,Pe为机组额定功率;
遗传算法的调用格式为:
[-ΔNmax,pjj]=ga(-MAXΔN,5,[],[],[],[],[pcmin],[pcbj],[],options)
其中,MAXΔN为ΔN的取值函数,options为遗传算法的属性设置函数。
2.根据权利要求1所述的基于对数平均温差及遗传算法的湿冷机组凝汽器经济背压计算方法,其特征在于,获得乏汽散热量Q的具体方法为:
选定主蒸汽流量q和凝汽器背压pc
查寻水的物性函数表获得凝汽器背压pc对应的汽化潜热r,
根据汽化潜热r和主蒸汽流量q计算乏汽散热量Q。
3.根据权利要求2所述的基于对数平均温差及遗传算法的湿冷机组凝汽器经济背压计算方法,其特征在于,根据下式计算乏汽散热量Q:
Q=H(q)*r,
其中,H(q)为乏汽流量,是主蒸汽流量q的函数。
4.根据权利要求1所述的基于对数平均温差及遗传算法的湿冷机组凝汽器经济背压计算方法,其特征在于,根据下式确定循环冷却水流量q2
q2=Q/(T1-T2)/Cp
其中,Cp为冷却水的平均定压比热容。
5.根据权利要求1所述的基于对数平均温差及遗传算法的湿冷机组凝汽器经济背压计算方法,其特征在于,根据下式计算循环冷却水变频泵功耗W:
W=(q2/q0)3*W0
其中,q0为循环冷却水泵设计流量,W0为循环冷却水泵设计功率。
CN202110512383.0A 2021-05-11 2021-05-11 基于对数平均温差及遗传算法的湿冷机组凝汽器经济背压计算方法 Active CN113221274B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110512383.0A CN113221274B (zh) 2021-05-11 2021-05-11 基于对数平均温差及遗传算法的湿冷机组凝汽器经济背压计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110512383.0A CN113221274B (zh) 2021-05-11 2021-05-11 基于对数平均温差及遗传算法的湿冷机组凝汽器经济背压计算方法

Publications (2)

Publication Number Publication Date
CN113221274A CN113221274A (zh) 2021-08-06
CN113221274B true CN113221274B (zh) 2023-09-22

Family

ID=77094753

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110512383.0A Active CN113221274B (zh) 2021-05-11 2021-05-11 基于对数平均温差及遗传算法的湿冷机组凝汽器经济背压计算方法

Country Status (1)

Country Link
CN (1) CN113221274B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115371453A (zh) * 2021-05-17 2022-11-22 福建福清核电有限公司 一种获取凝汽器循环水最优流量的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4642992A (en) * 1986-02-04 1987-02-17 Julovich George C Energy-saving method and apparatus for automatically controlling cooling pumps of steam power plants
KR101512273B1 (ko) * 2014-08-20 2015-04-14 코넥스파워 주식회사 증기터빈 복수기 최적화 시스템 및 그 방법
CN111058911A (zh) * 2019-11-27 2020-04-24 河北涿州京源热电有限责任公司 基于环境湿球温度的火力发电机组冷端背压实时控制方法
CN112032032A (zh) * 2020-07-20 2020-12-04 国网河北省电力有限公司电力科学研究院 湿冷机组开式循环水泵变频运行方式的寻优方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4642992A (en) * 1986-02-04 1987-02-17 Julovich George C Energy-saving method and apparatus for automatically controlling cooling pumps of steam power plants
KR101512273B1 (ko) * 2014-08-20 2015-04-14 코넥스파워 주식회사 증기터빈 복수기 최적화 시스템 및 그 방법
CN111058911A (zh) * 2019-11-27 2020-04-24 河北涿州京源热电有限责任公司 基于环境湿球温度的火力发电机组冷端背压实时控制方法
CN112032032A (zh) * 2020-07-20 2020-12-04 国网河北省电力有限公司电力科学研究院 湿冷机组开式循环水泵变频运行方式的寻优方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Influence of Cooling Circulating Water Flow on Back Pressure Variation of Thermal Power Plant;Nian Zhonghua 等;《ICMTMA》;第619-622页 *
电厂循环水泵变频调控的优化与应用;杜艳秋 等;《山东建筑大学学报》;第36卷(第1期);第90-96页 *

Also Published As

Publication number Publication date
CN113221274A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
CN109063255B (zh) 一种节能控制方法、电子设备、存储介质、装置及系统
CN109855238B (zh) 一种中央空调建模与能效优化方法及装置
CN103244433B (zh) 电厂变频循环水泵优化运行监测方法
CN204902662U (zh) 一种自适应的冷却塔风机控制器
CN113221274B (zh) 基于对数平均温差及遗传算法的湿冷机组凝汽器经济背压计算方法
CN108613565A (zh) 一种干湿联合冷却系统的背压计算方法
CN110966170A (zh) 一种间接空冷发电机组冷端背压的实时控制方法
Liu et al. Experimental research on the property of water source gas engine-driven heat pump system with chilled and hot water in summer
CN102818398B (zh) 智能空冷岛及其控制方法
Tian et al. Experimental investigation on cooling performance and optimal superheat of water source gas engine-driven heat pump system
CN113404559A (zh) 一种基于环境参数的发电机组闭式循环水系统的运行方法
CN109000949A (zh) 基于冷水机组热力学模型的冷水机组评估方法及节能方法
CN201944984U (zh) 一种冷冻机房节能优化控制系统
CN109779891B (zh) 汽轮发电机组背压及循环水量的优化方法
CN207936347U (zh) 一种信息机房精密空调室外机冷凝装置
CN113158123B (zh) 基于对数平均温差及遍历法的湿冷机组凝汽器经济背压计算方法
CN113239538B (zh) 基于凝汽器端差及遗传算法的湿冷机组凝汽器经济背压计算方法
CN113221272B (zh) 基于凝汽器端差及遍历法的湿冷机组凝汽器经济背压计算方法
CN202853196U (zh) 智能空冷岛
CN113513746B (zh) 一种确定火电厂闭式循环水系统优化运行方式的方法
CN111914389B (zh) 一种基于曲线拟合的冷端系统运行点确定方法
Zhang et al. Evaluations and Optimizations on Practical Performance of the Heat Pump Integrated with Heat-Source Tower in a Residential Area in Changsha, China
CN113188341A (zh) 一种凝汽器最佳真空多维度在线优化控制方法
CN111473482A (zh) 一种水冷式中央空调冷却循环控制装置及其方法
CN114320505B (zh) 一种掺氨电厂间接空冷系统及其控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 150000 Room 606, science and Technology Park building, Harbin University of technology, No. 434, postal street, Nangang District, Harbin City, Heilongjiang Province

Applicant after: Harbin wohua Intelligent Power Technology Co.,Ltd.

Address before: 150000 Room 606, science and Technology Park building, Harbin University of technology, No. 434, postal street, Nangang District, Harbin City, Heilongjiang Province

Applicant before: HARBIN WOHUA INTELLIGENT POWER GENERATION EQUIPMENT CO.,LTD.

GR01 Patent grant
GR01 Patent grant