CN113204841B - 一种汽轮机动叶片数值校核分析方法 - Google Patents

一种汽轮机动叶片数值校核分析方法 Download PDF

Info

Publication number
CN113204841B
CN113204841B CN202110466971.5A CN202110466971A CN113204841B CN 113204841 B CN113204841 B CN 113204841B CN 202110466971 A CN202110466971 A CN 202110466971A CN 113204841 B CN113204841 B CN 113204841B
Authority
CN
China
Prior art keywords
turbine
moving blade
blade
turbine moving
analyzing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110466971.5A
Other languages
English (en)
Other versions
CN113204841A (zh
Inventor
张永海
谷伟伟
薛朝因
余小兵
居文平
宁哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Thermal Power Research Institute Co Ltd
Original Assignee
Xian Thermal Power Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Thermal Power Research Institute Co Ltd filed Critical Xian Thermal Power Research Institute Co Ltd
Priority to CN202110466971.5A priority Critical patent/CN113204841B/zh
Publication of CN113204841A publication Critical patent/CN113204841A/zh
Application granted granted Critical
Publication of CN113204841B publication Critical patent/CN113204841B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Computer Graphics (AREA)
  • Software Systems (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Control Of Turbines (AREA)

Abstract

本发明公开了一种汽轮机动叶片数值校核分析方法,本发明对汽轮机动叶片进行静态振动特性测量和数据分析,对汽轮机动叶片三维型线进行测绘,建立汽轮机动叶片三维模型、轮系的循环对称三维模型及相对应的有限元数值模型,依据汽轮机动叶片材料属性对不同工况下的汽轮机动叶片离心应力进行数值计算和评判分析;对单个汽轮机动叶片和轮系的静态、动态振动特性进行数值计算和分析评价,最后对汽轮机动叶片数值校核分析结果进行综合评价。本发明具有更广的适用性和可行性,分析结果更为精确,应用简单易懂,可以适用于各类汽轮机动叶片校核分析情况,显著提高汽轮机动叶片的安全稳定性,对提高整机安全经济性具有重要的工程应用价值。

Description

一种汽轮机动叶片数值校核分析方法
技术领域
本发明属于火电汽轮机组发电领域,具体涉及一种汽轮机动叶片数值校核分析方法。
背景技术
叶片是汽轮机的关键零部件,也是汽轮机中数量最多的零部件。在运行条件下汽轮机动叶片既承受着巨大的离心力,又承受着蒸汽作用力、腐蚀介质腐蚀和固体颗粒或高速水滴冲蚀等,其所处的工况条件及环境极为复杂、恶劣,汽轮机动叶片常发生各种原因的叶片断裂或裂纹故障。汽轮机叶片事故占了汽轮机故障的三分之一,而汽轮机叶片典型故障中,叶片损坏的主要原因既有设计问题,也有制造、运行等问题,有歧义设计问题占多数。因此汽轮机动叶片应具有足够的强度和良好的振动特性,且具有良好的空气动力特性,以达到较高的效率和安全性能。
近几年来,为解决日益严重的弃风(光、水)问题,提高新能源的消纳能力,提高火电机组的运行灵活性已是迫在眉睫的任务,使机组具备深度调峰能力,并进一步增加负荷响应速率,部分火电机组具备快速启停调峰能力。汽轮机运行工况严重偏离了设计工况,汽轮机动叶片运行的环境和工况更加恶劣,更容易出现各种故障问题,将严重威胁到汽轮机组的安全运行,因此迫切需要在叶片设计校核阶段考虑叶片应适应复杂而宽泛的运行工况,避免出现各种故障问题,并提高汽轮机动叶片的疲劳寿命及安全性。
现有汽轮机动叶片数值校核方法和技术,已经不能满足当前汽轮机叶片设计特点和要求,对汽轮机轮系的接触方式及循环对称模型处理存在一定的弊端,数值计算结果存在较大的偏差,对机组汽轮机动叶片设计和制造都有一定的影响,且存在着程序繁杂、设计校核周期多长、人员投入过多及费用较高等诸多问题,无形之中增加了汽轮机动叶片设计开发的过程和研发费用,且所制造的汽轮机动叶片与设计情况偏差较大,采用旧的数值校核方法所生产的机组存在技术误差,机组系统后续运行有安全风险。
发明内容
本发明的目的在于克服上述不足,提供一种汽轮机动叶片数值校核分析方法,对汽轮机动叶片数值校核分析结果进行综合评价。
为了达到上述目的,本发明包括以下步骤:
S1,建立汽轮机动叶片三维模型和轮系的循环对称三维模型;
S2,对单个汽轮机动叶片进行静态振动特性测量和数据分析;
S3,建立汽轮机动叶片相对应的有限元数值模型和轮系的循环对称模型;
S4,对不同工况下的汽轮机动叶片离心应力数值计算和分析,并对离心应力状况进行评判分析;
S5,对单个汽轮机动叶片的静态振动特性进行计算分析,并与测试数据对比评价分析;
S6,对汽轮机动叶片的轮系静态、动态振动特性进行计算分析和评价;
S7,对汽轮机动叶片数值校核分析结果进行综合评价。
2、根据权利要求1所述的一种汽轮机动叶片数值校核分析方法,其特征在于,S1的具体方法如下:
S11,对汽轮机动叶片进行三维扫描测绘,获到汽轮机动叶片三维数据;
S12,根据测绘数据和真实汽轮机叶片相应的状况,建立单个汽轮机动叶片三维数值模型和轮系的循环对称三维模型。
S2中,对汽轮机动叶片静频率现场测量数据进行整理和分析评价和数据分析。
S3中,根据汽轮机动叶片三维模型、动叶片装配工艺、设计要求及汽轮机转速条件,对汽轮机动叶片静频率现场测量数据进行整理和分析评价和数据分析。
S4中,根据汽轮机动叶片的有限元数值模型和材料属性,根据汽轮机动叶片材料性能,对同工况下的汽轮机动叶片离心应力数值结果进行分析和评价。
S5,根据汽轮机动叶片的装配工艺、设计要求、转速及叶片之间接触间隙要求,对单个汽轮机动叶片的静态振动特性进行计算分析。
S6中,根据汽轮机动叶片装配工艺、设计要求、转速及叶片之间间隙的要求,对汽轮机动叶片的轮系静态、动态振动特性进行计算分析。
S6中,根据汽轮机动叶片设计数据和静态、动态振动特性进行计算结果,对汽轮机动叶片安全性进行评价分析。
S7中,依据汽轮机动叶片设计、制造、安装工艺及材料相关的技术资料和数据,对汽轮机动叶片数值校核分析结果进行综合评价。
与现有技术相比,本发明对汽轮机动叶片进行静态振动特性测量和数据分析,对汽轮机动叶片三维型线进行测绘,建立汽轮机动叶片三维模型、轮系的循环对称三维模型及相对应的有限元数值模型,依据汽轮机动叶片材料属性对不同工况下的汽轮机动叶片离心应力进行数值计算和评判分析;对单个汽轮机动叶片和轮系的静态、动态振动特性进行数值计算和分析评价,最后对汽轮机动叶片数值校核分析结果进行综合评价。本发明具有更广的适用性和可行性,分析结果更为精确,应用简单易懂,可以适用于各类汽轮机动叶片校核分析情况,显著提高汽轮机动叶片的安全稳定性,对提高整机安全经济性具有重要的工程应用价值,解决了多年来汽轮机动叶片数值模型处理和计算的约束不到位、准度不高等相关难题。本方法高效便捷,可以使汽轮机动叶片设计校核过程和周期得到很大的缩短,减少了设计时间和费用,汽轮机通流安全性和可用性有了大大的提高,对当前形势下的火电机组常态化深度调峰运行的安全性保障具有重要的积极意义。
具体实施方式
下面对本发明做进一步说明。
本发明包括以下步骤:
步骤101,开展汽轮机动叶片研发、设计、应用及试验等相应的背景情况调查和分析;
步骤102,对汽轮机动叶片设计、安装工艺、检验及试验等相关技术资料和数据收集及整理;
步骤103,依据汽轮机动叶片研究背景、情况及相关资料,分析汽轮机动叶片数值校核内容及目标。
步骤201,对汽轮机动叶片进行三维扫描测绘,获到汽轮机动叶片三维数据;
步骤202,根据测绘数据和真实汽轮机叶片相应的状况,建立单个汽轮机动叶片三维数值模型和轮系的循环对称三维模型。
步骤301,根据汽轮机动叶片设计及其他相应材料,加工适合于汽轮机动叶片叶根安装要求的夹具;
步骤302,利用测试仪器系统对单个汽轮机动叶片进行静态振动特性测量;
步骤303,对汽轮机动叶片静频率现场测量数据进行整理和分析评价和数据分析。
步骤401,根据汽轮机动叶片三维模型、动叶片装配工艺、设计要求及汽轮机转速等条件和情况,建立汽轮机动叶片相对应的有限元数值模型;
步骤402,根据汽轮机动叶片三维模型、动叶片装配工艺、设计要求及汽轮机转速等条件和情况,建立汽轮机轮系相对应的循环对称数值模型。
步骤501,依据汽轮机动叶片有限元数值模型和材料属性,对不同工况下的汽轮机动叶片离心应力进行数值计算;
步骤502,根据汽轮机动叶片材料性能,对同工况下的汽轮机动叶片离心应力数值结果进行分析和评价。
步骤601,依据汽轮机动叶片装配工艺、设计要求及转速等相关资料和要求,对单个汽轮机动叶片的静态振动特性进行计算分析,并与测试数据对比评价分析;
步骤602,依据汽轮机动叶片装配工艺、设计要求、转速及叶片之间间隙等相关资料和要求,对汽轮机动叶片的轮系静态、动态振动特性进行计算分析;
步骤603,根据汽轮机动叶片设计数据和静态、动态振动特性进行计算结果,对汽轮机动叶片安全性进行评价分析。
步骤701,依据汽轮机动叶片设计、制造、安装工艺及材料等相关的技术资料和数据,对汽轮机动叶片数值校核分析结果进行综合评价。
已有的各种汽轮机动叶片设计校核方法,对汽轮机轮系的接触方式及循环对称模型处理存在一定的弊端,数值计算结果存在较大的偏差,对机组汽轮机动叶片设计和制造都有一定的影响,从而增加了汽轮机动叶片设计开发的过程和研发费用,且所制造的汽轮机动叶片与设计情况偏差较大,采用旧的数值校核方法所生产的机组存在技术误差,机组系统后续运行仍有一定安全风险。
本发明通过汽轮机动叶片设计、安装工艺、检验及试验等相关技术资料和数据收集整理,对汽轮机动叶片进行静态振动特性测量和数据分析,对汽轮机动叶片三维型线进行测绘,建立汽轮机动叶片三维模型、轮系的循环对称三维模型及相对应的有限元数值模型,依据汽轮机动叶片材料属性对不同工况下的汽轮机动叶片离心应力进行数值计算和评判分析;依据汽轮机动叶片装配工艺、设计要求、转速及叶片之间接触间隙等相关资料和要求,对单个汽轮机动叶片和轮系的静态、动态振动特性进行数值计算和分析评价,最后依据汽轮机动叶片设计、制造、安装工艺及材料等相关的技术资料和数据,对汽轮机动叶片数值校核分析结果进行综合评价。本发明的技术方法具有更广的适用性和可行性,分析结果更为精确、高效便捷、简单易懂,并已在多次的汽轮机动叶片分析校核和故障数值分析中得到较好的验证和应用,解决了数值计算处理和计算精度问题,圆满解决了困扰电厂多年的故障原因问题,保证了电厂机组汽轮机长期安全运行。本发明可以使汽轮机动叶片设计校核过程和周期得到很大的缩短,减少了设计时间和费用,汽轮机通流安全性和可用性有了大大的提高。

Claims (1)

1.一种汽轮机动叶片数值校核分析方法,其特征在于,包括以下步骤:
步骤1,对汽轮机动叶片进行三维扫描测绘,获到汽轮机动叶片三维数据;
步骤2,根据测绘数据和真实汽轮机叶片相应的状况,建立单个汽轮机动叶片三维数值模型和轮系的循环对称三维模型;
步骤3,利用测试仪器系统对单个汽轮机动叶片进行静态振动特性测量;
步骤4,对汽轮机动叶片静频率现场测量数据进行整理和分析评价和数据分析;
步骤5,根据汽轮机动叶片三维模型、动叶片装配工艺、设计要求及汽轮机转速条件和情况,建立汽轮机动叶片相对应的有限元数值模型;
步骤6,根据汽轮机动叶片三维模型、动叶片装配工艺、设计要求及汽轮机转速条件和情况,建立汽轮机轮系相对应的循环对称数值模型;
步骤7,依据汽轮机动叶片有限元数值模型和材料属性,对不同工况下的汽轮机动叶片离心应力进行数值计算;
步骤8,根据汽轮机动叶片材料性能,对同工况下的汽轮机动叶片离心应力数值结果进行分析和评价;
步骤9,依据汽轮机动叶片装配工艺、设计要求及转速相关资料和要求,对单个汽轮机动叶片的静态振动特性进行计算分析,并与测试数据对比评价分析;
步骤10,依据汽轮机动叶片装配工艺、设计要求、转速及叶片之间间隙相关资料和要求,对汽轮机动叶片的轮系静态、动态振动特性进行计算分析;
步骤11,根据汽轮机动叶片设计数据和静态、动态振动特性进行计算结果,对汽轮机动叶片安全性进行评价分析;
步骤12,依据汽轮机动叶片设计、制造、安装工艺及材料相关的技术资料和数据,对汽轮机动叶片数值校核分析结果进行综合评价。
CN202110466971.5A 2021-04-28 2021-04-28 一种汽轮机动叶片数值校核分析方法 Active CN113204841B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110466971.5A CN113204841B (zh) 2021-04-28 2021-04-28 一种汽轮机动叶片数值校核分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110466971.5A CN113204841B (zh) 2021-04-28 2021-04-28 一种汽轮机动叶片数值校核分析方法

Publications (2)

Publication Number Publication Date
CN113204841A CN113204841A (zh) 2021-08-03
CN113204841B true CN113204841B (zh) 2023-09-05

Family

ID=77029211

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110466971.5A Active CN113204841B (zh) 2021-04-28 2021-04-28 一种汽轮机动叶片数值校核分析方法

Country Status (1)

Country Link
CN (1) CN113204841B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005092358A (ja) * 2003-09-12 2005-04-07 Mitsubishi Heavy Ind Ltd 回転機械翼の設計方法及び設計システム
CN107340109A (zh) * 2017-06-15 2017-11-10 大唐东北电力试验研究所有限公司 叶片振动评价方法、装置及便携式叶片振动特性评价装置
CN110032814A (zh) * 2019-04-18 2019-07-19 哈尔滨汽轮机厂有限责任公司 一种汽轮机t型叶根预扭叶片的有限元分析方法
CN110887899A (zh) * 2019-11-27 2020-03-17 西安交通大学 一种汽轮机叶片水蚀缺陷监测与识别方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10360326B2 (en) * 2016-05-18 2019-07-23 Solar Turbines Incorporated Method for determining vibratory contact stress at a blade attachment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005092358A (ja) * 2003-09-12 2005-04-07 Mitsubishi Heavy Ind Ltd 回転機械翼の設計方法及び設計システム
CN107340109A (zh) * 2017-06-15 2017-11-10 大唐东北电力试验研究所有限公司 叶片振动评价方法、装置及便携式叶片振动特性评价装置
CN110032814A (zh) * 2019-04-18 2019-07-19 哈尔滨汽轮机厂有限责任公司 一种汽轮机t型叶根预扭叶片的有限元分析方法
CN110887899A (zh) * 2019-11-27 2020-03-17 西安交通大学 一种汽轮机叶片水蚀缺陷监测与识别方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Sun Cai ; Dan-mei Xie ; Cheng-cheng Tan ; Yong Qian ; Xian-bo Zhao ; Wang-fan Li.Numerical Simulation of Suction Slot Structure on the LP Last Stage Stationary Blades of Steam Turbine.IEEE.2010,全文. *

Also Published As

Publication number Publication date
CN113204841A (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
CN109085814B (zh) 一种火电汽轮机组整体设备系统延寿评估方法
CN107489464B (zh) 汽轮发电机组故障预警方法及系统
CN102507205B (zh) 一种检测航空发动机风扇叶片颤振故障的方法
CN110702394B (zh) 一种基于振动变化特征的汽轮发电机组振动故障诊断方法
CN104019000A (zh) 风力发电机组的载荷谱测定与前瞻性维护系统
CN105508149B (zh) 用于风力发电机组的故障检测方法及装置
CN105184059A (zh) 一种基于海量数据的水电机组状态分析评估方法
CN105021334A (zh) 基于多权值神经网络的风机能耗监测识别方法
CN112417733B (zh) 超期服役水轮发电机组剩余寿命的综合评估方法
CN103711645A (zh) 基于建模参数特征分析的风力发电机组状态评估方法
CN113158352B (zh) 基于关键部件的水轮发电机组剩余使用寿命的评估方法
CN105424333A (zh) 一种风力机叶片现场损伤监测与识别方法
CN103925155A (zh) 一种风电机组输出功率异常的自适应检测方法
CN113221424A (zh) 一种汽轮机动叶片故障原因综合分析方法
CN103196689B (zh) 一种水平轴风力机叶片静力测试结果修正方法
CN113204841B (zh) 一种汽轮机动叶片数值校核分析方法
CN102900600B (zh) 风力发电机状态监测方法
Entezami et al. Wind turbine condition monitoring system
CN114295367A (zh) 一种风电机组齿轮箱工况在线监测方法
CN113532776B (zh) 一种发电机轴瓦瓦枕绝缘垫失效诊断方法及系统
Francois Vibratory detection system of cavitation erosion: historic and algorithm validation
CN114542402A (zh) 一种基于多参量分析的风电叶片故障类型在线诊断方法及系统
CN111767873B (zh) 一种水轮机活动导叶流场叠加振动频率判别的方法
Shi et al. An on-line cavitation monitoring system for large Kaplan turbines
CN110943485A (zh) 双馈风电场等值模型仿真可信度的指标评价方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant