CN113203429A - 一种陀螺仪温度漂移误差的在线估计及补偿方法 - Google Patents

一种陀螺仪温度漂移误差的在线估计及补偿方法 Download PDF

Info

Publication number
CN113203429A
CN113203429A CN202110362582.8A CN202110362582A CN113203429A CN 113203429 A CN113203429 A CN 113203429A CN 202110362582 A CN202110362582 A CN 202110362582A CN 113203429 A CN113203429 A CN 113203429A
Authority
CN
China
Prior art keywords
temperature
gyroscope
estimation
zero offset
compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110362582.8A
Other languages
English (en)
Other versions
CN113203429B (zh
Inventor
熊璐
朱周麟
谢智龙
陆逸适
陈梦源
王添
沈翔翔
朱佳琪
高乐天
宋舜辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN202110362582.8A priority Critical patent/CN113203429B/zh
Publication of CN113203429A publication Critical patent/CN113203429A/zh
Application granted granted Critical
Publication of CN113203429B publication Critical patent/CN113203429B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)
  • Navigation (AREA)

Abstract

本发明涉及一种陀螺仪温度漂移误差的在线估计及补偿方法,包括以下步骤:1)考虑温度对陀螺仪输出角速度的影响,构建零偏‑温度n阶误差模型;2)采用卡尔曼滤波估计得到零偏‑温度n阶误差模型中的参数,包括比例系数kn以及零偏ε;3)当GPS信号中断时,采用参数估计后的零偏‑温度n阶误差模型对陀螺仪输出角速度进行在线补偿。与现有技术相比,本发明考虑到了陀螺仪工作时温度带来的误差,具有实用性强、计算量小、估计精度高等优点。

Description

一种陀螺仪温度漂移误差的在线估计及补偿方法
技术领域
本发明涉及陀螺仪检测领域,尤其是涉及一种陀螺仪温度漂移误差的在线估计及补偿方法。
背景技术
陀螺仪是用来测量或者维护方位和角速度的设备,其旋转轴可以不受影响的设定在任何方向,当旋转发生时,根据角动量守恒定理,该轴的方向不受支架倾斜或旋转的影响。
陀螺仪在惯性导航系统中应用十分广泛,而导航注重定位精度,因此陀螺仪的精度问题受到广泛关注,但考虑现实情况下,由于机械的限制等不可避免的原因,导致陀螺仪不可避免地会产生误差,不仅如此,由温度使陀螺仪产生的误差也会随时间不断累积,这样就会出现一个问题,即长时间使用陀螺仪的话,误差就会不断累加,导致定位精度变得极差。为了解决陀螺仪的这个问题,目前的解决方案是进行离线估计并进行补偿,但在实际操作过程中比较耗费时间,因此,有必要对陀螺仪的温度误差进行准确估计。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种陀螺仪温度漂移误差的在线估计及补偿方法,该考虑了温度带来的误差,提供了更为全面的误差模型,有助于降低惯导系统的误差,提高姿态估计精度。
本发明的目的可以通过以下技术方案来实现:
一种陀螺仪温度漂移误差的在线估计及补偿方法,包括以下步骤:
1)考虑温度对陀螺仪输出角速度的影响,构建零偏-温度n阶误差模型;
2)采用卡尔曼滤波估计得到零偏-温度n阶误差模型中的参数,包括比例系数kn以及零偏ε;
3)当GPS信号中断时,采用参数估计后的零偏-温度n阶误差模型对陀螺仪输出角速度进行在线补偿。
所述的步骤1)中,零偏-温度n阶误差模型的表达式为:
Figure BDA0003006192660000021
其中,
Figure BDA0003006192660000022
为陀螺仪输出的角速度,
Figure BDA0003006192660000023
为补偿后的角速度,Tn为温度T的n次方,用以表示误差随温度变化拟合的曲线(近似于幂指曲线),对于不同型号的陀螺仪,对应的n的取值不同,kn为比例系数,且n取不同值时kn取值也不完全相同。
所述的步骤2)中,采用卡尔曼滤波估计零偏-温度n阶误差模型中的参数,系统状态向量X表示为:
X=[x ε k1 k2 k3 ... kn-1 kn]
其中,x表示根据实际模型确定的参数估计量。
所述的步骤2)中,系统的状态方程为:
Figure BDA0003006192660000024
其中,上标·表示求导。
=所述的步骤2)中,系统的测量方程为:
Figure BDA0003006192660000025
在采用卡尔曼滤波估计零偏-温度n阶误差模型参数的过程中,系统状态转移矩阵为:
Figure BDA0003006192660000031
系统量测矩阵为:
H1=[B 1 1 … 1 1]
计算状态预测为:
Figure BDA0003006192660000032
状态下一步预测均方误差矩阵为:
Figure BDA0003006192660000033
滤波增益向量为:
Figure BDA0003006192660000034
状态估计向量更新具体为:
Figure BDA0003006192660000035
状态估计均方误差更新具体为:
p1=(I-K1H1)p1/0
其中,A,B均为状态矩阵,Q1表示状态方程过程噪声方差矩阵,
Figure BDA0003006192660000036
表示系统状态预测值,φ0为上一时刻系统状态转移矩阵,
Figure BDA0003006192660000037
为上一时刻的系统状态预测值,
Figure BDA0003006192660000038
为当前时刻的系统状态预测值,p1/0表示协方差矩阵的预测值,p1表示当前时刻的协方差矩阵,K1为卡尔曼滤波增益,R1表示测量过程噪声方差矩阵,Z1表示通过GPS测量得到的当前时刻的系统观测量,I为单位矩阵。
该方法还包括以下步骤:
4)将补偿后的角速度进行一次积分得到姿态角参数。
所述的步骤2)中,当GPS信号未发生中断时,进行卡尔曼滤波估计得到当前时刻对应的比例系数kn以及零偏ε,并进行实时更新,在GPS信号发生中断的时刻,则采用中断前一时刻的比例系数kn以及零偏ε进行补偿。
实现该在线估计及补偿方法的系统包括:
误差模型模块(1):内置运行零偏-温度n阶误差模型的程序;
卡尔曼滤波模块(2):用以在GPS信号未中断时,在每个时刻实现对零偏-温度n阶误差模型参数的估计;
输出模块(3),用以根据最新时刻的状态量输出姿态角、速度以及位置信息;
温度补偿模块(4):当GPS信号中断时,用以将卡尔曼滤波模块(2)估计得到的中断前一时刻的比例系数和零偏对角速度进行温度补偿;
输出模块(5):用以将温度补偿后得到的角速度一次积分,得到姿态角参数。
所述的卡尔曼滤波模块(2)内置有实现步骤2)的零偏-温度n阶误差模型参数估计的程序。
与现有技术相比,本发明具有以下优点:
本发明与现有方法不同,考虑到了陀螺仪工作时温度带来的误差,经过采集数据并进行离线拟合后发现,陀螺仪的误差与温度之间存在一定的比例关系,因此,本发明将该比例系数作为一个状态量,采用卡尔曼滤波的方法进行估计,在GPS信号接收不到的时候,对陀螺仪输出的角速度进行温度补偿,以此来提高定位进度,具有实用性强、计算量小、估计精度高的优点。
附图说明
图1为误差随时间变化的示意图。
图2为温度随时间变化的示意图。
图3为误差随温度变化的示意图。
图4为本发明的系统原理框架图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例
本发明提供一种陀螺仪温度漂移误差的在线估计及补偿方法,与现有的补偿方法不同,本发明考虑到了陀螺仪工作时温度带来的误差,经过采集数据并进行离线拟合后发现,陀螺仪的误差与温度之间存在着一定比例关系,因此本发明将这个比例系数作为一个状态量,采用卡尔曼滤波的方法进行估计,在接收不到GPS信号的时候,对陀螺仪输出的角速度进行温度补偿,以此来提高定位精度。
因为陀螺仪本身是电子元器件,所以只要工作就会产生热量,通过大量数据进行曲线拟合发现,陀螺仪输出的角速度
Figure BDA0003006192660000041
与温度T之间存在着以下关系:
Figure BDA0003006192660000051
其中,
Figure BDA0003006192660000052
为陀螺仪输出的角速度,
Figure BDA0003006192660000053
为补偿后的角速度值,Tn表示温度T的n次方,由图1-3可知,误差随温度变化拟合的曲线近似于幂指曲线,对于不同型号的陀螺仪,n的取值也不同,kn为比例系数,n取不同值时kn取值也不完全相同,每个陀螺仪仅对应一个n和kn值。
在现有的研究中,仅考虑零偏作为状态估计量,方程如下:
Figure BDA0003006192660000054
其中,ε为零偏。
但实际上由于受到温度的影响,现有的方法其实存在很大的误差,为此,本发明将温度误差也作为一个状态估计量,则建立零偏-温度n阶误差模型如下:
Figure BDA0003006192660000055
由上式可知,只要能求解出比例系数kn的近似估计值,就能在GPS中断时更好的补偿角速度。
为了更好的估计出kn的值,本发明融合卡尔曼滤波进行估计,具体为:
由于不同的系统下需要估出的状态量是不完全相同的,而本发明只关注求解比例系数kn和零偏ε来进行角速度补偿,因此,本例中将状态估计量X改写为:
X=[x ε k1 k2 k3 ... kn-1 kn]
其中,x可以为杆臂δL,时钟误差δt和/或速度误差δv等参数组成的一维向量,具体形式由具体模型而定,由于不同的实际情况需要估计的参数不同,为了使上述公式具有普遍性,将除本例中所需要估计的参数量全部用x表示。
将上述的零偏-温度n阶误差展开成状态方程如下:
Figure BDA0003006192660000056
测量方程为:
Figure BDA0003006192660000061
本发明进行状态分析融合卡尔曼滤波技术,具体为:
系统状态向量:
Figure BDA0003006192660000062
系统状态转移矩阵:
Figure BDA0003006192660000063
系统量测矩阵:
H1=[B 1 1 … 1 1]
计算状态预测:
Figure BDA0003006192660000064
状态下一步预测均方误差矩阵:
Figure BDA0003006192660000065
滤波增益向量:
Figure BDA0003006192660000066
状态估计向量更新:
Figure BDA0003006192660000071
状态估计均方误差更新:
p1=(I-K1H1)p1/0
其中,x为根据模型确定的参数估计量,ε为零偏,kn为比例系数,A,B均为状态矩阵,Q1表示状态方程过程噪声方差矩阵,
Figure BDA0003006192660000072
表示系统状态预测值,φ0为上一时刻系统状态转移矩阵,
Figure BDA0003006192660000073
为上一时刻的系统状态预测值,
Figure BDA0003006192660000074
为当前时刻的系统状态预测值,p1/0表示协方差矩阵的预测值,p1表示当前时刻的协方差矩阵,K1为卡尔曼滤波增益,R1表示测量过程噪声方差矩阵,Z1表示通过GPS测量得到的当前时刻的系统观测量,I为单位矩阵。
最后,根据当前时刻的系统状态预测值得到比例系数kn与零偏ε的预测值,当GPS信号中断时,将比例系数kn与零偏ε代入零偏-温度n阶误差模型中实现角速度的补偿,使角速度的值更为准确,通过积分得到姿态角,提高精度。
如图4所示,本例中还给出了陀螺仪温度漂移误差的在线估计及补偿系统,在该系统中包括:
误差模型模块1:具体为零偏-温度n阶误差模型,用以实现对角速度进行温度补偿;
输出模块3,用以根据最新时刻的状态量输出载体的姿态角,速度以及位置;
温度补偿模块4:当GPS信号中断的时候,用以将卡尔曼滤波模块2估计出来的比例系数k和零偏代入误差模型模块1内对角速度进行温度补偿;
输出模块5:用以将温度补偿后得到的角速度一次积分,得到姿态角参数。
对于系统终端,在GPS信号正常时,每个时刻都在进行卡尔曼滤波,即根据上一时刻的系统状态值和当前时刻的系统状态观测值(根据GPS信息推导获得)预测得到当前时刻的系统状态值,实时估计比例系数以及零偏进行补偿,因此更加精确,当GPS信号中断时,则采用中断前一时刻的系统状态预测值(包含了比例系数以及零偏)进行补偿,由于此时GPS信号中断,卡尔曼滤波无法实时更新,比例系数以及零偏不会再更新了,所以能够在短时间内维持精度。

Claims (10)

1.一种陀螺仪温度漂移误差的在线估计及补偿方法,其特征在于,包括以下步骤:
1)考虑温度对陀螺仪输出角速度的影响,构建零偏-温度n阶误差模型;
2)采用卡尔曼滤波估计得到零偏-温度n阶误差模型中的参数,包括比例系数kn以及零偏ε;
3)当GPS信号中断时,采用参数估计后的零偏-温度n阶误差模型对陀螺仪输出角速度进行在线补偿。
2.根据权利要求1所述的一种陀螺仪温度漂移误差的在线估计及补偿方法,其特征在于,所述的步骤1)中,零偏-温度n阶误差模型的表达式为:
Figure FDA0003006192650000011
其中,
Figure FDA0003006192650000012
为陀螺仪输出的角速度,
Figure FDA0003006192650000013
为补偿后的角速度,Tn为温度T的n次方,用以表示误差随温度变化拟合的曲线,对于不同型号的陀螺仪,对应的n的取值不同,kn为比例系数,且n取不同值时kn取值也不完全相同。
3.根据权利要求1所述的一种陀螺仪温度漂移误差的在线估计及补偿方法,其特征在于,所述的步骤2)中,采用卡尔曼滤波估计零偏-温度n阶误差模型中的参数,系统状态向量X表示为:
X=[x ε k1 k2 k3...kn-1 kn]
其中,x表示根据实际模型确定的参数估计量。
4.根据权利要求3所述的一种陀螺仪温度漂移误差的在线估计及补偿方法,其特征在于,所述的步骤2)中,系统的状态方程为:
Figure FDA0003006192650000014
其中,上标·表示求导。
5.根据权利要求4所述的一种陀螺仪温度漂移误差的在线估计及补偿方法,其特征在于,所述的步骤2)中,系统的测量方程为:
Figure FDA0003006192650000021
6.根据权利要求5所述的一种陀螺仪温度漂移误差的在线估计及补偿方法,其特征在于,在采用卡尔曼滤波估计零偏-温度n阶误差模型参数的过程中,系统状态转移矩阵为:
Figure FDA0003006192650000022
系统量测矩阵为:
H1=[B 1 1…1 1]
计算状态预测为:
Figure FDA0003006192650000023
状态下一步预测均方误差矩阵为:
Figure FDA0003006192650000024
滤波增益向量为:
Figure FDA0003006192650000025
状态估计向量更新具体为:
Figure FDA0003006192650000026
状态估计均方误差更新具体为:
p1=(I-K1H1)p1/0
其中,A,B均为状态矩阵,Q1表示状态方程过程噪声方差矩阵,
Figure FDA0003006192650000027
表示系统状态预测值,φ0为上一时刻系统状态转移矩阵,
Figure FDA0003006192650000031
为上一时刻的系统状态预测值,
Figure FDA0003006192650000032
为当前时刻的系统状态预测值,p1/0表示协方差矩阵的预测值,p1表示当前时刻的协方差矩阵,K1为卡尔曼滤波增益,R1表示测量过程噪声方差矩阵,Z1表示通过GPS测量得到的当前时刻的系统观测量,I为单位矩阵。
7.根据权利要求1所述的一种陀螺仪温度漂移误差的在线估计及补偿方法,其特征在于,该方法还包括以下步骤:
4)将补偿后的角速度进行一次积分得到姿态角参数。
8.根据权利要求1所述的一种陀螺仪温度漂移误差的在线估计及补偿方法,其特征在于,所述的步骤2)中,当GPS信号未发生中断时,进行卡尔曼滤波估计得到当前时刻对应的比例系数kn以及零偏ε,并进行实时更新,在GPS信号发生中断的时刻,则采用中断前一时刻的比例系数kn以及零偏ε进行补偿。
9.根据权利要求1所述的一种陀螺仪温度漂移误差的在线估计及补偿方法,其特征在于,实现该在线估计及补偿方法的系统包括:
误差模型模块(1):内置运行零偏-温度n阶误差模型的程序;
卡尔曼滤波模块(2):用以在GPS信号未中断时,在每个时刻实现对零偏-温度n阶误差模型参数的估计;
输出模块(3),用以根据最新时刻的状态量输出姿态角、速度以及位置信息;
温度补偿模块(4):当GPS信号中断时,用以将卡尔曼滤波模块(2)估计得到的中断前一时刻的比例系数和零偏对角速度进行温度补偿;
输出模块(5):用以将温度补偿后得到的角速度一次积分,得到姿态角参数。
10.根据权利要求9所述的一种陀螺仪温度漂移误差的在线估计及补偿方法,其特征在于,所述的卡尔曼滤波模块(2)内置有实现步骤2)的零偏-温度n阶误差模型参数估计的程序。
CN202110362582.8A 2021-04-02 2021-04-02 一种陀螺仪温度漂移误差的在线估计及补偿方法 Active CN113203429B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110362582.8A CN113203429B (zh) 2021-04-02 2021-04-02 一种陀螺仪温度漂移误差的在线估计及补偿方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110362582.8A CN113203429B (zh) 2021-04-02 2021-04-02 一种陀螺仪温度漂移误差的在线估计及补偿方法

Publications (2)

Publication Number Publication Date
CN113203429A true CN113203429A (zh) 2021-08-03
CN113203429B CN113203429B (zh) 2022-11-18

Family

ID=77026158

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110362582.8A Active CN113203429B (zh) 2021-04-02 2021-04-02 一种陀螺仪温度漂移误差的在线估计及补偿方法

Country Status (1)

Country Link
CN (1) CN113203429B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113642249A (zh) * 2021-08-30 2021-11-12 北京信息科技大学 陀螺仪零偏误差补偿方法
CN114279449A (zh) * 2022-01-01 2022-04-05 南昌智能新能源汽车研究院 一种考虑加速度计温度漂移误差的姿态估计方法
CN116608852A (zh) * 2023-07-19 2023-08-18 齐鲁空天信息研究院 一种用于农机惯导设备的陀螺仪温度漂移补偿方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050240347A1 (en) * 2004-04-23 2005-10-27 Yun-Chun Yang Method and apparatus for adaptive filter based attitude updating
CN102095419A (zh) * 2010-12-01 2011-06-15 东南大学 光纤陀螺温度漂移建模及误差补偿方法
CN103256941A (zh) * 2013-04-19 2013-08-21 中国兵器工业集团第二一四研究所苏州研发中心 一种mems陀螺仪高阶温度补偿的实用方法
CN103363966A (zh) * 2012-03-26 2013-10-23 北京星网宇达科技股份有限公司 一种低成本组合型陀螺仪
US8583371B1 (en) * 2010-12-23 2013-11-12 Lockheed Martin Corporation Autonomous gyro temperature calibration
CN106032991A (zh) * 2015-03-10 2016-10-19 北京中坤天朗信息技术有限公司 车载导航dr系统中mems陀螺仪的零位误差动态补偿方法
CN111879339A (zh) * 2020-07-30 2020-11-03 中国兵器工业集团第二一四研究所苏州研发中心 一种mems陀螺仪温度误差补偿方法
CN111896029A (zh) * 2020-07-29 2020-11-06 西安石油大学 一种基于组合算法的mems陀螺随机误差补偿方法
CN112461261A (zh) * 2020-11-06 2021-03-09 长沙天仪空间科技研究院有限公司 一种校正mems陀螺仪温度漂移的装置和方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050240347A1 (en) * 2004-04-23 2005-10-27 Yun-Chun Yang Method and apparatus for adaptive filter based attitude updating
CN102095419A (zh) * 2010-12-01 2011-06-15 东南大学 光纤陀螺温度漂移建模及误差补偿方法
US8583371B1 (en) * 2010-12-23 2013-11-12 Lockheed Martin Corporation Autonomous gyro temperature calibration
CN103363966A (zh) * 2012-03-26 2013-10-23 北京星网宇达科技股份有限公司 一种低成本组合型陀螺仪
CN103256941A (zh) * 2013-04-19 2013-08-21 中国兵器工业集团第二一四研究所苏州研发中心 一种mems陀螺仪高阶温度补偿的实用方法
CN106032991A (zh) * 2015-03-10 2016-10-19 北京中坤天朗信息技术有限公司 车载导航dr系统中mems陀螺仪的零位误差动态补偿方法
CN111896029A (zh) * 2020-07-29 2020-11-06 西安石油大学 一种基于组合算法的mems陀螺随机误差补偿方法
CN111879339A (zh) * 2020-07-30 2020-11-03 中国兵器工业集团第二一四研究所苏州研发中心 一种mems陀螺仪温度误差补偿方法
CN112461261A (zh) * 2020-11-06 2021-03-09 长沙天仪空间科技研究院有限公司 一种校正mems陀螺仪温度漂移的装置和方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
D.QU等: "Study of Laser Gyro Temperature Compensation Technique on LINS", 《2019 26TH SAINT PETERSBURG INTERNATIONAL CONFERENCE ON INTEGRATED NAVIGATION SYSTEMS (ICINS)》 *
刘先杰等: "光纤陀螺仪的零偏分析与补偿", 《机械与电子》 *
张伯源等: "改进的卡尔曼滤波在MEMS陀螺仪信号处理的应用", 《传感器世界》 *
徐东升: "惯性导航中加速度计和陀螺仪性能研究", 《佳木斯大学学报(自然科学版)》 *
石雪等: "基于均值逼近算法的光纤陀螺温度补偿方法", 《佳木斯大学学报(自然科学版)》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113642249A (zh) * 2021-08-30 2021-11-12 北京信息科技大学 陀螺仪零偏误差补偿方法
CN114279449A (zh) * 2022-01-01 2022-04-05 南昌智能新能源汽车研究院 一种考虑加速度计温度漂移误差的姿态估计方法
CN116608852A (zh) * 2023-07-19 2023-08-18 齐鲁空天信息研究院 一种用于农机惯导设备的陀螺仪温度漂移补偿方法
CN116608852B (zh) * 2023-07-19 2023-09-29 齐鲁空天信息研究院 一种用于农机惯导设备的陀螺仪温度漂移补偿方法

Also Published As

Publication number Publication date
CN113203429B (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
CN113203429B (zh) 一种陀螺仪温度漂移误差的在线估计及补偿方法
CN110501024B (zh) 一种车载ins/激光雷达组合导航系统的量测误差补偿方法
CN107525503B (zh) 基于双天线gps和mimu组合的自适应级联卡尔曼滤波方法
CN102608596B (zh) 一种用于机载惯性/多普勒雷达组合导航系统的信息融合方法
CN110631574B (zh) 一种惯性/里程计/rtk多信息融合方法
US7844397B2 (en) Method and apparatus for high accuracy relative motion determination using inertial sensors
CN111156994B (zh) 一种基于mems惯性组件的ins/dr&gnss松组合导航方法
CN112505737B (zh) 一种gnss/ins组合导航方法
CN113203418B (zh) 基于序贯卡尔曼滤波的gnssins视觉融合定位方法及系统
JP5074950B2 (ja) 航法装置
CN112146655B (zh) 一种BeiDou/SINS紧组合导航系统弹性模型设计方法
CN111238535B (zh) 一种基于因子图的imu误差在线标定方法
CN111750865B (zh) 一种用于双功能深海无人潜器导航系统的自适应滤波导航方法
CN104344836A (zh) 一种基于姿态观测的冗余惯导系统光纤陀螺系统级标定方法
CN114179825B (zh) 多传感器融合获取量测值置信度方法及自动驾驶车辆
CN112504298A (zh) 一种gnss辅助的dvl误差标定方法
CN112798021A (zh) 基于激光多普勒测速仪的惯导系统行进间初始对准方法
CN110595434B (zh) 基于mems传感器的四元数融合姿态估计方法
CN113029139A (zh) 基于运动检测的机场飞行区车辆差分北斗/sins组合导航方法
He et al. MEMS IMU and two-antenna GPS integration navigation system using interval adaptive Kalman filter
Zorina et al. Enhancement of INS/GNSS integration capabilities for aviation-related applications
CN106403999A (zh) 基于gnss的惯性导航加速度计漂移实时补偿方法
CN111220151B (zh) 载体系下考虑温度模型的惯性和里程计组合导航方法
CN111197994B (zh) 位置数据修正方法、装置、计算机设备和存储介质
CN109737985A (zh) 一种基于gnss角度的初始对准优化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant