CN113212816B - 一种悬吊式四自由度运动模拟系统及使用方法 - Google Patents

一种悬吊式四自由度运动模拟系统及使用方法 Download PDF

Info

Publication number
CN113212816B
CN113212816B CN202110600514.0A CN202110600514A CN113212816B CN 113212816 B CN113212816 B CN 113212816B CN 202110600514 A CN202110600514 A CN 202110600514A CN 113212816 B CN113212816 B CN 113212816B
Authority
CN
China
Prior art keywords
degree
freedom
load
vertical
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110600514.0A
Other languages
English (en)
Other versions
CN113212816A (zh
Inventor
齐乃明
周芮
刘延芳
穆荣军
霍明英
倪晨瑞
佘佳宇
刘振
贾拴立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202110600514.0A priority Critical patent/CN113212816B/zh
Publication of CN113212816A publication Critical patent/CN113212816A/zh
Application granted granted Critical
Publication of CN113212816B publication Critical patent/CN113212816B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G7/00Simulating cosmonautic conditions, e.g. for conditioning crews

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Telescopes (AREA)

Abstract

本发明公开了一种悬吊式四自由度运动模拟系统及使用方法,属于地面微重力模拟试验技术领域。竖直悬吊绳的上端连接有由二维平动运动系统和竖直升降系统构成的动态伺服系统,恒力保持系统安装在竖直悬吊绳下端,三自由度转动系统悬吊在恒力保持系统的下方,其中,竖直悬吊绳,用于提供载荷竖直方向的悬吊和升降;恒力保持系统,用于提供竖直悬吊绳的恒力保持;三自由度转动系统,用于提供三自由度被动转动。本发明普适性强,适用于大多数中小型航天器的全自由度地面微重力模拟试验;重力补偿精度高,采用组合弹簧被动保持和力矩电机主动补偿两阶段进行重力补偿;运动范围大,可采用完整球与半球窝形式,使得偏航方向可连续转动。

Description

一种悬吊式四自由度运动模拟系统及使用方法
技术领域
本发明涉及一种悬吊式四自由度运动模拟系统及使用方法,属于地面微重力模拟试验技术领域。
背景技术
随着空间科学技术的不断发展,不论是近地导航还是深空探测,航天器的研发频率越来越高,系统功能越来越复杂,验证新技术新方案的频次越来越多。然而,航天器的技术风险性高,系统功能复杂,为了尽可能降低航天器发生故障或失效造成的损失,保证航天器的高可靠性尤为重要。
由于航天器发射的成本较高,试验失败损失较大,因此,在地面进行尽可能多的基于空间环境的试验模拟是发射任务成功的基本保障。其中较为关键的地面模拟试验环境是微低重力环境和角度自由转动环境,目前采用托举式进行的气浮球轴承转动方案比较笨重,球心位置较高,需要增加大量配重才能将质心配到球心位置。此外,托举式方案的转动角度易受干涉,俯仰和滚转角度一般只能进行30°以内的运动模拟。相比而言,悬吊式方案更加灵活。
随着航天器的发展,对地面微重力试验模拟技术提出了新的要求,对模拟转动自由度、重力补偿精度、高普适性等提出了强烈需求。
发明内容
本发明的目的在于提出一种悬吊式四自由度运动模拟系统及使用方法,以解决现有技术中存在的问题。
一种悬吊式四自由度运动模拟系统,悬吊式四自由度运动模拟系统包括竖直悬吊绳、恒力保持系统和三自由度转动系统,竖直悬吊绳的上端连接有由二维平动运动系统和竖直升降系统构成的动态伺服系统,恒力保持系统安装在竖直悬吊绳下端,三自由度转动系统悬吊在恒力保持系统的下方,其中,
竖直悬吊绳,用于提供载荷竖直方向的悬吊和升降;
恒力保持系统,用于提供竖直悬吊绳的恒力保持;
三自由度转动系统,用于提供三自由度被动转动。
进一步的,恒力保持系统包括力敏感器、被动力保持系统和主动补偿电机,其中,
被动力保持系统包括上层板、导向滑环、中层板、导向杆和下层板,上层板与竖直悬吊绳的下端连接,中层板设有供导向杆穿过的通孔,导向滑环竖直设置于通孔处,导向杆穿过导向滑环和中层板上的通孔,上层板通过导向杆连接下层板,
主动补偿电机安装在下层板上,下层板上固定设置有一半封闭空间,力敏感器的上端固定在中层板上,下端穿过半封闭空间的顶面进入到半封闭空间中。
进一步的,三自由度转动系统包括连接杆、配重块、气浮球轴承、载荷、供气气瓶和载荷壳体;
连接杆上套装有一弹簧,弹簧上抵力敏感器的下端,下抵半封闭空间的底面,连接杆的上端在半封闭空间内与力敏感器的下端连接,下端穿过载荷壳体的上壳体与气浮球轴承的球转动连接形成固定端,气浮球轴承的球窝与载荷壳体连接形成移动端,配重块、载荷和供气气瓶设置在载荷壳体内,其中,
供气气瓶,用于为气浮球轴承提供气体;
配重块,用于将模拟系统的质心配置在气浮球轴承的球心处,消除重力矩影响;
气浮球轴承倒置使用,用于实现气浮球轴承偏航方向的连续转动,俯仰和滚转方向不小于60度运动。
进一步的,主动补偿电机为力闭环直线电机。
一种悬吊式四自由度运动模拟系统的使用方法,将竖直悬吊绳、恒力保持系统和三自由度转动系统由上至下依次连接,安装载荷并使载荷静止在悬吊点下方,
进行配重块的安装与调试,保证载荷壳体所连接的系统整体质心大约处在气浮球轴承的球心处,
当系统悬吊载荷时,连接杆带动中层板通过导向滑环沿导向杆向下滑动,弹簧压缩,以抵消大部分重力,力敏感器测量出被动力保持系统抵消掉的重力,得到需要主动补偿电机补偿的力大小,由主动补偿电机进行补偿,主动补偿电机固定在下层板上,根据力敏感器测量出的结果控制主动补偿电机的运动,调节力补偿大小,最终实现竖直方向连接杆的拉力与载荷重力近似平衡,
当载荷运动时,首先由竖直悬挂绳进行二维平动运动及竖直升降运动跟踪,保持悬吊点位置处于载荷正上方,与上述过程相同,由恒力保持系统进行被动保持和主动补偿,维持竖直方向上恒力,接着,球窝相对球进行自由转动,来被动适应载荷转动运动;
若由于质心和球心位置存在一定偏差,产生外力和外力矩,从而改变了竖直方向力的大小,则同样先由被动力保持系统抵消大部分变化,再由主动补偿电机根据力敏感器的测量结果进行补偿;
当发生竖直角度的偏转时,由竖直悬吊绳上方的动态伺服系统保持悬吊点三自由度位置,最终,实现三自由度自由转动和竖直方向上的动态微重力模拟。
本发明的有以下优点:本发明提出的一种悬吊式四自由度运动模拟系统及使用方法相对现有技术存在如下有益效果:
(1)普适性强,适用于大多数中小型航天器的全自由度地面微重力模拟试验,从而降低航天器失效概率。
(2)重力补偿精度高,采用组合弹簧被动保持和力矩电机主动补偿两阶段进行重力补偿,补偿精度更高。
(3)运动范围大,倒置使用气浮球轴承,可采用完整球与半球窝形式,使得偏航方向可连续转动,滚转和俯仰方向均可进行不小于60度的运动。
附图说明
图1为本发明的一种悬吊式四自由度运动模拟系统的结构示意图;
图2为恒力保持系统的结构示意图;
图3为三自由度转动系统的结构示意图;
图4为三自由度转动系统的剖面图。
其中,1为竖直悬吊绳、2为恒力保持系统、3为三自由度转动系统、4为力敏感器、5为被力保持系统、5-1为上层板、5-2为导向滑环、5-3为中层板、5-4为导向杆、5-5为下层板、6为主动补偿电机、7为连接杆、8为配重块、9为气浮球轴承、10为载荷、11为供气气瓶、12为载荷壳体。
具体实施方式
下面将结合本发明实施例中的附图对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参照图1所示,本发明提出了一种悬吊式四自由度运动模拟系统,悬吊式四自由度运动模拟系统包括竖直悬吊绳1、恒力保持系统2和三自由度转动系统3,竖直悬吊绳1的上端连接有由二维平动运动系统和竖直升降系统构成的动态伺服系统,恒力保持系统2安装在竖直悬吊绳1下端,三自由度转动系统3悬吊在恒力保持系统2的下方,其中,
竖直悬吊绳1,用于提供载荷竖直方向的悬吊和升降;
恒力保持系统2,用于提供竖直悬吊绳1的恒力保持;
三自由度转动系统3,用于提供三自由度被动转动。
具体的,参照图1所示,竖直悬吊绳1保证悬吊点一直处于载荷的正上方且绳处于拉紧状态,采用二维平动运动系统和竖直升降系统控制竖直悬吊绳1的水平位置和高度。二维平动运动系统采用多个电机驱动的两向运动单元跟踪载荷的二维平动,竖直升降系统安装在二维平动机构上,采用卷扬机形式,跟踪载荷竖向升降运动。二维平动运动系统和竖直升降系统共同实现竖直悬吊绳1悬吊点的三自由度位置运动。
进一步的,恒力保持系统2包括力敏感器4、被动力保持系统5和主动补偿电机6,其中,
被动力保持系统5包括上层板5-1、导向滑环5-2、中层板5-3、导向杆5-4和下层板5-5,上层板5-1与竖直悬吊绳1的下端连接,中层板5-3设有供导向杆5-4穿过的通孔,导向滑环5-2竖直设置于通孔处,导向杆5-4穿过导向滑环5-2和中层板5-3上的通孔,上层板5-1通过导向杆5-4连接下层板5-5,
主动补偿电机6安装在下层板5-5上,下层板5-5上固定设置有一半封闭空间,力敏感器4的上端固定在中层板5-3上,下端穿过半封闭空间的顶面进入到半封闭空间中。
具体的,恒力保持系统2与竖直悬吊绳1相连,控制竖直悬吊绳上1的拉力大小,抵消载荷10的重力,为载荷10提供微重力环境。
参见图2,被动力保持系统5悬挂在竖直悬吊绳1下方,采用刀式凸轮和组合刚度弹簧结构,抵消绝大部分重力。力敏感器4安装在被动力保持系统5的固定端与中层板5-3之间,测量得到经过被动力保持系统5输出的力。主动补偿电机5安装在下层板5-5和中层板5-3之间,采用力闭环直线电机,通过推杆支撑中层板5-3进行剩余力的补偿。按照最大200kg载荷计算,不大于10%的被动力保持精度可保持参与力小于200N,主动补偿电机6可提供力补偿范围大于200N。最终,恒力保持系统2能够提供竖直方向上不超过5N(1σ)的微重力环境。
进一步的,三自由度转动系统3包括连接杆7、配重块8、气浮球轴承9、载荷10、供气气瓶11和载荷壳体12;
连接杆7上套装有一弹簧,弹簧上抵力敏感器4的下端,下抵半封闭空间的底面,连接杆7的上端在半封闭空间内与力敏感器4的下端连接,下端穿过载荷壳体12的上壳体与气浮球轴承9的球转动连接形成固定端,气浮球轴承9的球窝与载荷壳体12连接形成移动端,配重块8、载荷10和供气气瓶11设置在载荷壳体12内,其中,
供气气瓶11,用于为气浮球轴承9提供气体;
配重块8,用于将模拟系统的质心配置在气浮球轴承9的球心处,消除重力矩影响;
气浮球轴承9倒置使用,用于实现气浮球轴承偏航方向的连续转动,俯仰和滚转方向不小于60度运动。
具体的,三自由度转动系统3通过连接杆7连接在恒力保持系统2的下方,被动适应载荷10的转动,提供三自由度转动。参见图3和图4,三自由度转动系统3采用气浮球轴承9进行转动的方式实现,具有很好的适应性和容错性;气浮球轴承9能够自适应航天器载荷的偏转而产生的力矩转动,同时气浮球轴承9的摩擦力小,能够柔顺的配合航天器载荷运动。
竖直悬吊绳1与恒力保持系统2串联,提供竖直方向微重力环境,首先进行被动力保持系统5安装,可抵消大部分重力,然后由主动补偿电机6根据力敏感器4的测量结果进行补偿,提供竖直方向上的微重力环境。
进一步,连接杆7上端与恒力保持系统2相连,下端与气浮球轴承9的球相连,球窝与球在通气的情况下能够进行小摩擦转动,可认为是自由转动。
接着,使用配重块8使三自由度转动系统3的质心与球心重合。当载荷10运动时,气浮球轴承9的球窝相对球转动,产生的附加力和力矩由竖直悬吊绳1和恒力保持系统2抵消,附加力和力矩可能包含转动产生的动不平衡力矩、重力矩扰动等,从而实现悬吊式的航天器载荷三自由度自由转动微重力地面模拟。
进一步的,主动补偿电机6采用力闭环直线电机。
一种悬吊式四自由度运动模拟系统的实用方法,将竖直悬吊绳1、恒力保持系统2和三自由度转动系统3由上至下依次连接,安装载荷并使载荷静止在悬吊点下方,
进行配重块8的安装与调试,保证载荷壳体12所连接的系统整体质心大约处在气浮球轴承9的球心处,
当系统悬吊载荷时,连接杆7带动中层板5-3通过导向滑环5-2沿导向杆5-4向下滑动,弹簧压缩,以抵消大部分重力,力敏感器4测量出被动力保持系统5抵消掉的重力,得到需要主动补偿电机6补偿的力大小,由主动补偿电机6进行补偿,主动补偿电机6固定在下层板5-5上,根据力敏感器4测量出的结果控制主动补偿电机6的运动,调节力补偿大小,最终实现竖直方向连接杆7的拉力与载荷重力近似平衡,
当载荷运动时,首先由竖直悬挂绳1进行二维平动运动及竖直升降运动跟踪,保持悬吊点位置处于载荷正上方,与上述过程相同,由恒力保持系统2进行被动保持和主动补偿,维持竖直方向上恒力,接着,球窝相对球进行自由转动,来被动适应载荷转动运动;
若由于质心和球心位置存在一定偏差,产生外力和外力矩,从而改变了竖直方向力的大小,则同样先由被动力保持系统5抵消大部分变化,再由主动补偿电机6根据力敏感器4的测量结果进行补偿;
当发生竖直角度的偏转时,由竖直悬吊绳1上方的动态伺服系统保持悬吊点三自由度位置,最终,实现三自由度自由转动和竖直方向上的动态微重力模拟。
以上实施示例只是用于帮助理解本发明的方法及其核心思想,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (3)

1.一种悬吊式四自由度运动模拟系统,其特征在于,悬吊式四自由度运动模拟系统包括竖直悬吊绳(1)、恒力保持系统(2)和三自由度转动系统(3),竖直悬吊绳(1)的上端连接有由二维平动运动系统和竖直升降系统构成的动态伺服系统,恒力保持系统(2)安装在竖直悬吊绳(1)下端,三自由度转动系统(3)悬吊在恒力保持系统(2)的下方,其中,
竖直悬吊绳(1),用于提供载荷竖直方向的悬吊和升降;
恒力保持系统(2),用于提供竖直悬吊绳(1)的恒力保持;
三自由度转动系统(3),用于提供三自由度被动转动,
恒力保持系统(2)包括力敏感器(4)、被动力保持系统(5)和主动补偿电机(6),其中,
被动力保持系统(5)包括上层板(5-1)、导向滑环(5-2)、中层板(5-3)、导向杆(5-4)和下层板(5-5),上层板(5-1)与竖直悬吊绳(1)的下端连接,中层板(5-3)设有供导向杆(5-4)穿过的通孔,导向滑环(5-2)竖直设置于通孔处,导向杆(5-4)穿过导向滑环(5-2)和中层板(5-3)上的通孔,上层板(5-1)通过导向杆(5-4)连接下层板(5-5),
主动补偿电机(6)安装在下层板(5-5)上,下层板(5-5)上固定设置有一半封闭空间,力敏感器(4)的上端固定在中层板(5-3)上,下端穿过半封闭空间的顶面进入到半封闭空间中,
三自由度转动系统(3)包括连接杆(7)、配重块(8)、气浮球轴承(9)、载荷(10)、供气气瓶(11)和载荷壳体(12);
连接杆(7)上套装有一弹簧,弹簧上抵力敏感器(4)的下端,下抵半封闭空间的底面,连接杆(7)的上端在半封闭空间内与力敏感器(4)的下端连接,下端穿过载荷壳体(12)的上壳体与气浮球轴承(9)的球转动连接形成固定端,气浮球轴承(9)的球窝与载荷壳体(12)连接形成移动端,配重块(8)、载荷(10)和供气气瓶(11)设置在载荷壳体(12)内,其中,
供气气瓶(11),用于为气浮球轴承(9)提供气体;
配重块(8),用于将模拟系统的质心配置在气浮球轴承(9)的球心处,消除重力矩影响;
气浮球轴承(9)倒置使用,用于实现气浮球轴承偏航方向的连续转动,俯仰和滚转方向不小于60度运动。
2.根据权利要求1所述的一种悬吊式四自由度运动模拟系统,其特征在于,所述主动补偿电机(6)为力闭环直线电机。
3.根据权利要求1-2任一所述的一种悬吊式四自由度运动模拟系统的使用方法,其特征在于,
将竖直悬吊绳(1)、恒力保持系统(2)和三自由度转动系统(3)由上至下依次连接,安装载荷并使载荷静止在悬吊点下方,
进行配重块(8)的安装与调试,保证载荷壳体(12)所连接的系统整体质心处在气浮球轴承(9)的球心处,
当系统悬吊载荷时,连接杆(7)带动中层板(5-3)通过导向滑环(5-2)沿导向杆(5-4)向下滑动,弹簧压缩,以抵消大部分重力,力敏感器(4)测量出被动力保持系统(5)抵消掉的重力,得到需要主动补偿电机(6)补偿的力大小,由主动补偿电机(6)进行补偿,主动补偿电机(6)固定在下层板(5-5)上,根据力敏感器(4)测量出的结果控制主动补偿电机(6)的运动,调节力补偿大小,最终实现竖直方向连接杆(7)的拉力与载荷重力平衡,
当载荷运动时,首先由竖直悬吊绳(1)进行二维平动运动及竖直升降运动跟踪,保持悬吊点位置处于载荷正上方,由恒力保持系统(2)进行被动保持和主动补偿,维持竖直方向上恒力,接着,球窝相对球进行自由转动,来被动适应载荷转动运动;
若由于质心和球心位置存在一定偏差,产生外力和外力矩,从而改变了竖直方向力的大小,则同样先由被动力保持系统(5)抵消大部分变化,再由主动补偿电机(6)根据力敏感器(4)的测量结果进行补偿;
当发生竖直角度的偏转时,由竖直悬吊绳(1)上方的动态伺服系统保持悬吊点三自由度位置,最终,实现三自由度自由转动和竖直方向上的动态微重力模拟。
CN202110600514.0A 2021-05-31 2021-05-31 一种悬吊式四自由度运动模拟系统及使用方法 Active CN113212816B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110600514.0A CN113212816B (zh) 2021-05-31 2021-05-31 一种悬吊式四自由度运动模拟系统及使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110600514.0A CN113212816B (zh) 2021-05-31 2021-05-31 一种悬吊式四自由度运动模拟系统及使用方法

Publications (2)

Publication Number Publication Date
CN113212816A CN113212816A (zh) 2021-08-06
CN113212816B true CN113212816B (zh) 2022-04-12

Family

ID=77082054

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110600514.0A Active CN113212816B (zh) 2021-05-31 2021-05-31 一种悬吊式四自由度运动模拟系统及使用方法

Country Status (1)

Country Link
CN (1) CN113212816B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113619818B (zh) * 2021-08-16 2023-02-03 哈尔滨工业大学 基于气浮滑轮的六自由度微重力试验系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2618644A1 (de) * 1976-04-28 1977-11-10 Peter Rohr Transport- und abwehrsystem von bemannten raumflugkoerpern fuer die raumfahrt
CN202807110U (zh) * 2012-08-14 2013-03-20 淮安中科科创精密机械科技有限公司 半主动式重力补偿结构的气浮六自由度模拟卫星装置
CN104787363A (zh) * 2015-05-06 2015-07-22 中国科学院沈阳自动化研究所 一种卫星地面微重力动态加载模拟机构
CN107757955A (zh) * 2017-09-18 2018-03-06 北京卫星环境工程研究所 多关节空间机构重力卸载装置
CN107933980A (zh) * 2017-11-17 2018-04-20 哈尔滨工业大学 主被动结合式悬吊零重力模拟系统和模拟方法
CN108082540A (zh) * 2017-12-14 2018-05-29 哈尔滨工业大学 一种结合刀式凸轮恒力弹簧和气浮止推轴承的三维零重力模拟装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4860600A (en) * 1987-04-20 1989-08-29 Schumacher Larry L Three degree of freedom micro-gravity simulator
US5367419A (en) * 1991-10-02 1994-11-22 Alps Electric Co., Ltd. Floating magnetic head slider with flexure wings located within slider L-shaped members and upper surface of slider
CN2734737Y (zh) * 2004-07-16 2005-10-19 上海轻工业环境保护技术研究所 一种溶气水发生器
US8829899B2 (en) * 2010-01-15 2014-09-09 Vale S.A. Pneumatic vibration damping apparatus
KR20140021740A (ko) * 2012-08-09 2014-02-20 한국전자통신연구원 안테나 무중력 전개시험 장치
CN103514792B (zh) * 2013-10-10 2016-03-23 南京航空航天大学 空间六自由度气浮随动运动平台
CN103879571B (zh) * 2014-04-10 2015-04-08 北京航空航天大学 一种竖直方向恒力系统
CN106005496B (zh) * 2016-06-12 2018-01-05 北京航空航天大学 一种多点悬挂式主动重力补偿系统
CN105905320B (zh) * 2016-06-13 2017-11-10 北京航空航天大学 一种具有偏航随动的主动重力补偿系统
CN106005497B (zh) * 2016-06-13 2018-01-02 北京航空航天大学 一种悬挂式六自由度微重力环境模拟系统
CN106081173B (zh) * 2016-07-19 2018-07-06 哈尔滨工业大学 三维主动悬吊式空间飞行器微重力模拟装置
CN106644535B (zh) * 2016-09-13 2019-05-24 北京控制工程研究所 一种姿控系统全物理仿真用三自由度磁浮台
CN109515769B (zh) * 2018-11-26 2021-08-31 哈尔滨工业大学 多星悬吊式微重力模拟系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2618644A1 (de) * 1976-04-28 1977-11-10 Peter Rohr Transport- und abwehrsystem von bemannten raumflugkoerpern fuer die raumfahrt
CN202807110U (zh) * 2012-08-14 2013-03-20 淮安中科科创精密机械科技有限公司 半主动式重力补偿结构的气浮六自由度模拟卫星装置
CN104787363A (zh) * 2015-05-06 2015-07-22 中国科学院沈阳自动化研究所 一种卫星地面微重力动态加载模拟机构
CN107757955A (zh) * 2017-09-18 2018-03-06 北京卫星环境工程研究所 多关节空间机构重力卸载装置
CN107933980A (zh) * 2017-11-17 2018-04-20 哈尔滨工业大学 主被动结合式悬吊零重力模拟系统和模拟方法
CN108082540A (zh) * 2017-12-14 2018-05-29 哈尔滨工业大学 一种结合刀式凸轮恒力弹簧和气浮止推轴承的三维零重力模拟装置

Also Published As

Publication number Publication date
CN113212816A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
CN104787363B (zh) 一种卫星地面微重力动态加载模拟机构
CN107757955B (zh) 多关节空间机构重力卸载装置
CN106516181B (zh) 用于航天器在轨失重环境模拟的大承载低刚度悬吊系统
CN102520719A (zh) 具有五自由度的微重力气浮目标卫星模拟器系统
CN103085992A (zh) 空间微重力模拟实验系统
CN102556372B (zh) 一种半主动六自由度模拟装置
CN105551366B (zh) 六自由度空间机械臂地面微重力等效实验装置及实验方法
CN113525733B (zh) 双层结构的六自由度微重力试验系统
JPH0796900A (ja) 3次元自由運動装置
CN113619818B (zh) 基于气浮滑轮的六自由度微重力试验系统
CN113212816B (zh) 一种悬吊式四自由度运动模拟系统及使用方法
CN113501148B (zh) 极坐标跟踪式气浮滑轮导向配重悬吊微低重力模拟系统
CN113184234B (zh) 一种主被动混合驱动自适应重力卸载宇航员地面训练系统
CN114464070B (zh) 基于并联调姿的星球车磁悬浮重力补偿实验平台
CN110683074A (zh) 一种高动态离心过载模拟试验装置
CN108516113B (zh) 一种偏心旋转空间载荷地面调试用重力卸载方法及装置
CN113264203B (zh) 一种多目标六自由度微重力地面模拟系统及使用方法
CN111672081A (zh) 一种五自由度持续载荷模拟平台
CN210555640U (zh) 一种高动态离心过载模拟试验装置
CN116767519B (zh) 一种磁气重力平衡航天模拟器对接试验装置
CN107160377B (zh) 一种空间机械臂地面三维空间运动测试装置及方法
CN116620576A (zh) 可补偿附加质量惯性力的零重力环境模拟装置及方法
CN220147584U (zh) 一种大型无人机调试架
CN210307677U (zh) 一种船载串并混联稳定平台
CN113571905B (zh) 一种分体座架式过顶跟踪天线

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant