CN113213927A - 一种化学计量失配的高储能铌酸银基陶瓷及其制备方法 - Google Patents

一种化学计量失配的高储能铌酸银基陶瓷及其制备方法 Download PDF

Info

Publication number
CN113213927A
CN113213927A CN202110473974.1A CN202110473974A CN113213927A CN 113213927 A CN113213927 A CN 113213927A CN 202110473974 A CN202110473974 A CN 202110473974A CN 113213927 A CN113213927 A CN 113213927A
Authority
CN
China
Prior art keywords
energy storage
ceramic
high energy
powder
silver niobate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110473974.1A
Other languages
English (en)
Other versions
CN113213927B (zh
Inventor
郭艳艳
张盟
张冲
曾春香
赵江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN202110473974.1A priority Critical patent/CN113213927B/zh
Publication of CN113213927A publication Critical patent/CN113213927A/zh
Application granted granted Critical
Publication of CN113213927B publication Critical patent/CN113213927B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • C04B2235/3291Silver oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种化学计量失配的高储能铌酸银基陶瓷及其制备方法,该陶瓷化学式为Ag0.985La0.005Nb1‑x O3‑2.5x ,其中x为摩尔百分比,x的取值满足电中性。本发明在不引入其他元素的情况下,仅通过降低铌离子含量,改变材料的化学计量比,就得到了储能密度最大为7.05J/cm3的高储能无铅反铁电陶瓷(该数值是本研究领域中的最高值),且该无铅储能陶瓷兼具高储能密度、高击穿电场(318kV/cm)、高极化强度(74μC/cm2)等优点,有望应用于新型电介质储能器件、脉冲功率器件、混合动力汽车等领域。特别地,实验证明,在不引入其他元素的情况下,仅通过改变材料的化学计量比这一创新性思路是铌酸银基无铅储能陶瓷研究中行之有效的新方法,且可以将该思路应用到其他电介质储能研究的领域中。

Description

一种化学计量失配的高储能铌酸银基陶瓷及其制备方法
技术领域
本发明涉及一种化学计量失配的高储能铌酸银基陶瓷及其制备方法,属于功能陶瓷材料技术领域。
背景技术
随着电子工业的快速发展,新型储能材料的开发已成为人们关注的焦点。电介质储能电容器作为储能系统的一个重要分支,因其充放电速率快、功率密度高而被广泛应用于各种大功率设备中。然而,由于电介质储能电容器的储能密度(Wrec)较低,故其在实际应用中受到很大的限制。在所有电介质中,具有较低剩余极化(Pr)和较高储能效率的反铁电储能陶瓷(AFE)受到了研究者的广泛关注。铌酸银(AN)基陶瓷材料以较低的烧结温度和优异的反铁电性逐渐成为了近年来备受瞩目的新型绿色无铅储能材料。然而,纯AN陶瓷的储能密度较低,目前一般是通过掺杂改性来提高AN基陶瓷的反铁电性,进而提高储能性能。然而,掺杂改性就需要引入其他离子,且需要稍大的掺杂量,造成原料的浪费,不利于节约成本。
发明内容
本发明的目的在于克服现有技术中的不足,提供一种化学计量失配的高储能铌酸银基陶瓷及其制备方法,提供一种新型的高储能密度、高储能效率、不引入其他元素的高储能铌酸银基无铅反铁电陶瓷。
为达到上述目的,本发明是采用下述技术方案实现的:
第一方面,本发明提供了一种化学计量失配的高储能铌酸银基无铅反铁电陶瓷,所述无铅反铁电陶瓷化学式为Ag0.985La0.005Nb1-xO3-2.5x,其中x为摩尔百分比,x的取值满足电中性。
进一步的,所述x的取值为:0<x≤0.1。
进一步的,在室温下,所述的化学计量失配的高储能铌酸银基无铅陶瓷的击穿电场为210kV/cm~325kV/cm。
进一步的,在室温下,所述的化学计量失配的高储能铌酸银基无铅陶瓷的极化强度为56μC/cm2~74μC/cm2
进一步的,在室温下,所述的化学计量失配的高储能铌酸银基无铅陶瓷的储能密度为3.5J/cm3~7.05J/cm3,储能效率为42%~55%。
第二方面,本发明提供了一种化学计量失配的高储能铌酸银基无铅陶瓷的制备方法,其特征在于,包括以下步骤:
(1)选用高纯度Ag2O粉体、高纯度Nb2O5粉体、高纯度La2O3粉体作为原料粉体,按化学式Ag0.985La0.005Nb1-xO3-2.5x称料后球磨混合、烘干、压片,得到生胚;
(2)将所得生胚置于氧气中,在880℃~900℃下进行预烧4~8小时,得到粗胚;
(3)将粗胚研碎,再进行二次球磨、烘干、造粒,再经单轴压制成型,得到素坯;
(4)将所得素坯于600℃排胶2小时后,再置于氧气中烧结4~8小时,得到陶瓷圆片;
(5)将陶瓷片打磨、抛光为陶瓷薄片,刷上银电极后,再进行煅烧、冷却。
进一步的,所述步骤(1)中的压片压力为45Mpa~60Mpa。
进一步的,所述步骤(3)中造粒时选用的是质量分数为5%的聚乙烯醇溶液,其加入量为粉料质量的4%~6%;单轴压制成型的压力为400MPa~500MPa。
进一步的,所述步骤(4)中的烧结温度为1000℃~1150℃;所述步骤(5)中的烧银温度为550℃~650℃,保温时间为20min~30min;所述步骤(5)中的经过打磨的陶瓷片厚度为0.10mm~0.20mm。
与现有技术相比,本发明所达到的有益效果:
本发明的化学计量失配的高储能铌酸银基无铅陶瓷在不引入其他元素的情况下,仅通过降低铌离子含量,改变材料的化学计量比,即可得到兼具高储能密度(7.05J/cm3)、高击穿电场(318kV/cm)和高极化强度(74μC/cm2)的无铅储能陶瓷,本发明中的方案是相关研究领域中的一种全新的技术方案,既取得了当前本领域中的最高储能密度,又节省了原料成本。
附图说明
图1为本发明对比例和所有实施例制备的样品的SEM图;
图2为本发明对比例和所有实施例制备的样品的晶粒尺寸和击穿场强与组份的关系图;
图3为本发明对比例和所有实施例制备的陶瓷样品的电滞回线;
图4为本发明对比例和所有实施例制备的陶瓷样品的储能密度和极化强度与组份的关系图。
具体实施方式
本发明的目的、优点和特点,将通过下面优选实施例的非限制性说明进行图示和解释。这些实施例仅是应用本发明技术方案的典型范例,凡采取等同替换或者等效变换而形成的技术方案,均落在本发明要求保护的范围之内。
实施例1:
本实施例提供一种化学计量失配的高储能铌酸银基无铅陶瓷及其制备方法,高储能铌酸银基无铅反铁电陶瓷的分子式为Ag0.985La0.005Nb0.97O2.925(Ag0.985La0.005Nb1-xO3-2.5x;x=0.03)。
制备Ag0.985La0.005Nb0.97O2.925(Ag0.985La0.005Nb1-xO3-2.5x;x=0.03)陶瓷的方法如下:
称取高纯Ag2O粉体3.4343g、高纯Nb2O5粉体3.8679g、高纯La2O3粉体0.0244g,将称重好的粉体混合球磨24小时,球磨转速选择为300转/分钟,球磨完后,再将球磨好的混合料放80℃烘箱烘干12小时;将烘干后的粉体充分手动研磨40分钟,然后采用52Mpa压力将其压制成直径20mm的胚体,把胚体置于氧气中在890℃下预烧6小时,其中升温和降温速率均为5℃/min;将烧结好的陶瓷片研碎后进行二次球磨、烘干,然后加入质量分数为5%的聚乙烯醇溶液进行造粒,聚乙烯醇溶液加入质量为粉料质量的5%。把造粒后的粉末用450MPa的压力压制成直径8mm,厚度为1.5mm的生片;将圆片置于氧气中先在600℃排胶2小时,然后升至1075℃后保温6小时,其中升温和降温速率均为5℃/min;将陶瓷片打磨、抛光至0.17mm的薄片,清洗烘干后用丝网印刷的方式刷上直径为2mm的银电极,在600℃空气气氛下烧结25min,得到Ag0.985La0.005Nb0.97O2.925陶瓷。
实施例2:
本实施例提供一种化学计量失配的高储能铌酸银基无铅陶瓷及其制备方法,高储能铌酸银基无铅反铁电陶瓷的分子式为Ag0.985La0.005Nb0.94O2.85(Ag0.985La0.005Nb1-xO3-2.5x;x=0.06)。
制备Ag0.985La0.005Nb0.94O2.85(Ag0.985La0.005Nb1-xO3-2.5x;x=0.06)陶瓷的方法为:称取高纯Ag2O粉体3.4343g、高纯Nb2O5粉体3.7483g、高纯La2O3粉体0.0244g,将称重好的粉体混合球磨24小时,球磨转速选择为300转/分钟,球磨完后,再将球磨好的混合料放80℃烘箱烘干12小时;将烘干后的粉体充分手动研磨40分钟,然后采用47Mpa压力将其压制成直径20mm的胚体,把胚体置于氧气中在890℃下预烧6小时,其中升温和降温速率均为5℃/min;将烧结好的陶瓷片研碎后进行二次球磨、烘干,然后加入质量分数为5%的聚乙烯醇溶液进行造粒,聚乙烯醇溶液加入质量为粉料质量的5%。把造粒后的粉末用450MPa的压力压制成直径8mm,厚度为1.5mm的生片;将圆片置于氧气中先在600℃排胶2小时,然后升至1055℃后保温6小时,其中升温和降温速率均为5℃/min;将陶瓷片打磨、抛光至0.15mm的薄片,清洗烘干后用丝网印刷的方式刷上直径为2mm的银电极,在600℃空气气氛下烧结21min,得到Ag0.985La0.005Nb0.94O2.85陶瓷。
实施例3:
本实施例提供一种化学计量失配的高储能铌酸银基无铅陶瓷及其制备方法,高储能铌酸银基无铅反铁电陶瓷的分子式为Ag0.985La0.005Nb0.93O2.825(Ag0.985La0.005Nb1-xO3-2.5x;x=0.07)。
制备Ag0.985La0.005Nb0.93O2.825(Ag0.985La0.005Nb1-xO3-2.5x;x=0.07)陶瓷的方法为:称取高纯Ag2O粉体3.4343g、高纯Nb2O5粉体3.7084g、高纯La2O3粉体0.0244g,将称重好的粉体混合球磨24小时,球磨转速选择为300转/分钟,球磨完后,再将球磨好的混合料放80℃烘箱烘干12小时;将烘干后的粉体充分手动研磨40分钟,然后采用52Mpa压力将其压制成直径20mm的胚体,把胚体置于氧气中在900℃下预烧6小时,其中升温和降温速率均为5℃/min;将烧结好的陶瓷片研碎后进行二次球磨、烘干,然后加入质量分数为5%的聚乙烯醇溶液进行造粒,聚乙烯醇溶液加入质量为粉料质量的5%。把造粒后的粉末用473MPa的压力压制成直径8mm,厚度为1.5mm的生片;将圆片置于氧气中先在600℃排胶2小时,然后升至1060℃后保温6小时,其中升温和降温速率均为5℃/min;将陶瓷片打磨、抛光至0.15mm的薄片,清洗烘干后用丝网印刷的方式刷上直径为2mm的银电极,在600℃空气气氛下烧结25min,得到Ag0.985La0.005Nb0.93O2.825陶瓷。
实施例4:
本实施例提供一种化学计量失配的高储能铌酸银基无铅陶瓷及其制备方法,高储能铌酸银基无铅反铁电陶瓷的分子式为Ag0.985La0.005Nb0.90O2.75(Ag0.985La0.005Nb1-xO3-2.5x;x=0.1)。
制备Ag0.985La0.005Nb0.90O2.75(Ag0.985La0.005Nb1-xO3-2.5x;x=0.1)陶瓷的方法为:称取高纯Ag2O粉体3.4343g、高纯Nb2O5粉体3.5888g、高纯La2O3粉体0.0244g,将称重好的粉体倒入玛瑙球磨罐中,然后向球磨罐加入无水乙醇作为球磨溶剂,混合球磨24小时,球磨转速选择为300转/分钟,球磨完后,再将球磨好的混合料放80℃烘箱烘干12小时;将烘干后的粉体充分手动研磨40分钟,然后采用50Mpa压力将其压制成直径20mm的胚体,把胚体于900℃在氧气中预烧6小时,其中升温和降温速率均为5℃/min;将烧结好的陶瓷片研碎后进行二次球磨、烘干,然后加入质量分数为5%的聚乙烯醇溶液进行造粒,聚乙烯醇溶液加入质量为粉料质量的5%。把造粒后的粉末用473MPa的压力压制成直径8mm,厚度为1.5mm的生片;将圆片置于氧气中先在600℃排胶2小时,然后升至1065℃后保温6小时,其中升温和降温速率均为5℃/min;将陶瓷片打磨、抛光至0.16mm的薄片,清洗烘干后用丝网印刷的方式刷上直径为2mm的银电极,在600℃空气气氛下烧结20min,得到Ag0.985La0.005Nb0.90O2.75陶瓷。
对比例:
本对比例提供一种化学计量失配的高储能铌酸银基无铅陶瓷及其制备方法,高储能铌酸银基无铅反铁电陶瓷的分子式为Ag0.985La0.005NbO3Ag0.985La0.005Nb1-xO3-2.5x;x=0)。
制备Ag0.985La0.005NbO3Ag0.985La0.005Nb1-xO3-2.5x;x=0)陶瓷的方法为:称取高纯Ag2O粉体3.4343g、高纯Nb2O5粉体3.9875g、高纯La2O3粉体0.0244g,将称重好的粉体混合球磨24小时,球磨转速选择为300转/分钟,球磨完后,再将球磨好的混合料放80℃烘箱烘干12小时;将烘干后的粉体充分手动研磨40分钟,然后采用53Mpa压力将其压制成直径20mm的胚体,把胚体于890℃在氧气中预烧6小时,其中升温和降温速率均为5℃/min;将烧结好的陶瓷片研碎后进行二次球磨、烘干,然后加入质量分数为5%的聚乙烯醇溶液进行造粒,聚乙烯醇溶液加入质量为粉料质量的4.9%。把造粒后的粉末用413MPa的压力压制成直径8mm,厚度为1.5mm的生片;将圆片置于氧气中先在600℃排胶2小时,然后升至1060℃后保温6小时,其中升温和降温速率均为5℃/min;将陶瓷片打磨、抛光至0.15mm的薄片,清洗烘干后用丝网印刷的方式刷上直径为2mm的银电极,在590℃空气气氛下烧结30min,得到Ag0.985La0.005NbO3陶瓷。
实施例1-4和对比例的储能数据比较如下:
从图1-图4中可以看出,对比例(符合化学计量比的Ag0.985La0.005NbO3)陶瓷的平均晶粒尺寸为2.02μm,其在最大击穿电场210kV/cm下可获得56μC/cm2的极化强度、3.5J/cm3的储能密度。
随着铌离子含量的减少,平均晶粒尺寸分别降低至为1.67μm(实施例1)、1.48μm(实施例2)、1.34μm(实施例3)、1.51μm(实施例4);同时,击穿电场分别提高至为287kV/cm(实施例1)、278kV/cm(实施例2)、318kV/cm(实施例3)、325kV/cm(实施例4);极化强度分别提高至为56μC/cm2(实施例1)、68μC/cm2(实施例2)、74μC/cm2(实施例3)、58μC/cm2(实施例4);储能密度分别提高至为5.55J/cm3(实施例1)、6.37J/cm3(实施例2)、7.05J/cm3(实施例3)、6.7J/cm3(实施例4)。特别地,与对比例相比,实施例3在铌离子含量为0.93(x=0.07)时即可获得击穿电场为318kV/cm、极化强度为74μC/cm2、储能密度为7.05J/cm3的高储能陶瓷材料。而现有最好的储能研究显示要用0.08mol La3+替代Ag+,才可获得击穿电场为476kV/cm、极化强度为36μC/cm2、储能密度为7.01J/cm3的高储能陶瓷材料;此外,复合材料0.45AgNbO3–0.55AgTaO3的击穿电场为470kV/cm、极化强度为29μC/cm2、储能密度为6.3J/cm3。对比可得,本发明在不引入其他元素的情况下,仅通过降低铌离子含量,改变材料的化学计量比,即可得到兼具高储能密度、高击穿电场和高极化强度的无铅储能陶瓷。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (10)

1.一种化学计量失配的高储能铌酸银基陶瓷,其特征在于,所述无铅反铁电陶瓷化学式为Ag0.985La0.005Nb1-xO3-2.5x,其中x为摩尔百分比,x的取值满足电中性。
2.根据权利要求1所述的化学计量失配的高储能铌酸银基陶瓷,其特征在于,所述x的取值为:0<x≤0.1。
3.根据权利要求2所述的化学计量失配的高储能铌酸银基陶瓷,其特征在于,在室温下,所述的高储能铌酸银基无铅反铁电陶瓷的击穿电场为210kV/cm~325kV/cm。
4.根据权利要求2所述的化学计量失配的高储能铌酸银基陶瓷,其特征在于,在室温下,所述的高储能铌酸银基无铅反铁电陶瓷的极化强度为56μC/cm2~74μC/cm2
5.根据权利要求2所述的化学计量失配的高储能铌酸银基陶瓷,其特征在于,在室温下,所述的高储能铌酸银基无铅反铁电陶瓷的储能密度为3.5J/cm3~7.05J/cm3,储能效率为42%~55%。
6.一种权利要求1所述的化学计量失配的高储能铌酸银基陶瓷的制备方法,其特征在于,包括以下步骤:
(1)选用高纯度Ag2O粉体、高纯度Nb2O5粉体、高纯度La2O3粉体作为原料粉体,按化学式Ag0.985La0.005Nb1-xO3-2.5x称料后球磨混合、烘干、压片,得到生胚;
(2)将所得生胚置于氧气中,在880℃~900℃下进行预烧4~8小时,得到粗胚;
(3)将粗胚研碎,再进行二次球磨、烘干、造粒,再经单轴压制成型,得到素坯;
(4)将所得素坯于600℃排胶2小时后,再置于氧气中烧结4~8小时,得到陶瓷圆片;
(5)将陶瓷圆片打磨、抛光为陶瓷薄片,刷上银电极后,再进行煅烧、冷却。
7.根据权利要求6所述的化学计量失配的高储能铌酸银基陶瓷的制备方法,其特征在于,所述步骤(1)中的压片压力为45Mpa~60Mpa。
8.根据权利要求6所述的化学计量失配的高储能铌酸银基陶瓷的制备方法,其特征在于,所述步骤(3)中造粒时选用的是质量分数为5%的聚乙烯醇溶液,其加入量为粉料质量的4%~6%;单轴压制成型的压力为400MPa~500MPa。
9.根据权利要求6所述的化学计量失配的高储能铌酸银基陶瓷的制备方法,其特征在于,所述步骤(4)中的烧结温度为1000℃~1150℃。
10.根据权利要求6所述的化学计量失配的高储能铌酸银基陶瓷的制备方法,其特征在于,所述步骤(5)中经过打磨的陶瓷片厚度为0.10mm~0.20mm,烧银温度为550℃~650℃,保温时间为20min~30min。
CN202110473974.1A 2021-04-29 2021-04-29 一种化学计量失配的高储能铌酸银基陶瓷及其制备方法 Active CN113213927B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110473974.1A CN113213927B (zh) 2021-04-29 2021-04-29 一种化学计量失配的高储能铌酸银基陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110473974.1A CN113213927B (zh) 2021-04-29 2021-04-29 一种化学计量失配的高储能铌酸银基陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN113213927A true CN113213927A (zh) 2021-08-06
CN113213927B CN113213927B (zh) 2022-06-17

Family

ID=77090179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110473974.1A Active CN113213927B (zh) 2021-04-29 2021-04-29 一种化学计量失配的高储能铌酸银基陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN113213927B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116283285A (zh) * 2023-03-02 2023-06-23 南京邮电大学 一种缺铌高储能铌酸银基无铅反铁电陶瓷及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4670815A (en) * 1985-08-14 1987-06-02 Stc Plc Dielectric composition
CN101062864A (zh) * 2007-05-28 2007-10-31 北京科技大学 一种铌酸钠钾锂基无铅压电陶瓷及其制备方法
CN109650885A (zh) * 2018-12-11 2019-04-19 中国科学院上海硅酸盐研究所 一种掺镧铌酸银无铅反铁电储能陶瓷材料及其制备方法
CN110981477A (zh) * 2019-12-31 2020-04-10 西安理工大学 一种氧化钕掺杂铌酸银陶瓷的制备方法
CN111170739A (zh) * 2020-01-19 2020-05-19 南京邮电大学 一种高储能铌酸银基无铅反铁电陶瓷及其制备方法
CN111548156A (zh) * 2020-04-14 2020-08-18 广西大学 一类高储能密度和温度稳定性的铌酸银基无铅反铁电陶瓷材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4670815A (en) * 1985-08-14 1987-06-02 Stc Plc Dielectric composition
CN101062864A (zh) * 2007-05-28 2007-10-31 北京科技大学 一种铌酸钠钾锂基无铅压电陶瓷及其制备方法
CN109650885A (zh) * 2018-12-11 2019-04-19 中国科学院上海硅酸盐研究所 一种掺镧铌酸银无铅反铁电储能陶瓷材料及其制备方法
CN110981477A (zh) * 2019-12-31 2020-04-10 西安理工大学 一种氧化钕掺杂铌酸银陶瓷的制备方法
CN111170739A (zh) * 2020-01-19 2020-05-19 南京邮电大学 一种高储能铌酸银基无铅反铁电陶瓷及其制备方法
CN111548156A (zh) * 2020-04-14 2020-08-18 广西大学 一类高储能密度和温度稳定性的铌酸银基无铅反铁电陶瓷材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. KANIA ET AL.: "Silver deficiency and excess effects on quality, dielectric properties andphase transitions of AgNbO3ceramics", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
张红梅等: "A位非化学计量比对铌酸钾钠陶瓷极化程度的影响", 《空军工程大学学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116283285A (zh) * 2023-03-02 2023-06-23 南京邮电大学 一种缺铌高储能铌酸银基无铅反铁电陶瓷及其制备方法

Also Published As

Publication number Publication date
CN113213927B (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
CN112174664B (zh) 一种高储能、高效率的铌酸钠基陶瓷材料及其制备方法
KR101592752B1 (ko) 가넷 분말, 이의 제조방법, 핫프레스를 이용한 고체전해질 시트 및 이의 제조방법
CN109354492B (zh) 铋基无铅高储能密度陶瓷材料及其制备方法
CN111978082B (zh) 一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法
CN111548156A (zh) 一类高储能密度和温度稳定性的铌酸银基无铅反铁电陶瓷材料及其制备方法
CN111233470B (zh) 一种具有优异充放电性能的反铁电陶瓷材料及其制备方法
CN112919907B (zh) 一种储能效率加强高储能无铅铁电陶瓷材料及其制备方法
CN111170739A (zh) 一种高储能铌酸银基无铅反铁电陶瓷及其制备方法
CN111908914A (zh) 一种晶界层陶瓷材料、晶界层陶瓷基片的制备方法及其应用
CN115448716A (zh) 一种钛酸钡基储能陶瓷材料及其制备方法
CN113213927B (zh) 一种化学计量失配的高储能铌酸银基陶瓷及其制备方法
CN113880576B (zh) 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法
CN109516799B (zh) 一种具有高温度稳定性的高介陶瓷电容器材料及其制备方法
CN108409321B (zh) 一种掺杂LaMnO3的钛酸铋铁高温压电陶瓷及其制备方法
CN114436643A (zh) 一种巨介电常数、低介电损耗陶瓷及其制备方法
CN111807838B (zh) 一种Na0.25K0.25Bi2.5Nb2O9陶瓷的制备方法及其产品
CN112552048B (zh) 一种具有高压电性能和高剩余极化强度铌酸钾钠陶瓷的制备方法
CN110981477B (zh) 一种氧化钕掺杂铌酸银陶瓷的制备方法
CN111732430B (zh) 一种Sm和Eu共掺杂CaBi8Ti7O27陶瓷的制备方法及其产品及应用
CN117229056A (zh) 一种高介电铝掺杂型钙钛矿结构高熵微波介质陶瓷及其制备方法
CN112142466B (zh) 一种铌镱酸铅基反铁电陶瓷材料及其制备方法
CN114914088B (zh) 一种高储能铌酸银陶瓷电容器及其制备方法
CN106986629B (zh) 一种钛酸铋基铋层状结构铁电陶瓷靶材的制备方法
CN115368132A (zh) 一种钛酸钡基陶瓷材料及制备方法
CN101959829A (zh) 制造半导体陶瓷组成物的工艺以及采用半导体陶瓷组成物的加热器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant