CN113204256A - 一种界面智能检查仪的光电转换电路及温度控制方法 - Google Patents

一种界面智能检查仪的光电转换电路及温度控制方法 Download PDF

Info

Publication number
CN113204256A
CN113204256A CN202110482785.0A CN202110482785A CN113204256A CN 113204256 A CN113204256 A CN 113204256A CN 202110482785 A CN202110482785 A CN 202110482785A CN 113204256 A CN113204256 A CN 113204256A
Authority
CN
China
Prior art keywords
circuit
constant current
current source
photoelectric conversion
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110482785.0A
Other languages
English (en)
Other versions
CN113204256B (zh
Inventor
田中山
董珊珊
杨昌群
井健
牛道东
李萌
王现中
李炯钰
李育特
杨露
张彪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Aerospace Propulsion Institute
Xian Aerospace Yuanzheng Fluid Control Co Ltd
China Oil and Gas Pipeline Network Corp South China Branch
Original Assignee
Xian Aerospace Propulsion Institute
Xian Aerospace Yuanzheng Fluid Control Co Ltd
China Oil and Gas Pipeline Network Corp South China Branch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Aerospace Propulsion Institute, Xian Aerospace Yuanzheng Fluid Control Co Ltd, China Oil and Gas Pipeline Network Corp South China Branch filed Critical Xian Aerospace Propulsion Institute
Priority to CN202110482785.0A priority Critical patent/CN113204256B/zh
Publication of CN113204256A publication Critical patent/CN113204256A/zh
Application granted granted Critical
Publication of CN113204256B publication Critical patent/CN113204256B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/30Automatic controllers with an auxiliary heating device affecting the sensing element, e.g. for anticipating change of temperature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明提出了一种应用于油品界面智能检查仪的光电转换电路及其温度控制方法,所述光电转换电路包括光源敏感元件、可调恒流源电路、光电信号隔离放大电路和信号调理电路;所述可调恒流源电路与所述光电信号隔离放大电路进行电连接;所述光电信号隔离放大电路与所述光源敏感元件进行电连接;所述信号调理电路分别与所述可调恒流源电路和光电信号隔离放大电路进行电连接。通过可调恒流源电路有效提高电流的控制精度和电流稳定性,结合所述光电转换电路的整体结构,能够有效提高光电转换电路的输出光源强度的一致性和光电转换运行的稳定性。再利用闭环温度控制方法有效提高了光电转换电路周围的温度,进一步增加了信号的稳定性。

Description

一种界面智能检查仪的光电转换电路及温度控制方法
技术领域
本发明属于智能检测设备技术领域,具体的本发明属于油品界面智能检查仪领域。
背景技术
成品油管道一般采用顺序输送多种油品,相邻批次油品之间必然产生混油,混油段的跟踪和混油量的控制是成品油管道的关键技术,特别是在地形复杂、高差起伏大的地区建成的成品油管道,其混油特性、工艺过程控制及运行管理更为复杂,且混油处理、贬值存在经济损失。
现在世界各大管道公司都采用适用于所辖成品油管道的混油计算公式,目前还没有公认的与实际完全相符的混油计算公式。所以精密度较高的混油界面检测装置就变得极为重要,如果能够准确检测计算准确与否则变的不再那么重要。
为了准确检测混油界面,人们尝试过密度法、也尝试过精度较高的透射光法,天津大学还提出了一种基于能流比的管道界面检测仪的研究,但是这些检测方法都存在混油界面检测性能差,尤其密度法检测响应慢,对密度本就区分不大的油品区分能力差。光学界面检测相对于密度测试更有优越性,但是现有光学界面检测装置及检测方法光电转换电路稳定性较低、输出光源强度一致性较差。
发明内容
本发明提供了一种界面智能检查仪的光电转换电路及温度控制方法,用以解决油品界面智能检查仪实际应用过程中光电转换电路稳定性较低、输出光源强度一致性较差的问题,通过不断研究发现输出光源强度一致性较差的原因来自于发光器件(半导体激光器)对温度变化较敏感,一般情况下,温度会影响发光器件的发光波长、发光强度及寿命等,从而影响反射光强的大小,对信号的准确判断非常不利,因此恒温的环境对方法的应用非常重要。
本发明对油品界面智能检查仪的控制箱中恒温区做了加热、内循环及保温隔热处理,并在半导体激光器附近设有温度检测芯片,可得到恒温区实时温度,根据该温度和设定温度,采用闭环温度控制算法,调节PWM输出百分比,从而控制加热器的通断,最终使该区域处于恒温状态。再结合配套的光电转换电路提高光电转换电路稳定性和输出光源强度一致性,具体的,所采取的的技术方案如下:
本发明提出的一种应用于油品界面智能检查仪的光电转换电路,所述光电转换电路包括光源敏感元件、可调恒流源电路、光电信号隔离放大电路和信号调理电路;所述可调恒流源电路与所述光电信号隔离放大电路进行电连接;所述光电信号隔离放大电路与所述光源敏感元件进行电连接;所述信号调理电路分别与所述可调恒流源电路和光电信号隔离放大电路进行电连接。
进一步地,所述可调恒流源电路包括第一恒流源电路和第二恒流源电路;所述第一恒流源电路和第二恒流源电路通过跳线焊盘进行跳线连接。
进一步地,所述第一恒流源电路与第二恒流源电路的电路结构相同。
进一步地,所述第一恒流源电路和第二恒流源电路均为以ADG409BR芯片为核心的电源电路结构。
进一步地,所述可调恒流源电路还包括开关稳压电路;所述开关稳压电路分别与所述第一恒流源电路和第二恒流源电路进行电连接。
进一步地,所述开关稳压电路以TPS54060ADRCT芯片为核心的电路结构。
进一步地,所述光电信号隔离放大电路包括第一隔离放大电路和第二隔离放大电路;所述第一隔离放大电路与第一恒流源电路进行电连接;所述第二隔离放大电路与第二恒流源电路进行电连接。
进一步地,所述第一隔离放大电路和第二隔离放大电路的电路结构相同。所述第一隔离放大电路和第二隔离放大电路的输出端通过跳线焊盘进行跳线连接。
进一步地,所述光电转换电路还包括温度控制电路,用于给所述光电转换电路提供恒定温度;
所述温度控制电路采用常闭式温控开关,所述油品界面智能检查仪运行时,所述常闭式温控开关正常工作,当所述油品界面智能检查仪的温度低于预先设置的温度值时,所述常闭式温控开关迅速打开,对所述油品界面智能检查仪内部进行加热,使所述油品界面智能检查仪的光源及光敏器件始终保持在恒定的温度下;所述光电转换电路还包括光纤收发接口,所述光纤收发接口是光信号的收发器件,并与光纤进行直接连接;所述光纤收发接口将发光器件信号输出至光纤探头,并将光纤探头采集到的信号转换成光电流信号传回光电转换电路。
进一步地,所述光电转换电路还包括光纤收发接口,所述光纤收发接口是光信号的收发器件,并与光纤进行直接连接;所述光纤收发接口将发光器件信号输出至光纤探头,并将光纤探头采集到的信号转换成光电流信号传回光电转换电路。
本发明还提供了一种应用于油品界面智能检查仪温度控制方法,光电转换电路周围设有加热模块、内循环模块和保温隔热材料,并在检查仪的光电器件附近位置设计有温度采集电路,采用加热模块、内循环模块、温度采集电路配合温度控制方法进行温度控制,温度控制方法为闭环温度控制控制方法。
进一步地,本发明所述闭环温度控制方法包括如下步骤:
(1)初始化闭环控制参数,包括算法输出值Output(k)、本次误差e(k)、上次误差e(k-1)及累计误差和ErrSum,其值都为0,其中输出值Output(k)单位为%,初始化输出最大值OutMax为100、输出最小值OutMin为30,单位为%,设置闭环控制参数Kp、Ki、Kd。
(2)当到达检测周期时采集光电转换电路周围温度ADT,并获取外部输入的设定温度SetT,再将设定温度SetT与采集温度ADT进行对比。
(3)如果设定温度SetT与采集温度ADT差值小于0.15℃,则调整算法输出值为0%,加热器完全关闭停止加热。
(4)如果设定温度SetT与采集温度ADT差值大于7℃,则调整算法输出值为100%,加热器完全打开采取全功率加热。
(5)如果设定温度SetT与采集温度ADT差值在7℃到0.15℃之间,根据PID算法计算输出值Output(k)。
(6)若计算输出值Output(k)大于OutMax,则让输出值按照OutMax输出,即100%,若计算输出值Output(k)小于OutMin,则让输出值按照OutMin输出,即30%。
(7)根据输出值Output(k)调节PWM占空比,输出控制信号,控制加热器全功率或间歇性工作,最终实现温度控制。
更进一步,本发明所述检测周期为300s。
本发明有益效果:
本发明提出的一种应用于油品界面智能检查仪的光电转换电路及其控制方法,通过可调恒流源电路有效提高电流的控制精度和电流稳定性,结合所述光电转换电路的整体结构,能够有效提高光电转换电路的输出光源强度的一致性和光电转换运行的稳定性。再利用闭环温度控制方法有效提高了光电转换电路周围的温度,进一步增加了信号的稳定性。同时,所述光电转换电路能够有效提高所述油品界面智能检查仪在实际工业领域的实用性,有效提高油品物理参数检测的精度和准确度。
附图说明
图1为本发明所述可调恒流源电路和光电信号隔离放大电路的电路原理图一;
图2为本发明所述可调恒流源电路和光电信号隔离放大电路的电路原理图二;
图3为本发明所述开关稳压电路的电路原理图;
图4为本发明所述温度控制电路的电路原理图;
图5为本发明温度控制流程图。
具体实施方式
下面,结合附图以及具体实施方式,对本申请做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
在发明实施例的描述中,需要说明的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“顶”、“底”、“内”、“外”和“竖着”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明实施例的描述中,需要说明的是,除非另有明确规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接连接,亦可以是通过中间媒介间接连接,可以是两个部件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,在本发明实施例的描述中,除非另有说明,“多个”、“多组”、“多根”的含义是两个或两个以上。如涉及“第一”、“第二”等的描述仅用于描述目的,并非特别指称次序或顺位的意思,亦非用以限定本发明,其仅仅是为了区别以相同技术用语描述的组件或操作而已,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
以下实施方式中所用材料、仪器和方法,未经特殊说明,均为本领域常规材料、仪器和方法,均可通过商业渠道获得。
实施例一:本发明应用于油品界面智能检查仪的光电转换电路
本发明提供了一种应用于油品界面智能检查仪的光电转换电路,用以解决油品界面智能检查仪实际应用过程中光电转换电路稳定性较低、光源强度一致性较差的问题。
本发明实施例提出的一种应用于油品界面智能检查仪的光电转换电路,如图1至图4所示,所述光电转换电路包括光源敏感元件、可调恒流源电路、光电信号隔离放大电路和信号调理电路;所述可调恒流源电路与所述光电信号隔离放大电路进行电连接;所述光电信号隔离放大电路与所述光源敏感元件进行电连接;所述信号调理电路分别与所述可调恒流源电路和光电信号隔离放大电路进行电连接。
具体的,如图1和图2所示,所述可调恒流源电路包括第一恒流源电路和第二恒流源电路;所述第一恒流源电路和第二恒流源电路通过跳线焊盘进行跳线连接。所述第一恒流源电路与第二恒流源电路的电路结构相同。并且,所述第一恒流源电路和第二恒流源电路均为以ADG409BR芯片为核心的电源电路结构。所述光电信号隔离放大电路包括第一隔离放大电路和第二隔离放大电路;所述第一隔离放大电路与第一恒流源电路进行电连接;所述第二隔离放大电路与第二恒流源电路进行电连接。所述第一隔离放大电路和第二隔离放大电路的电路结构相同。所述第一隔离放大电路和第二隔离放大电路的输出端通过跳线焊盘进行跳线连接。其中,可调恒流源电路用于产生发光器件所需的驱动电流,本实施例的可调恒流源电路结构能够有效提高电流的控制精度和控制稳定性,进而有效提高输出光源强度的一致性和光源强度的稳定性。
光电流信号隔离放大电路是对光源敏感元件转换出的光电流信号进行放大和调理的电路,由于光电流信号本身幅值非常小,通过本实施例的电路结构的光电流信号隔离放大电路能够无有效放大光电流信号的信噪比,降低信号的失真。
信号调理电路是对输出的恒流源和输入的光电流信号进行多级滤波和调理的电路,有效提高信号传输的质量和滤波效果。
其中,所述可调恒流源电路还包括开关稳压电路;所述开关稳压电路分别与所述第一恒流源电路和第二恒流源电路进行电连接。所述开关稳压电路的电路结构如图3所示,所述开关稳压电路以TPS54060ADRCT芯片为核心的电路结构。
同时,所述光电转换电路还包括温度控制电路,用于给所述光电转换电路提供恒定温度;所述温度控制电路的电路结构如图4所示,所述温度控制电路采用常闭式温控开关,具体以TMP36FSZ芯片为核心的电路结构。所述油品界面智能检查仪运行时,所述常闭式温控开关正常工作,当所述油品界面智能检查仪的温度低于预先设置的温度值时,所述常闭式温控开关迅速打开,对所述油品界面智能检查仪内部进行加热,使所述油品界面智能检查仪的光源时钟保持在恒定的温度下。
所述光电转换电路还包括光纤收发接口,所述光纤收发接口是光信号的收发器件,并与光纤进行直接连接;所述光纤收发接口将发光器件信号输出至光纤探头,并将光纤探头采集到的信号转换成光电流信号传回光电转换电路。
本实施例提出的一种应用于油品界面智能检查仪的光电转换电路,通过可调恒流源电路有效提高电流的控制精度和电流稳定性。结合所述光电转换电路的整体结构,能够有效提高光电转换电路的输出光源强度的一致性和光电转换运行的稳定性。同时,所述光电转换电路能够有效提高所述油品界面智能检查仪在实际工业领域的实用性,有效提高油品物理参数检测的精度和准确度。
实施列二:本发明应用于油品界面智能检查仪温度控制方法
本发明还提供了一种应用于油品界面智能检查仪温度控制方法,本发明应用于油品界面智能检查仪中恒温区设有加热模块、内循环模块和保温隔热材料,并在检查仪的半导体激光器旁边设有温度检测芯片,采用加热模块、内循环模块、温度检测芯片配合温度控制方法进行温度控制,温度控制方法为闭环温度控制控制方法。
进一步地,本发明所述闭环温度控制方法包括如下步骤:
(1)初始化闭环控制参数,包括算法输出值Output(k)、本次误差e(k)、上次误差e(k-1)及累计误差和ErrSum,其值都为0,其中输出值Output(k)单位为%,初始化输出最大值OutMax为100、输出最小值OutMin为30,单位为%。设置闭环控制参数Kp、Ki、Kd。
(2)当到达检测周期时采集光电转换电路周围温度ADT,并获取外部输入的设定温度SetT,再将设定温度SetT与采集温度ADT进行对比。
(3)如果设定温度SetT与采集温度ADT差值小于0.15℃,则调整算法输出值为0%,加热器完全关闭停止加热。
(4)如果设定温度SetT与采集温度ADT差值大于7℃,则调整算法输出值为100%,加热器完全打开采取全功率加热。
(5)如果设定温度SetT与采集温度ADT差值在7℃到0.15℃之间,根据PID算法计算输出值Output(k)。
(6)若计算输出值Output(k)大于OutMax,则让输出值按照OutMax输出,即100%,若计算输出值Output(k)小于OutMin,则让输出值按照OutMin输出,即30%。
(7)根据输出值Output(k)调节PWM占空比,输出控制信号,控制加热器全功率或间歇性工作,最终实现温度控制。
更进一步,本发明所述检测周期为300s。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

1.一种应用于油品界面智能检查仪的光电转换电路,其特征在于,所述光电转换电路包括光源敏感元件、可调恒流源电路、光电信号隔离放大电路和信号调理电路;所述可调恒流源电路与所述光电信号隔离放大电路进行电连接;所述光电信号隔离放大电路与所述光源敏感元件进行电连接;所述信号调理电路分别与所述可调恒流源电路和光电信号隔离放大电路进行电连接。
2.根据权利要求1所述光电转换电路,其特征在于,所述可调恒流源电路包括第一恒流源电路和第二恒流源电路;所述第一恒流源电路和第二恒流源电路通过跳线焊盘进行跳线连接;所述第一恒流源电路与第二恒流源电路的电路结构相同;所述第一恒流源电路和第二恒流源电路均为以ADG409BR芯片为核心的电源电路结构。
3.根据权利要求2所述光电转换电路,其特征在于,所述可调恒流源电路还包括开关稳压电路;所述开关稳压电路分别与所述第一恒流源电路和第二恒流源电路进行电连接。
4.根据权利要求3所述光电转换电路,其特征在于,所述开关稳压电路以TPS54060ADRCT芯片为核心的电路结构。
5.根据权利要求2所述光电转换电路,其特征在于,所述光电信号隔离放大电路包括第一隔离放大电路和第二隔离放大电路;所述第一隔离放大电路与第一恒流源电路进行电连接;所述第二隔离放大电路与第二恒流源电路进行电连接;所述第一隔离放大电路和第二隔离放大电路的电路结构相同。
6.根据权利要求1所述光电转换电路,其特征在于,所述光电转换电路还包括温度控制电路,用于给所述光电转换电路提供恒定温度。
7.根据权利要求6所述光电转换电路,其特征在于,所述温度控制电路采用常闭式温控开关,所述油品界面智能检查仪运行时,所述常闭式温控开关正常工作,当所述油品界面智能检查仪的温度低于预先设置的温度值时,所述常闭式温控开关迅速打开,对所述油品界面智能检查仪内部进行加热,使所述油品界面智能检查仪的光源及光敏器件始终保持在恒定的温度下;所述光电转换电路还包括光纤收发接口,所述光纤收发接口是光信号的收发器件,并与光纤进行直接连接;所述光纤收发接口将发光器件信号输出至光纤探头,并将光纤探头采集到的信号转换成光电流信号传回光电转换电路。
8.一种应用于油品界面智能检查仪温度控制方法,其特征在于,光电转换电路周围设有加热模块、内循环模块和保温隔热材料,并在检查仪的光电器件附近位置设计有温度采集电路,采用加热模块、内循环模块、温度采集电路配合温度控制方法进行温度控制,温度控制方法为闭环温度控制方法。
9.如权利要求8所示的一种应用于油品界面智能检查仪温度控制方法,其特征在于,所述闭环温度控制方法包括如下步骤:
(1)初始化闭环控制参数,包括算法输出值Output(k)、本次误差e(k)、上次误差e(k-1)及累计误差和ErrSum,其值都为0,其中输出值Output(k)单位为%,初始化输出最大值OutMax为100、输出最小值OutMin为30,单位为%,设置闭环控制参数Kp、Ki、Kd;
(2)当到达检测周期时采集光电转换电路周围温度ADT,并获取外部输入的设定温度SetT,再将设定温度SetT与采集温度ADT进行对比;
(3)如果设定温度SetT与采集温度ADT差值小于0.15℃,则调整算法输出值为0%,加热器完全关闭停止加热;
(4)如果设定温度SetT与采集温度ADT差值大于7℃,则调整算法输出值为100%,加热器完全打开采取全功率加热;
(5)如果设定温度SetT与采集温度ADT差值在7℃到0.15℃之间,根据PID算法计算输出值Output(k);
(6)若计算输出值Output(k)大于OutMax,则让输出值按照OutMax输出,即100%,若计算输出值Output(k)小于OutMin,则让输出值按照OutMin输出,即30%;
(7)根据输出值Output(k)调节PWM占空比,输出控制信号,控制加热器全功率或间歇性工作,最终实现温度控制。
10.如权利要求9所示的一种应用于油品界面智能检查仪温度控制方法,其特征在于,所述检测周期为300ms。
CN202110482785.0A 2021-04-30 2021-04-30 一种界面智能检查仪的光电转换电路及温度控制方法 Active CN113204256B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110482785.0A CN113204256B (zh) 2021-04-30 2021-04-30 一种界面智能检查仪的光电转换电路及温度控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110482785.0A CN113204256B (zh) 2021-04-30 2021-04-30 一种界面智能检查仪的光电转换电路及温度控制方法

Publications (2)

Publication Number Publication Date
CN113204256A true CN113204256A (zh) 2021-08-03
CN113204256B CN113204256B (zh) 2022-07-01

Family

ID=77030173

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110482785.0A Active CN113204256B (zh) 2021-04-30 2021-04-30 一种界面智能检查仪的光电转换电路及温度控制方法

Country Status (1)

Country Link
CN (1) CN113204256B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080062296A1 (en) * 2006-09-07 2008-03-13 Canon Kabushiki Kaisha Photoelectric conversion device and imaging device
JP2009071182A (ja) * 2007-09-14 2009-04-02 Sony Corp 固体撮像装置及びその製造方法、並びにカメラ
CN102196197A (zh) * 2010-03-08 2011-09-21 佳能株式会社 光电转换装置
CN102325240A (zh) * 2010-05-12 2012-01-18 佳能株式会社 光电转换装置
CN103134768A (zh) * 2013-01-29 2013-06-05 江南大学 基于近红外光谱技术的便携式专用地沟油检测系统
WO2013180016A1 (en) * 2012-06-01 2013-12-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and alarm device
CN103825179A (zh) * 2014-03-24 2014-05-28 深圳市杰普特电子技术有限公司 一种脉冲波形可调的光纤激光器及其调制方法
CN104158591A (zh) * 2014-09-02 2014-11-19 陈思源 模块化可扩展电源装置及光波信号发射装置
CN105141266A (zh) * 2015-07-31 2015-12-09 华中科技大学 一种模拟信号光电隔离放大器
CN105813354A (zh) * 2016-01-22 2016-07-27 中国民用航空总局第二研究所 一种基于以太网无源光网络技术的助航灯具控制器
CN205611001U (zh) * 2016-05-12 2016-09-28 中节能晶和照明有限公司 一种高压线性恒流pwm光电隔离接收端
WO2017130728A1 (ja) * 2016-01-29 2017-08-03 ソニー株式会社 固体撮像装置および電子機器
CN109029516A (zh) * 2018-08-07 2018-12-18 吉林大学 一种多用途光纤传感器
CN208673067U (zh) * 2018-05-30 2019-03-29 比亚迪股份有限公司 二乘二取二输出接口电路

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080062296A1 (en) * 2006-09-07 2008-03-13 Canon Kabushiki Kaisha Photoelectric conversion device and imaging device
JP2009071182A (ja) * 2007-09-14 2009-04-02 Sony Corp 固体撮像装置及びその製造方法、並びにカメラ
CN102196197A (zh) * 2010-03-08 2011-09-21 佳能株式会社 光电转换装置
CN102325240A (zh) * 2010-05-12 2012-01-18 佳能株式会社 光电转换装置
WO2013180016A1 (en) * 2012-06-01 2013-12-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and alarm device
CN103134768A (zh) * 2013-01-29 2013-06-05 江南大学 基于近红外光谱技术的便携式专用地沟油检测系统
CN103825179A (zh) * 2014-03-24 2014-05-28 深圳市杰普特电子技术有限公司 一种脉冲波形可调的光纤激光器及其调制方法
CN104158591A (zh) * 2014-09-02 2014-11-19 陈思源 模块化可扩展电源装置及光波信号发射装置
CN105141266A (zh) * 2015-07-31 2015-12-09 华中科技大学 一种模拟信号光电隔离放大器
CN105813354A (zh) * 2016-01-22 2016-07-27 中国民用航空总局第二研究所 一种基于以太网无源光网络技术的助航灯具控制器
WO2017130728A1 (ja) * 2016-01-29 2017-08-03 ソニー株式会社 固体撮像装置および電子機器
CN205611001U (zh) * 2016-05-12 2016-09-28 中节能晶和照明有限公司 一种高压线性恒流pwm光电隔离接收端
CN208673067U (zh) * 2018-05-30 2019-03-29 比亚迪股份有限公司 二乘二取二输出接口电路
CN109029516A (zh) * 2018-08-07 2018-12-18 吉林大学 一种多用途光纤传感器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
周永好: "基于STM32的大功率光纤激光器控制系统设计", 《无线电工程》 *
孙岩: ""管道输送混油界面光学检测系统"", 《工程科技Ⅰ辑》 *
田西宁等: "一种光学界面检测仪在成品油管道上的应用", 《管道技术与设备》 *
钟海文等: "单光纤激光点火控制系统的研制", 《激光杂志》 *

Also Published As

Publication number Publication date
CN113204256B (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
CN103344902B (zh) 一种led瞬态热阻测量系统
CN108767645A (zh) 基于oct光谱分析应用的激光光源
CN107044890B (zh) 长距离自适应的荧光光纤测温装置及方法
CN104142226A (zh) 一种ccd器件量子效率测量装置及方法
CN107069424A (zh) 高功率低功耗可调谐dfb激光器驱动装置
CN107037840A (zh) 基于apc和恒温智能控制的激光半导体物证发现装置
CN103674308B (zh) 精密可调式热电偶冷端温度补偿仪
CN113204256B (zh) 一种界面智能检查仪的光电转换电路及温度控制方法
CN105244758A (zh) 一种多波长半导体激光通信用的稳定光源装置
CN107317220B (zh) 一种基于超稳定f-p腔的精密激光器稳频电源
CN104914895B (zh) 一种分布式光纤测温系统增益稳定控制方法
CN101615759B (zh) 基于碘稳频参考的双纵模热电致冷偏频锁定方法与装置
CN103575402B (zh) 非制冷红外探测器相对光谱响应温度特性测试装置及方法
CN106324469A (zh) 适用于光发射组件的多路piv测试系统及其测试方法
CN110514854B (zh) 一种提高全自动免疫分析仪测量稳定性的装置及控制方法
CN202256152U (zh) 一种特定蛋白测量仪
CN107976467A (zh) 具有拉曼光谱测量功能的热功率测量装置
CN1863014B (zh) 无制冷激光器的消光比参数的温度补偿方法及装置
CN104502867A (zh) 用于cpt磁力仪系统的vcsel激光管参数自动调节方法
CN101339439B (zh) 用于分布式光纤温度传感器系统的恒温控制装置及方法
CN206710917U (zh) 基于apc和恒温智能控制的激光半导体物证发现装置
CN205581683U (zh) 一种用于光学微球腔的高精度温控系统
CN210863757U (zh) 一种提高全自动免疫分析仪测量稳定性的装置
CN214703309U (zh) 一种应用于油品界面智能检查仪的光电转换电路
CN112485241B (zh) 碳化硅功率器件的结温和电流同步检测系统及检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant