CN113214805A - 一种钻井液用润滑剂及其制备方法和应用 - Google Patents
一种钻井液用润滑剂及其制备方法和应用 Download PDFInfo
- Publication number
- CN113214805A CN113214805A CN202010081895.1A CN202010081895A CN113214805A CN 113214805 A CN113214805 A CN 113214805A CN 202010081895 A CN202010081895 A CN 202010081895A CN 113214805 A CN113214805 A CN 113214805A
- Authority
- CN
- China
- Prior art keywords
- lubricant
- dialkyl dithiophosphate
- borate
- weight
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/02—Well-drilling compositions
- C09K8/03—Specific additives for general use in well-drilling compositions
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/42—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
- C09K8/426—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells for plugging
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2208/00—Aspects relating to compositions of drilling or well treatment fluids
- C09K2208/10—Nanoparticle-containing well treatment fluids
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2208/00—Aspects relating to compositions of drilling or well treatment fluids
- C09K2208/28—Friction or drag reducing additives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2208/00—Aspects relating to compositions of drilling or well treatment fluids
- C09K2208/34—Lubricant additives
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Abstract
本发明提供一种钻井液用润滑剂,包括:脂肪酸酯、长链脂肪醇、金属氧化物、纳米硼酸盐和有机金属化合物,其中,所述脂肪酸酯为C10~C20的脂肪酸和C1~C8的脂肪醇的酯化产物;所述长链脂肪醇选自碳链长度为10~26个碳原子的脂肪醇;所述有机金属化合物为二烷基二硫代磷酸盐和/或二烷基二硫代磷酸复酯盐。通过脂肪酸酯、长链脂肪醇的配合使用,以及金属氧化物、纳米硼酸盐和有机金属化合物的配合使用,使得本发明所提供的钻井液用润滑剂兼具优异的润滑性、抗温性和抗盐性。
Description
技术领域
本发明涉及油田钻井液领域,具体涉及一种钻井液用润滑剂及其制备方法和应用。
背景技术
随着油气资源的日益枯竭,深水平井钻井已逐渐成为开发深层油气藏的重要技术手段。由于油气藏埋藏深、造斜点深,深水平井造斜段和水平段钻进过程中存在较高的摩阻和扭矩,不仅严重影响了钻进速度和井眼轨迹控制,同时也威胁到钻井作业的安全,是制约深水平井水平段延伸长度的核心难题,这对钻井液的润滑性能提出了较高的要求。
润滑剂是钻井液的重要添加剂,其作用是降低钻具与井壁及钻具与金属套管间的摩擦阻力,防止泥包钻头,进而起到提高钻速、防止卡钻、减缓钻具磨损的目的。现有技术的钻井液润滑剂包括液体润滑剂和固体润滑剂两大类。液体润滑剂多为精制矿物油、聚α-烯烃、植物油、改性植物油、合成脂肪酸酯类产品。美国专利US 8148305P中描述了一种钻井液润滑剂,是通过低聚甘油醇和脂肪酸的酯化反应制备的一种低聚甘油脂肪酸酯,具有优异的润滑性能。US7250390P中描述了一种以蓖麻油酸和山梨醇为原料制备的高性能润滑剂,不仅不存在其他酯类润滑剂的起泡问题,还能够改善钻井液流变性并降低滤失量。现有技术的脂肪酸酯类润滑剂抗温耐盐能力有限,在高温和高盐环境下容易失效。
固体颗粒润滑剂产品相比脂肪酸酯、植物油等液体润滑剂具有更强的抗温耐盐性能,主要包括合成聚合物小球、玻璃小球、陶瓷小球等球型颗粒和石墨类具有片层结构的颗粒。例如,美国专利US 2006/0122070 A1描述了一种球形石墨作为水基钻井液润滑剂,石墨颗粒的平均粒径大于120目,且超过65%的石墨颗粒能够通过80目筛网。专利WO2009/035758中描述了一种适用于高温高压深井和深水平井水基钻井液的固体润滑剂。该润滑剂的主要成分为球状石油焦(60~100目),是重油流化焦化或延迟焦化的副产物。美国专利US2006/0122070 A1描述了一种球形石墨作为水基钻井液润滑剂,石墨颗粒的平均粒径大于120目,且超过65%的石墨颗粒能够通过80目筛网。
现有技术的钻井液固体润滑剂颗粒粒度均为微米或亚微米级,难以有效填充摩擦表面的微缝隙,而纳米颗粒则能够沉积并有效填充金属摩擦表面粗糙的微缝隙,在相互接触的摩擦面间形成一层保护膜,有效降低摩擦面的摩擦系数,并减轻磨损。尽管具有极强的抗温耐盐性,惰性固体润滑剂的润滑效果无法与酯类等液体润滑剂相媲美。
发明内容
鉴于上述现有技术中存在的问题,本发明的目的之一在于提供一种钻井液用润滑剂,通过脂肪酸酯、长链脂肪醇的配合使用,以及金属氧化物、纳米硼酸盐和有机金属化合物(二烷基二硫代磷酸盐和/或二烷基二硫代磷酸复酯盐)的配合使用,使得本发明所提供的钻井液用润滑剂兼具优异的润滑性、抗温性和抗盐性。
本发明的目的之二在于提供一种与目的之一相对应的钻井液用润滑剂的制备方法。
本发明的目的之三在于提供一种与目的之一和目的之二相对应的钻井液用润滑剂的应用。
为实现上述目的之一,本发明采用的技术方案如下:
一种钻井液用润滑剂,包括:脂肪酸酯、长链脂肪醇、金属氧化物、纳米硼酸盐和有机金属化合物,
其中,所述脂肪酸酯为C10~C20的脂肪酸和C1~C8的脂肪醇的酯化产物;所述长链脂肪醇选自碳链长度为10~26个碳原子的脂肪醇;所述有机金属化合物为二烷基二硫代磷酸盐和/或二烷基二硫代磷酸复酯盐。
本申请的发明人经研究发现,脂肪酸酯是一种两亲性的大分子,亲水端基可以吸附在金属摩擦表面,亲油端基朝向外侧紧密排列从而形成一层疏水的润滑膜,显著降低摩擦表面的摩阻系数。长链脂肪醇除了能够与脂肪酸酯协同增效提高润滑性外,更重要的作用是抑制脂肪酸酯在高温下水解起泡。
金属氧化物和纳米硼酸盐能够有效的填充金属摩擦表面粗糙的微缝隙,在相互接触的摩擦面间形成一层保护膜,有效降低摩擦面的摩擦系数,并减轻磨损。其中,金属氧化物在降低摩擦系数方面效果突出,而纳米硼酸盐则能够有效保护金属摩擦面,减轻磨损。有机金属化合物在高温、高摩擦环境下能够与金属发生化学反应并在金属表面形成一层保护膜,有效减轻金属磨损。发明人发现,金属氧化物、纳米硼酸盐和有机金属化合物组合在一起使用会起到协同增效作用,比单独使用其中一种组分的润滑效果更好。
在本发明的一些优选的实施方式中,所述脂肪酸酯为C12~C18的脂肪酸和C1~C6的脂肪醇的酯化产物。
在本发明的一些优选的实施方式中,所述长链脂肪醇选自碳链长度为2n个碳原子的脂肪醇,其中,n为5~13。
在本发明的一些优选的实施方式中,所述长链脂肪醇选自碳链长度为2n个碳原子的脂肪醇,其中,n为6~10。
在本发明的一些优选的实施方式中,所述钻井液用润滑剂中,以所述脂肪酸酯的含量为100重量份计,所述长链脂肪醇的含量为1~10重量份,优选为3~5重量份。
根据本发明,所述钻井液用润滑剂中,以所述脂肪酸酯的含量为100重量份计,所述长链脂肪醇的含量可列举为1重量份、1.5重量份、2重量份、2.5重量份、3重量份、3.5重量份、4重量份、4.5重量份、5重量份、5.5重量份、6重量份、6.5重量份、7重量份、7.5重量份、8重量份、8.5重量份、9重量份、9.5重量份、10重量份以及它们之间的任意值。
在本发明的一些优选的实施方式中,所述钻井液用润滑剂中,以所述脂肪酸酯的含量为100重量份计,所述金属氧化物的含量为1~10重量份,优选为2~4重量份。
根据本发明,所述钻井液用润滑剂中,以所述脂肪酸酯的含量为100重量份计,所述金属氧化物的含量可列举为1重量份、1.5重量份、2重量份、2.5重量份、3重量份、3.5重量份、4重量份、4.5重量份、5重量份、5.5重量份、6重量份、6.5重量份、7重量份、7.5重量份、8重量份、8.5重量份、9重量份、9.5重量份、10重量份以及它们之间的任意值。
在本发明的一些优选的实施方式中,所述钻井液用润滑剂中,以所述脂肪酸酯的含量为100重量份计,所述纳米硼酸盐的含量为1~10重量份,优选为3~6重量份。
根据本发明,所述钻井液用润滑剂中,以所述脂肪酸酯的含量为100重量份计,所述脂肪酸酯的含量可列举为1重量份、1.5重量份、2重量份、2.5重量份、3重量份、3.5重量份、4重量份、4.5重量份、5重量份、5.5重量份、6重量份、6.5重量份、7重量份、7.5重量份、8重量份、8.5重量份、9重量份、9.5重量份、10重量份以及它们之间的任意值。
在本发明的一些优选的实施方式中,所述钻井液用润滑剂中,以所述脂肪酸酯的含量为100重量份计,所述有机金属化合物的含量为1~10重量份,优选为3~6重量份。
根据本发明,所述钻井液用润滑剂中,以所述脂肪酸酯的含量为100重量份计,所述有机金属化合物的含量可列举为1重量份、1.5重量份、2重量份、2.5重量份、3重量份、3.5重量份、4重量份、4.5重量份、5重量份、5.5重量份、6重量份、6.5重量份、7重量份、7.5重量份、8重量份、8.5重量份、9重量份、9.5重量份、10重量份以及它们之间的任意值。
根据本发明,所述有机金属化合物可以是二烷基二硫代磷酸盐,也可以是二烷基二硫代磷酸复酯盐,还可以同时包括二烷基二硫代磷酸盐和二烷基二硫代磷酸复酯盐。当所述有机金属化合物中同时包括二烷基二硫代磷酸盐和二烷基二硫代磷酸复酯盐时,二烷基二硫代磷酸盐和二烷基二硫代磷酸复酯盐可以以任意比例互混,优选为二烷基二硫代磷酸盐和二烷基二硫代磷酸复酯盐的质量比为(0.1~10):1。
在本发明的一些优选的实施方式中,所述金属氧化物、所述纳米硼酸盐和所述有机金属化合物的质量比为1:(0.1~10):(0.1~10)。
在本发明的一些优选的实施方式中,所述金属氧化物、所述纳米硼酸盐和所述有机金属化合物的质量比为1:(0.5~5):(0.5~5)。
在本发明的一些优选的实施方式中,所述金属氧化物、所述纳米硼酸盐和所述有机金属化合物的质量比为1:(1~1.5):(1~1.5)。
在本发明的一些优选的实施方式中,所述金属氧化物、所述纳米硼酸盐和所述有机金属化合物的质量比为1:(1~1.5):(1.5~3)。
在本发明的一些优选的实施方式中,所述金属氧化物选自二氧化钛、氧化锌、氧化铜、氧化锆和铝酸锌中的至少一种。
在本发明的一些优选的实施方式中,所述金属氧化物选自二氧化钛、氧化锌和铝酸锌中的至少一种。
在本发明的一些优选的实施方式中,所述金属氧化物为二氧化钛和/或氧化锌。
在本发明的一些优选的实施方式中,所述金属氧化物的粒径为10nm~200nm,优选为20nm~100nm,更优选为20nm~50nm。
在本发明的一些优选的实施方式中,所述纳米硼酸盐选自硼酸钛、硼酸铈、硼酸铁、硼酸镁和硼酸锌中的至少一种。
在本发明的一些优选的实施方式中,所述纳米硼酸盐选自硼酸钛、硼酸铁和硼酸锌中的至少一种。
在本发明的一些优选的实施方式中,所述纳米硼酸盐为硼酸钛和/或硼酸锌。
在本发明的一些优选的实施方式中,所述纳米硼酸盐的粒径为50nm~500nm,优选为100nm~400nm,更优选为200nm~300nm。
根据本发明,金属氧化物和纳米硼酸盐的粒径不同,优选为相差一个数量级。
在本发明的一些优选的实施方式中,所述二烷基二硫代磷酸盐选自二烷基二硫代磷酸锌、二烷基二硫代磷酸铜、二烷基二硫代磷酸钼、二烷基二硫代磷酸镉、二烷基二硫代磷酸铅、二烷基二硫代磷酸锑中的至少一种。
在本发明的一些优选的实施方式中,所述二烷基二硫代磷酸盐为二烷基二硫代磷酸锌、二烷基二硫代磷酸铜和二烷基二硫代磷酸钼中的至少一种。
在本发明的一些优选的实施方式中,所述二烷基二硫代磷酸复酯盐选自二烷基二硫代磷酸复酯锌、二烷基二硫代磷酸复酯铜、二烷基二硫代磷酸复酯钼、二烷基二硫代磷酸复酯镉、二烷基二硫代磷酸复酯铅、二烷基二硫代磷酸复酯锑中的至少一种。
在本发明的一些优选的实施方式中,所述二烷基二硫代磷酸复酯盐为二烷基二硫代磷酸复酯锌、二烷基二硫代磷酸复酯铜和二烷基二硫代磷酸复酯钼中的至少一种。在本发明的一些优选的实施方式中,所述C12~C18的脂肪酸选自油酸、亚油酸、蓖麻油酸、棕榈酸、硬脂酸和月桂酸中的至少一种,所述C1~C6的脂肪醇选自甲醇、乙醇、丙三醇、山梨醇和季戊四醇中的至少一种。
在本发明的一些优选的实施方式中,所述脂肪酸酯的酯化度为20%~100%,优选为30%~80%,更优选为30%~50%。
根据本发明,所述脂肪酸酯的酯化度可列举为20%、30%、40%、50%、60%、70%、80%、90%、100%以及它们之间的任意值。
在本发明的一些优选的实施方式中,所述长链脂肪醇选自十二烷醇、十四烷醇、十六烷醇和十八烷醇中的至少一种。
为实现上述目的之二,本发明采取的技术方案如下:
一种上述的钻井液用润滑剂的制备方法,包括:将包括所述脂肪酸酯、所述长链脂肪醇、所述金属氧化物、所述纳米硼酸盐和所述有机金属化合物的原料混合,制得所述润滑剂。
在本发明的一些优选的实施方式中,将所述长链脂肪醇加入到所述脂肪酸酯中后,再将所述金属氧化物、所述纳米硼酸盐和所述有机金属化合物加入到所述长链脂肪醇和所述脂肪酸酯的混合溶液中。
根据本发明,所述金属氧化物、所述纳米硼酸盐和所述有机金属化合物的加入次序不受限制,可以按照一定顺序逐一加入到所述混合溶液中,也可以同时加入到所述混合溶液中。
根据本发明,在一个具体的实施方式中,在室温下将脂肪酸酯加入带有搅拌功能的反应釜中,在搅拌的条件下向反应釜中加入长链脂肪醇。搅拌20~30分钟后加入金属氧化物。搅拌0.5~1小时后加入纳米硼酸盐。搅拌10~30分钟后加入有机金属化合物,继续搅拌20~30分钟后,即得所述的钻井液润滑剂。
为实现上述目的之三,本发明采取的技术方案如下:
一种上述的钻井液用润滑剂或根据上述的制备方法制得的钻井液用润滑剂在钻井液中的应用。
本发明所提供的钻井液用润滑剂,与现有技术相比的主要优势在于:
(1)本发明的润滑剂包含脂肪酸酯、长链脂肪醇以及多种纳米颗粒的组合物。兼具脂肪酸酯和脂肪醇等液体润滑剂优异的润滑性以及固体颗粒类润滑剂优异的抗温耐盐性能;
(2)现有技术的钻井液固体润滑剂颗粒粒径通常为微米和亚微米尺度,防磨减摩效果不如纳米颗粒;本发明的钻井液用润滑剂包含不同种类、不同粒径范围的纳米颗粒的组合,具有比现有技术更优越的润滑效果,能够有效降低钻具金属表面的摩擦系数,并减轻钻具磨损;
(3)本发明的润滑剂是由多种纳米颗粒复配而成,粒径在纳米尺度范围内呈较宽分布,因而能够有效封堵泥页岩纳米-亚微米孔隙和微裂缝,阻止钻井液压力向地层深处传递,起到稳定泥页岩井壁的作用,这是现有技术润滑剂不具备的特点。
具体实施方式
以下通过实施例对本发明进行详细说明,但本发明的保护范围并不限于下述说明。
在本说明书的上下文中,“室温”是指约25℃~约35℃的温度条件。
在下述实施方式中,所采用的蓖麻油酸山梨醇酯的酯化度为60%。
实施例1
在室温下将100kg蓖麻油酸山梨醇酯加入到带有搅拌的反应釜中,在搅拌的条件下向反应釜中加入3kg十二烷醇。搅拌30分钟后加入2kg纳米二氧化钛(平均粒径20nm),搅拌1小时后加入3kg纳米硼酸钛(平均粒径200nm)。搅拌30分钟后加入3kg二烷基二硫代磷酸锌,继续搅拌30分钟后得到本发明的钻井液用润滑剂A1,其为黄褐色粘稠液体。
实施例2
按照实施例1中的方式制备钻井液润滑剂A2,不同之处仅在于调整纳米二氧化钛、纳米硼酸钛和二烷基二硫代磷酸锌的用量分别为4kg、6kg和6kg,具体地,
在室温下将100kg蓖麻油酸山梨醇酯加入到带有搅拌的反应釜中,在搅拌的条件下向反应釜中加入3kg十二烷醇。搅拌30分钟后加入4kg纳米二氧化钛(平均粒径20nm),搅拌1小时后加入6kg纳米硼酸钛(平均粒径200nm)。搅拌30分钟后加入6kg二烷基二硫代磷酸锌,继续搅拌30分钟后得到本发明的钻井液润滑剂A2,为黄褐色粘稠液体。
实施例3
按照实施例1中的方式制备钻井液用润滑剂A3,不同之处仅在于调整二烷基二硫代磷酸锌的用量为6kg,具体地,
在室温下将100kg蓖麻油酸山梨醇酯加入到带有搅拌的反应釜中,在搅拌的条件下向反应釜中加入3kg十二烷醇。搅拌30分钟后加入2kg纳米二氧化钛(平均粒径20nm),搅拌1小时后加入3kg纳米硼酸钛(平均粒径200nm)。搅拌30分钟后加入6kg二烷基二硫代磷酸锌,继续搅拌30分钟后得到本发明的钻井液润滑剂A3,为黄褐色粘稠液体。
实施例4
按照实施例2中的方式制备钻井液润滑剂A4,不同之处仅在于调整纳米二氧化钛的粒径为50nm,纳米硼酸钛的粒径为300nm,具体地,
在室温下将100kg蓖麻油酸山梨醇酯加入到带有搅拌的反应釜中,在搅拌的条件下向反应釜中加入3kg十二烷醇。搅拌30分钟后加入4kg纳米二氧化钛(平均粒径50nm),搅拌1小时后加入6kg纳米硼酸钛(平均粒径300nm)。搅拌30分钟后加入6kg二烷基二硫代磷酸锌,继续搅拌30分钟后得到本发明的钻井液润滑剂A4,为黄褐色粘稠液体。
实施例5
按照实施例2中的方式制备钻井液润滑剂A5,不同之处仅在于调整纳米硼酸钛的粒径为300nm,具体地,
在室温下将100kg蓖麻油酸山梨醇酯加入到带有搅拌的反应釜中,在搅拌的条件下向反应釜中加入3kg十二烷醇。搅拌30分钟后加入4kg纳米二氧化钛(平均粒径20nm),搅拌1小时后加入6kg纳米硼酸钛(平均粒径300nm)。搅拌30分钟后加入6kg二烷基二硫代磷酸锌,继续搅拌30分钟后得到本发明的钻井液润滑剂A5,为黄褐色粘稠液体。
实施例6
按照实施例4中的方式制备钻井液润滑剂A6,不同之处仅在于使用的金属氧化物为氧化锌,具体地,
在室温下将100kg蓖麻油酸山梨醇酯加入到带有搅拌的反应釜中,在搅拌的条件下向反应釜中加入3kg十二烷醇。搅拌30分钟后加入4kg纳米氧化锌(平均粒径50nm),搅拌1小时后加入6kg纳米硼酸锌(平均粒径300nm)。搅拌30分钟后加入6kg二烷基二硫代磷酸锌,继续搅拌30分钟后得到本发明的钻井液润滑剂A6,为黄褐色粘稠液体。
实施例7
在室温下将100kg蓖麻油酸山梨醇酯加入到带有搅拌的反应釜中,在搅拌的条件下向反应釜中加入3kg十二烷醇。搅拌30分钟后加入4kg纳米二氧化钛和纳米氧化锌混合物(混合物中纳米二氧化钛与纳米氧化锌质量比为1:1,两种颗粒平均粒径均为50nm),搅拌1小时后加入6kg纳米硼酸钛(平均粒径300nm)。搅拌30分钟后加入6kg二烷基二硫代磷酸锌,继续搅拌30分钟后得到本发明的钻井液润滑剂A7,为黄褐色粘稠液体。
实施例8
在室温下将100kg蓖麻油酸山梨醇酯加入到带有搅拌的反应釜中,在搅拌的条件下向反应釜中加入3kg十二烷醇。搅拌30分钟后加入4kg纳米二氧化钛(平均粒径50nm),搅拌1小时后加入6kg纳米硼酸钛和纳米硼酸锌的混合物(混合物中纳米硼酸钛与纳米硼酸锌质量比为1:1,两种颗粒平均粒径均为300nm)。搅拌30分钟后加入6kg二烷基二硫代磷酸锌,继续搅拌30分钟后得到本发明的钻井液润滑剂A8,为黄褐色粘稠液体。
实施例9
在室温下将100kg蓖麻油酸季戊四醇酯加入到带有搅拌的反应釜中,在搅拌的条件下向反应釜中加入3kg十二烷醇。搅拌30分钟后加入4kg纳米二氧化钛(平均粒径50nm),搅拌1小时后加入6kg纳米硼酸钛(平均粒径300nm)。搅拌30分钟后加入6kg二烷基二硫代磷酸锌,继续搅拌30分钟后得到本发明的钻井液润滑剂A9,为黄褐色粘稠液体。
实施例10
在室温下将100kg油酸山梨醇酯加入到带有搅拌的反应釜中,在搅拌的条件下向反应釜中加入3kg十二烷醇。搅拌30分钟后加入4kg纳米二氧化钛(平均粒径50nm),搅拌1小时后加入6kg纳米硼酸钛(平均粒径300nm)。搅拌30分钟后加入6kg二烷基二硫代磷酸锌,继续搅拌30分钟后得到本发明的钻井液润滑剂A10,为黄褐色粘稠液体。
实施例11
在室温下将100kg蓖麻油酸山梨醇酯加入到带有搅拌的反应釜中,在搅拌的条件下向反应釜中加入5kg十二烷醇。搅拌30分钟后加入4kg纳米二氧化钛(平均粒径50nm),搅拌1小时后加入6kg纳米硼酸钛(平均粒径300nm)。搅拌30分钟后加入6kg二烷基二硫代磷酸锌,继续搅拌30分钟后得到本发明的钻井液润滑剂A11,为黄褐色粘稠液体。
实施例12
在室温下将100kg蓖麻油酸山梨醇酯加入到带有搅拌的反应釜中,在搅拌的条件下向反应釜中加入5kg十六烷醇。搅拌30分钟后加入4kg纳米二氧化钛(平均粒径50nm),搅拌1小时后加入6kg纳米硼酸钛(平均粒径300nm)。搅拌30分钟后加入6kg二烷基二硫代磷酸锌,继续搅拌30分钟后得到本发明的钻井液润滑剂A12,为黄褐色粘稠液体。
实施例13
在室温下将100kg蓖麻油酸山梨醇酯加入到带有搅拌的反应釜中,在搅拌的条件下向反应釜中加入3kg十二烷醇。搅拌30分钟后加入4kg纳米二氧化钛(平均粒径20nm),搅拌1小时后加入2kg纳米硼酸钛(平均粒径200nm)。搅拌30分钟后加入2kg二烷基二硫代磷酸锌,继续搅拌30分钟后得到本发明的钻井液用润滑剂A13,其为黄褐色粘稠液体。
实施例14
在室温下将100kg蓖麻油酸山梨醇酯加入到带有搅拌的反应釜中,在搅拌的条件下向反应釜中加入3kg十二烷醇。搅拌30分钟后加入2kg纳米二氧化钛(平均粒径20nm),搅拌1小时后加入5kg纳米硼酸钛(平均粒径200nm)。搅拌30分钟后加入5kg二烷基二硫代磷酸锌,继续搅拌30分钟后得到本发明的钻井液用润滑剂A14,其为黄褐色粘稠液体。
实施例15
按照实施例1的方式制备钻井液润滑剂A15,不同之处仅在于采用二烷基二硫代磷酸复酯锌替换实施例1中的二烷基二硫代磷酸锌。
对比例1
将蓖麻油酸山梨醇酯作为对比润滑剂B1,用于与实施例的产品进行润滑性能对比。蓖麻油酸山梨醇酯按照专利CN109761804A所述的方法进行制备,平均聚合度为5。
对比例2
将150目的天然鳞片石墨作为对比润滑剂B2,用于与实施例的产品进行润滑性能对比。
对比例3
将500目的天然鳞片石墨作为对比润滑剂B3,用于与实施例的产品进行润滑性能对比。
对比例4
在室温下将103kg蓖麻油酸山梨醇酯加入到带有搅拌的反应釜中。搅拌30分钟后加入2kg纳米二氧化钛(平均粒径20nm),搅拌1小时后加入3kg纳米硼酸钛(平均粒径200nm)。搅拌30分钟后加入3kg二烷基二硫代磷酸锌,继续搅拌30分钟后得到钻井液用润滑剂B4,其为黄褐色粘稠液体。
对比例5
在室温下将103kg十二烷醇加入到带有搅拌的反应釜中。搅拌30分钟后加入2kg纳米二氧化钛(平均粒径20nm),搅拌1小时后加入3kg纳米硼酸钛(平均粒径200nm)。搅拌30分钟后加入3kg二烷基二硫代磷酸锌,继续搅拌30分钟后得到钻井液用润滑剂B5,其为黄褐色粘稠液体。
对比例6
在室温下将100kg蓖麻油酸山梨醇酯加入到带有搅拌的反应釜中,在搅拌的条件下向反应釜中加入3kg十二烷醇。搅拌30分钟后加入4kg纳米硼酸钛(平均粒径200nm)。搅拌30分钟后加入4kg二烷基二硫代磷酸锌,继续搅拌30分钟后得到钻井液用润滑剂B6,其为黄褐色粘稠液体。
对比例7
在室温下将100kg蓖麻油酸山梨醇酯加入到带有搅拌的反应釜中,在搅拌的条件下向反应釜中加入3kg十二烷醇。搅拌30分钟后加入3.5kg纳米二氧化钛(平均粒径20nm),搅拌1小时后加入4.5kg二烷基二硫代磷酸锌,继续搅拌30分钟后得到钻井液用润滑剂B7,其为黄褐色粘稠液体。
对比例8
在室温下将100kg蓖麻油酸山梨醇酯加入到带有搅拌的反应釜中,在搅拌的条件下向反应釜中加入3kg十二烷醇。搅拌30分钟后加入3.5kg纳米二氧化钛(平均粒径20nm),搅拌1小时后加入4.5kg纳米硼酸钛(平均粒径200nm)。继续搅拌30分钟后得到钻井液用润滑剂B8,其为黄褐色粘稠液体。
对比例9
在室温下将100kg蓖麻油酸山梨醇酯加入到带有搅拌的反应釜中,在搅拌的条件下向反应釜中加入3kg十二烷醇。搅拌30分钟后加入8kg纳米二氧化钛(平均粒径20nm),继续搅拌30分钟后得到钻井液用润滑剂B9,其为黄褐色粘稠液体。
对比例10
在室温下将100kg蓖麻油酸山梨醇酯加入到带有搅拌的反应釜中,在搅拌的条件下向反应釜中加入3kg十二烷醇。搅拌30分钟后加入8kg纳米硼酸钛(平均粒径200nm)。继续搅拌30分钟后得到钻井液用润滑剂B10,其为黄褐色粘稠液体。
对比例11
在室温下将100kg蓖麻油酸山梨醇酯加入到带有搅拌的反应釜中,在搅拌的条件下向反应釜中加入3kg十二烷醇。搅拌30分钟后加入8kg二烷基二硫代磷酸锌,继续搅拌30分钟后得到钻井液用润滑剂B11,其为黄褐色粘稠液体。
测试例1
采用fann212型极压润滑仪测试极压润滑系数。操作步骤如下:首先,用纯净水对机器进行校验,不加压时扭矩读数为0,转速为60转/分;加压150英寸磅(inch-pounds)时,转速仍保持60rpm;之后,在加压到150inch-pounds的情况下运转5min,测试纯净水的扭矩读数,确保纯净水的扭矩读数在28~42之间。将纯净水换成需测试的浆液,在加压150inch-pounds的情况下运转5分钟,读出测试的浆液的扭矩读数。每次测试浆液扭矩前先用纯净水对机器进行校验。
极压润滑系数计算公式:
极压润滑系数=M样*(34/M水)×100%,式中:
M样:样品的极压扭矩读数;
M水:纯净水的极压扭矩读数;
在上述测试中,测试样品为钻井液基浆(A0)和由上述实施例1~15(A1~A15)、对比例1~11(B1~B11)制得的润滑剂混合而成。钻井液基浆组成:5%夏子街钠膨润土,0.2%无水碳酸钠和余量的水,在室温水化24h制成;实施例润滑剂在基浆中的加入量为1%,对比例润滑剂在基浆中的加入量为2%,并于滚子加热炉中180℃下老化16h。
测量结果如表1中所示。
表1
样品 | 极压润滑系数 |
A0 | 0.413 |
A1 | 0.054 |
A2 | 0.038 |
A3 | 0.045 |
A4 | 0.043 |
A5 | 0.041 |
A6 | 0.046 |
A7 | 0.041 |
A8 | 0.038 |
A9 | 0.045 |
A10 | 0.048 |
A11 | 0.039 |
A12 | 0.041 |
A13 | 0.058 |
A14 | 0.042 |
A15 | 0.054 |
B1 | 0.063 |
B2 | 0.283 |
B3 | 0.245 |
B4 | 0.061 |
B5 | 0.125 |
B6 | 0.065 |
B7 | 0.067 |
B8 | 0.068 |
B9 | 0.075 |
B10 | 0.073 |
B11 | 0.078 |
通过表1的数据可以看出,采用本发明的润滑剂的钻井液A1~A15,极压润滑系数为0.038~0.054,表明这些钻井液具有良好的润滑性,能够有效降低井下摩阻和扭矩;而采用脂肪酸酯作为润滑剂的钻井液B1的极压润滑系数为0.063,采用天然鳞片石墨作为润滑剂的钻井液B2~B3达到0.245~0.283,省略了脂肪酸酯或长链脂肪醇的钻井液B4~B5达到0.061~0.125,省略了金属氧化物、纳米硼酸盐、有机金属化合物中的一种或两种的对比例B6~B11的达到0.065~0.078,说明本发明的润滑剂相对传统酯类液体润滑剂和石墨类固体润滑剂具有更优的润滑降摩性能。
测试例2
采用Fann 31100型中压失水仪测定中压滤失量(FLAPI),结果如表2所示。其中:滤失量(FLAPI)是根据国家标准GB/T 29170-2012中规定的方法进行测量的,单位为mL。
测试样品为钻井液基浆(A0)和由上述实施例1~7(A1~A12)、对比例1~2(B1~B3)制得的润滑剂混合而成。钻井液基浆组成:5%夏子街钠膨润土,0.2%无水碳酸钠和余量的水,在室温水化24h制成;实施例润滑剂在基浆中的加入量为1%,对比例润滑剂在基浆中的加入量为2%,并于滚子加热炉中180℃下老化16h。
测量结果如表2中所示。
表2
样品 | FL<sub>API</sub> |
A0 | 28.6 |
A1 | 17.4 |
A2 | 15.6 |
A3 | 16.8 |
A4 | 16.2 |
A5 | 16.0 |
A6 | 16.6 |
A7 | 16.2 |
A8 | 16.4 |
A9 | 16.4 |
A10 | 16.6 |
A11 | 16.6 |
A12 | 16.8 |
A13 | 16.6 |
A14 | 15.8 |
A15 | 17.4 |
B1 | 22.4 |
B2 | 23.6 |
B3 | 22.8 |
B4 | 17.8 |
B5 | 17.6 |
B6 | 18.2 |
B7 | 18.0 |
B8 | 17.4 |
B9 | 18.4 |
B10 | 18.6 |
B11 | 18.6 |
从表2中可以看出,添加有本发明的润滑剂的钻井液A1~A15具有较低的中压滤失量,而采用脂肪酸酯、天然鳞片石墨作为润滑剂的钻井液B1~B3中压滤失量相对较高,省略了脂肪酸酯或长链脂肪醇的钻井液B4~B5达17.6~17.8mL,省略了金属氧化物、纳米硼酸盐、有机金属化合物中的一种或两种的对比例B6~B11达17.4~18.6mL说明本发明起到了较好的微孔隙封堵作用,效果优于微米级颗粒的传统固体润滑剂。
应当注意的是,以上所述的实施例仅用于解释本发明,并不构成对本发明的任何限制。通过参照典型实施例对本发明进行了描述,但应当理解为其中所用的词语为描述性和解释性词汇,而不是限定性词汇。可以按规定在本发明权利要求的范围内对本发明作出修改,以及在不背离本发明的范围和精神内对本发明进行修订。尽管其中描述的本发明涉及特定的方法、材料和实施例,但是并不意味着本发明限于其中公开的特定例,相反,本发明可扩展至其他所有具有相同功能的方法和应用。
Claims (10)
1.一种钻井液用润滑剂,包括:脂肪酸酯、长链脂肪醇、金属氧化物、纳米硼酸盐和有机金属化合物,
其中,所述脂肪酸酯为C10~C20的脂肪酸和C1~C8的脂肪醇的酯化产物,优选为C12~C18的脂肪酸和C1~C6的脂肪醇的酯化产物;所述长链脂肪醇选自碳链长度为10~26个碳原子的脂肪醇,优选选自碳链长度为2n个碳原子的脂肪醇,其中,n为5~13,优选为6~10;所述有机金属化合物为二烷基二硫代磷酸盐和/或二烷基二硫代磷酸复酯盐。
2.根据权利要求1所述的钻井液用润滑剂,其特征在于,所述钻井液用润滑剂中,以所述脂肪酸酯的含量为100重量份计,所述长链脂肪醇的含量为1~10重量份,优选为3~5重量份;所述金属氧化物的含量为1~10重量份,优选为2~4重量份;所述纳米硼酸盐的含量为1~10重量份,优选为3~6重量份;所述有机金属化合物的含量为1~10重量份,优选为3~6重量份。
3.根据权利要求1或2所述的钻井液用润滑剂,其特征在于,所述金属氧化物、所述纳米硼酸盐和所述有机金属化合物的质量比为1:(0.1~10):(0.1~10),优选为1:(0.5~5):(0.5~5)。
4.根据权利要求1-3中任一项所述的钻井液用润滑剂,其特征在于,所述金属氧化物选自二氧化钛、氧化锌、氧化铜、氧化锆和铝酸锌中的至少一种,优选为二氧化钛、氧化锌和铝酸锌中的至少一种,更优选为二氧化钛和/或氧化锌;优选地,所述金属氧化物的粒径为10nm~200nm,优选为20nm~100nm,更优选为20nm~50nm。
5.根据权利要求1-4中任一项所述的钻井液用润滑剂,其特征在于,所述纳米硼酸盐选自硼酸钛、硼酸铈、硼酸铁、硼酸镁和硼酸锌中的至少一种,优选为硼酸钛、硼酸铁和硼酸锌中的至少一种,更优选为硼酸钛和/或硼酸锌;优选地,所述纳米硼酸盐的粒径为50nm~500nm,优选为100nm~400nm,更优选为200nm~300nm。
6.根据权利要求1-5中任一项所述的钻井液用润滑剂,其特征在于,
所述二烷基二硫代磷酸盐选自二烷基二硫代磷酸锌、二烷基二硫代磷酸铜、二烷基二硫代磷酸钼、二烷基二硫代磷酸镉、二烷基二硫代磷酸铅、二烷基二硫代磷酸锑中的至少一种,优选为二烷基二硫代磷酸锌、二烷基二硫代磷酸铜和二烷基二硫代磷酸钼中的至少一种;和/或
所述二烷基二硫代磷酸复酯盐选自二烷基二硫代磷酸复酯锌、二烷基二硫代磷酸复酯铜、二烷基二硫代磷酸复酯钼、二烷基二硫代磷酸复酯镉、二烷基二硫代磷酸复酯铅、二烷基二硫代磷酸复酯锑中的至少一种,优选为二烷基二硫代磷酸复酯锌、二烷基二硫代磷酸复酯铜和二烷基二硫代磷酸复酯钼中的至少一种。
7.根据权利要求1-6中任一项所述的钻井液用润滑剂,其特征在于,所述C12~C18的脂肪酸选自油酸、亚油酸、蓖麻油酸、棕榈酸、硬脂酸和月桂酸中的至少一种,所述C1~C6的脂肪醇选自甲醇、乙醇、丙三醇、山梨醇和季戊四醇中的至少一种;优选地,所述脂肪酸酯的酯化度为20%~100%,优选为30%~80%,更优选为30%~50%。
8.根据权利要求1-7中任一项所述的钻井液用润滑剂,其特征在于,所述长链脂肪醇选自十二烷醇、十四烷醇、十六烷醇和十八烷醇中的至少一种。
9.一种权利要求1-8中任一项所述的钻井液用润滑剂的制备方法,包括:将包括所述脂肪酸酯、所述长链脂肪醇、所述金属氧化物、所述纳米硼酸盐和所述有机金属化合物的原料混合,制得所述润滑剂,优选地,将所述长链脂肪醇加入到所述脂肪酸酯中后,再将所述金属氧化物、所述纳米硼酸盐和所述有机金属化合物加入到所述长链脂肪醇和所述脂肪酸酯的混合溶液中。
10.一种权利要求1-8中任一项所述的钻井液用润滑剂或根据权利要求9所述的制备方法制得的钻井液用润滑剂在钻井液中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010081895.1A CN113214805B (zh) | 2020-02-06 | 2020-02-06 | 一种钻井液用润滑剂及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010081895.1A CN113214805B (zh) | 2020-02-06 | 2020-02-06 | 一种钻井液用润滑剂及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113214805A true CN113214805A (zh) | 2021-08-06 |
CN113214805B CN113214805B (zh) | 2022-07-15 |
Family
ID=77085636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010081895.1A Active CN113214805B (zh) | 2020-02-06 | 2020-02-06 | 一种钻井液用润滑剂及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113214805B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114752364A (zh) * | 2022-04-25 | 2022-07-15 | 中国石油大学(华东) | 一种水基钻井液用环保型抗高温耐高盐润滑剂及其制备方法与应用 |
CN114874760A (zh) * | 2022-01-27 | 2022-08-09 | 深圳市利特能源技术有限公司 | 一种抗磨减阻剂主剂及其制备方法、抗磨减阻剂及其制备方法和应用 |
CN115160996A (zh) * | 2022-08-24 | 2022-10-11 | 河南金马石油科技有限责任公司 | 一种钻井液用极压润滑脂及其制备方法 |
CN117210208A (zh) * | 2023-11-08 | 2023-12-12 | 中石化西南石油工程有限公司 | 一种多重双效防塌环保高性能钻井液及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030155157A1 (en) * | 2002-01-31 | 2003-08-21 | Patel Arvind D. | High performance water based drilling mud and method of use |
JP2006241443A (ja) * | 2005-02-02 | 2006-09-14 | Nissan Motor Co Ltd | ナノ粒子含有潤滑油組成物 |
CN107011876A (zh) * | 2017-05-22 | 2017-08-04 | 任丘市力科节能材料有限公司 | 一种钻井液用复合润滑剂及其制备方法、应用 |
CN108276973A (zh) * | 2018-01-30 | 2018-07-13 | 四川泓华油气田工程科技有限公司 | 钻井液用环保型润滑剂及其制备方法 |
US20190136112A1 (en) * | 2015-04-08 | 2019-05-09 | Gumpro Drilling Fluid Pvt. Ltd. | Lubricant additives for water based drilling fluid |
CN110066645A (zh) * | 2018-01-22 | 2019-07-30 | 中国石油化工股份有限公司 | 一种钻井液润滑剂及其制备方法 |
-
2020
- 2020-02-06 CN CN202010081895.1A patent/CN113214805B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030155157A1 (en) * | 2002-01-31 | 2003-08-21 | Patel Arvind D. | High performance water based drilling mud and method of use |
JP2006241443A (ja) * | 2005-02-02 | 2006-09-14 | Nissan Motor Co Ltd | ナノ粒子含有潤滑油組成物 |
US20190136112A1 (en) * | 2015-04-08 | 2019-05-09 | Gumpro Drilling Fluid Pvt. Ltd. | Lubricant additives for water based drilling fluid |
CN107011876A (zh) * | 2017-05-22 | 2017-08-04 | 任丘市力科节能材料有限公司 | 一种钻井液用复合润滑剂及其制备方法、应用 |
CN110066645A (zh) * | 2018-01-22 | 2019-07-30 | 中国石油化工股份有限公司 | 一种钻井液润滑剂及其制备方法 |
CN108276973A (zh) * | 2018-01-30 | 2018-07-13 | 四川泓华油气田工程科技有限公司 | 钻井液用环保型润滑剂及其制备方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114874760A (zh) * | 2022-01-27 | 2022-08-09 | 深圳市利特能源技术有限公司 | 一种抗磨减阻剂主剂及其制备方法、抗磨减阻剂及其制备方法和应用 |
CN114752364A (zh) * | 2022-04-25 | 2022-07-15 | 中国石油大学(华东) | 一种水基钻井液用环保型抗高温耐高盐润滑剂及其制备方法与应用 |
CN115160996A (zh) * | 2022-08-24 | 2022-10-11 | 河南金马石油科技有限责任公司 | 一种钻井液用极压润滑脂及其制备方法 |
CN115160996B (zh) * | 2022-08-24 | 2023-07-28 | 河南金马石油科技有限责任公司 | 一种钻井液用极压润滑脂及其制备方法 |
CN117210208A (zh) * | 2023-11-08 | 2023-12-12 | 中石化西南石油工程有限公司 | 一种多重双效防塌环保高性能钻井液及其制备方法 |
CN117210208B (zh) * | 2023-11-08 | 2024-02-27 | 中石化西南石油工程有限公司 | 一种多重双效防塌环保高性能钻井液及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113214805B (zh) | 2022-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113214805B (zh) | 一种钻井液用润滑剂及其制备方法和应用 | |
US20200115608A1 (en) | Inorganic fullerene-like particles and inorganic tubular-like particles in fluids and lubricants | |
CN108251078B (zh) | 一种封堵型极压润滑剂及其制备方法和应用 | |
KR101594771B1 (ko) | 표면-근접 구조의 구동부품에서 피로현상을 예방하기 위한 조성물 | |
US4507214A (en) | Rare earth halide grease compositions | |
EP3212747B1 (en) | Grease compositions | |
EP1443097B1 (en) | Dilatant fluid composition | |
Lu et al. | Oleylamine-modified carbon nanoparticles as a kind of efficient lubricating additive of polyalphaolefin | |
EA011177B1 (ru) | Добавка для снижения крутящего момента на бурильную колонну | |
CN110066645A (zh) | 一种钻井液润滑剂及其制备方法 | |
CN111117577B (zh) | 一种水基钻井液润滑剂的制备及应用 | |
KR930009246B1 (ko) | 증점용 조성물 및 그 제조방법 | |
CN107459980B (zh) | 一种钻井液用温敏性可控释放润滑剂及其制备方法 | |
EP2376589B1 (en) | Friction modifier for drilling fluids | |
CN112592700A (zh) | 一种基于氯化石蜡的油基钻井液及其制备方法和应用 | |
CN113652286A (zh) | 冷冻机油组合物及其制备方法 | |
CN113025289A (zh) | 一种钻井液润滑剂及其制备方法 | |
JP3290752B2 (ja) | グリース組成物 | |
CN113214804B (zh) | 一种润滑剂及其制备方法和应用 | |
US4735733A (en) | Viscosifier, its uses, and its manufacture | |
CN109666460B (zh) | 水基钻井液用颗粒稳定纳米乳液润滑剂及其制备方法 | |
CN109504519B (zh) | 一种无硫磷极压润滑剂及其制备方法和应用 | |
CN116063997B (zh) | 一种钻井液用润滑剂及其制备方法和应用 | |
EP3953440B1 (en) | Valve leak repair packing material and method of using the same | |
CN113493681B (zh) | 一种水基钻井液用微乳液减摩降阻剂 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |