CN113202435B - Pressure maintaining control device based on magnetic field effect and fidelity controller - Google Patents
Pressure maintaining control device based on magnetic field effect and fidelity controller Download PDFInfo
- Publication number
- CN113202435B CN113202435B CN202110349469.6A CN202110349469A CN113202435B CN 113202435 B CN113202435 B CN 113202435B CN 202110349469 A CN202110349469 A CN 202110349469A CN 113202435 B CN113202435 B CN 113202435B
- Authority
- CN
- China
- Prior art keywords
- magnetic
- valve
- valve clack
- magnet
- valve seat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005426 magnetic field effect Effects 0.000 title claims abstract 7
- 230000005291 magnetic effect Effects 0.000 claims abstract description 121
- 230000009471 action Effects 0.000 claims description 24
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 230000005484 gravity Effects 0.000 abstract description 7
- 230000005415 magnetization Effects 0.000 description 17
- 239000000463 material Substances 0.000 description 12
- 238000005553 drilling Methods 0.000 description 6
- 238000005381 potential energy Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 150000002910 rare earth metals Chemical class 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 210000005069 ears Anatomy 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 239000002907 paramagnetic material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B25/00—Apparatus for obtaining or removing undisturbed cores, e.g. core barrels or core extractors
- E21B25/10—Formed core retaining or severing means
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B25/00—Apparatus for obtaining or removing undisturbed cores, e.g. core barrels or core extractors
- E21B25/16—Apparatus for obtaining or removing undisturbed cores, e.g. core barrels or core extractors for obtaining oriented cores
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Magnetically Actuated Valves (AREA)
- Control Of Fluid Pressure (AREA)
Abstract
Description
技术领域technical field
本发明涉及取心器密封装置技术领域,尤其涉及一种基于磁场作用的保压控制装置及保真控制器。The invention relates to the technical field of coring device sealing devices, in particular to a pressure maintaining control device and a fidelity controller based on the action of a magnetic field.
背景技术Background technique
深部环境复杂,原位保真(保压、保温、保质等)取芯将尽可能获取原位岩体物理环境。在深部原位保真取芯时,其保压核心之一是保压控制器,现有保压控制器主要有球阀、翻板阀等,由于球阀工作不稳定,保压能力不足等缺陷,使得翻板阀控制保压成为未来保压的趋势。The deep environment is complex, and in-situ fidelity (pressure, heat preservation, quality preservation, etc.) coring will try to obtain the physical environment of the in-situ rock mass as much as possible. In the deep in-situ fidelity coring, one of the cores of the pressure maintaining is the pressure maintaining controller. The existing pressure maintaining controllers mainly include ball valves, flap valves, etc. This makes the pressure-holding control of flap valve become the trend of pressure-holding in the future.
现有翻板阀在竖直工作时依靠触发弹片与自身重力共同作用实现翻转闭合,然而在某些环境取心时,由于钻进方向(水平、倾斜)等影响,往往使得弹片-重力触发不可靠,甚至重力成为阀盖闭合的阻碍,保压效果难以达到预期,这大大降低了利用翻板阀保压的取心设备的适用范围,局限了保压取心装置的发展,故亟需发展一种可任意方向钻进的取心器,来弥补现有技术的空白。The existing flap valve relies on the triggering shrapnel and its own gravity to work together to achieve flipping and closing when working vertically. However, when coring in some environments, due to the influence of the drilling direction (horizontal, inclined), the shrapnel-gravity triggering is often impossible. Reliable, even gravity becomes an obstacle to the closure of the valve cover, and the pressure-holding effect is difficult to achieve expectations, which greatly reduces the applicable scope of the coring equipment that uses the flap valve to maintain pressure, and limits the development of pressure-maintaining coring devices, so it is urgent to develop A coring device that can be drilled in any direction to make up for the blank of the prior art.
发明内容SUMMARY OF THE INVENTION
鉴于上述现有技术的不足,本发明的目的在于提供一种基于磁场作用的保压控制装置及保真控制器,用于解决现有保真控制器不能满足朝任意方向钻进取心的问题。In view of the above-mentioned deficiencies of the prior art, the purpose of the present invention is to provide a pressure-holding control device and a fidelity controller based on the action of a magnetic field, which are used to solve the problem that the existing fidelity controller cannot satisfy the problem of drilling in any direction.
本发明实施例提供一种基于磁场作用的保压控制装置,其中,包括:磁性阀座,与所述磁性阀座一端活动连接的阀瓣,以及用于吸引所述阀瓣的触发磁性件;所述阀盖处于打开状态时,所述触发磁性件与所述阀盖的第一端面相对,所述第一端面为所述阀盖的朝向所述磁性阀座内部的端面。An embodiment of the present invention provides a pressure-holding control device based on the action of a magnetic field, which includes: a magnetic valve seat, a valve flap movably connected to one end of the magnetic valve seat, and a triggering magnetic member for attracting the valve flap; When the valve cover is in the open state, the triggering magnetic member is opposite to the first end surface of the valve cover, and the first end surface is the end surface of the valve cover facing the inside of the magnetic valve seat.
可选地,所述的基于磁场作用的保压控制装置,其中,所述触发磁性件包括第一瓦型片磁体,所述第一瓦型片磁体的充磁方向为轴向方向。Optionally, in the pressure-holding control device based on the action of a magnetic field, the triggering magnetic member includes a first tile-type magnet, and the magnetization direction of the first tile-type magnet is an axial direction.
可选地,所述的基于磁场作用的保压控制装置,其中,所述磁性阀座包括:筒本体以及固定在所述筒本体内部的磁体。Optionally, in the pressure maintaining control device based on the action of a magnetic field, the magnetic valve seat includes: a cylinder body and a magnet fixed inside the cylinder body.
可选地,所述的基于磁场作用的保压控制装置,其中,所述磁体为筒状磁体。Optionally, in the pressure-holding control device based on the action of a magnetic field, the magnet is a cylindrical magnet.
可选地,所述的基于磁场作用的保压控制装置,其中,所述筒本体的内壁上设置有第一台阶部,所述筒本体套设在所述筒状磁体的外表面,所述筒状磁体的端部抵靠在所述第一台阶部上。Optionally, in the pressure-maintaining control device based on the action of a magnetic field, a first stepped portion is provided on the inner wall of the cylinder body, the cylinder body is sleeved on the outer surface of the cylinder-shaped magnet, and the cylinder body is The end portion of the cylindrical magnet abuts on the first stepped portion.
可选地,所述的基于磁场作用的保压控制装置,其中,所述筒状磁体由四个第二瓦型片磁体沿圆周方向拼接形成,所述第二瓦型片磁体的充磁方向均相同。Optionally, in the pressure-holding control device based on the action of a magnetic field, the cylindrical magnet is formed by splicing four second tile-shaped magnets in the circumferential direction, and the magnetization direction of the second tile-shaped magnets is in the direction of magnetization. are the same.
可选地,所述的基于磁场作用的保压控制装置,其中,所述第二瓦型片磁体的充磁方向为轴向方向。Optionally, in the pressure-holding control device based on the action of a magnetic field, the magnetization direction of the second tile-shaped magnet is an axial direction.
可选地,所述的基于磁场作用的保压控制装置,其中,所述阀瓣包括:阀瓣本体,固定在所述阀瓣本体上用于与所述磁性阀座的开口端活动连接的连接臂,以及固定在所述阀瓣本体上的阀瓣永磁体。Optionally, in the pressure maintaining control device based on the action of a magnetic field, wherein the valve flap includes: a valve flap body, a valve flap body fixed on the valve flap body for movably connecting with the open end of the magnetic valve seat. A connecting arm, and a valve disc permanent magnet fixed on the valve disc body.
可选地,所述的基于磁场作用的保压控制装置,其中,所述磁性阀瓣的材质为铁。Optionally, in the pressure maintaining control device based on the action of a magnetic field, the material of the magnetic valve flap is iron.
第二方面,一种保真控制器,其中,包括:上述所述的基于磁场作用的保压控制装置。In a second aspect, a fidelity controller includes: the above-mentioned pressure-holding control device based on the action of a magnetic field.
本发明实施例提供一种基于磁场作用的保压控制装置,磁性阀座,与所述磁性阀座一端活动连接的阀瓣,以及用于吸引所述阀瓣的触发磁性件;所述阀盖处于打开状态时,所述触发磁性件与所述阀盖的第一端面相对,其中,所述第一端面为所述阀盖的朝向所述磁性阀座内部的端面。通过触发磁性件与阀瓣之间的磁力给磁性阀瓣一个闭合的力,该力能够克服阀瓣的重力和摩擦力。从而可以实现在水平或倾斜取心时,阀座与阀瓣之间能够很好地闭合。Embodiments of the present invention provide a pressure-holding control device based on the action of a magnetic field, a magnetic valve seat, a valve flap movably connected to one end of the magnetic valve seat, and a triggering magnetic member for attracting the valve flap; the valve cover When in the open state, the triggering magnetic member is opposite to the first end surface of the valve cover, wherein the first end surface is the end surface of the valve cover facing the inside of the magnetic valve seat. By triggering the magnetic force between the magnetic element and the valve flap, a closing force is given to the magnetic valve flap, which can overcome the gravity and frictional force of the valve flap. Therefore, it can be achieved that the valve seat and the valve disc can be well closed during horizontal or oblique coring.
附图说明Description of drawings
图1为本发明实施例提供的一种基于磁场作用的保压控制装置立体图;1 is a perspective view of a pressure-holding control device based on the action of a magnetic field provided by an embodiment of the present invention;
图2为本发明实施例提供的一种基于磁场作用的保压控制装置装置爆炸图;2 is an exploded diagram of a pressure-holding control device based on the action of a magnetic field provided by an embodiment of the present invention;
图3为本发明实施例提供的阀盖、磁性阀座爆炸图;3 is an exploded view of a valve cover and a magnetic valve seat provided by an embodiment of the present invention;
图4为本发明实施例提供的筒本体的剖视图;4 is a cross-sectional view of a barrel body provided by an embodiment of the present invention;
图5为图4中A部放大图;Fig. 5 is the enlarged view of A part in Fig. 4;
图6为一种保真控制器取心完成时的剖视图。FIG. 6 is a cross-sectional view of a fidelity controller when coring is completed.
具体实施方式Detailed ways
本发明提供一种基于磁场作用的保压控制装置及保真控制器,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。The present invention provides a pressure-holding control device and a fidelity controller based on the action of a magnetic field. In order to make the purpose, technical solutions and effects of the present invention clearer and clearer, the present invention will be described in further detail below. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention. It will be understood by those skilled in the art that the singular forms "a", "an", "the" and "the" as used herein can include the plural forms as well, unless expressly stated otherwise. It should be further understood that the word "comprising" used in the description of the present invention refers to the presence of stated features, integers, steps, operations, elements and/or components, but does not exclude the presence or addition of one or more other features, Integers, steps, operations, elements, components and/or groups thereof. It will be understood that when we refer to an element as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element or intervening elements may also be present. Furthermore, "connected" or "coupled" as used herein may include wirelessly connected or wirelessly coupled. As used herein, the term "and/or" includes all or any element and all combination of one or more of the associated listed items.
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terms used herein in the description of the present invention are for the purpose of describing specific embodiments only, and are not intended to limit the present invention.
如图1至图2所示,本发明实施例提供一种基于磁场作用的保压控制装置,可以用于深地保压取心与深海可燃冰保压取心器,所述基于磁场作用的保压控制装置包括:磁性阀座10、与所述磁性阀座10活动连接的阀瓣20,以及当所述阀瓣20处于打开状态时,与所述阀瓣20相对的磁性触发件30,其中所述磁性触发件30与所述阀瓣20之间存在吸引力。其中,所述磁性触发件30为第一瓦型片磁体,所述第一瓦型片磁体的充磁方向为轴向方向。As shown in FIG. 1 to FIG. 2 , an embodiment of the present invention provides a pressure-holding control device based on the action of a magnetic field, which can be used for a deep-ground pressure-holding coring and a deep-sea combustible ice pressure-holding coring device. The pressure maintaining control device includes: a
在本实施例中,通过磁性触发件30为所述阀瓣20提供吸引力,以克服阀瓣的重力及摩擦力,可以使阀座处于不同状态下(如水平、倾斜不同角度),均能使阀瓣与阀座进行很好的配合。也就是说,可以使阀瓣与阀座之间的配合不再受阀座所处状态的限制。同时,磁性触发件30可以使阀盖具有一定的势能,该势能可以转化为阀盖的动能来进行释放,阀盖利用该动能来克服自身一定的重力势能,有利于阀盖的翻转闭合。In this embodiment, the
如图3所示,在本实施例的一种实现方式中,所述阀瓣20包括阀瓣本体200,固定在所述阀瓣本体200上用于与所述磁性阀座10的开口端活动连接的连接臂201,以及固定在所述阀瓣本体201上的阀瓣永磁体202。As shown in FIG. 3 , in an implementation manner of this embodiment, the
具体来说,所述阀瓣本体200的材质可以与磁性阀座材质相同,当然也可以是不相同的材质。在所述阀瓣本体的中部开设有一个用于固定阀瓣永磁体202的凹槽203,容易理解的是,所述凹槽203的尺寸可以根据实际需要进行设置。Specifically, the material of the
在本实施例中,所述阀盖20的材质选用磁导率大,抗压强度高的顺磁物质,如可以选择铁质阀盖。吸引的永磁体需要顺磁物质来中和其磁性势能,根据最小势能原理,吸引永磁体可使得阀盖具有一定的势能,在解除限位后,其势能转化为阀盖的动能被释放,从而达到闭合效果,且在阀盖闭合后,阀座内部的永磁铁同样会使得阀盖拥有一定的磁势,从而克服重力势,达到持续闭合的效果。阀座选为不锈钢,因为不锈钢是低磁导率物质,其内部的磁场不会对其产生磁势,这样不会影响阀盖闭合的轨迹。In this embodiment, the material of the
示例性地,所述凹槽203的形状为长方形,在所述长方形凹槽的底部设置螺钉孔,所述阀瓣永磁体202上设置与凹槽底部上螺钉孔相适配的螺钉孔,通过螺钉将阀瓣永磁体202固定在所述长方形凹槽内。需要说明的是,此处的磁性阀瓣指得是通过在阀瓣上设置阀瓣永磁体202使阀瓣具有磁性。当然如果需要也可以采用磁性材料加工出阀瓣。其中,所述阀瓣永磁体202可以根据需求采用不同的永磁材料进行制备,如可以采用稀土永磁材料制备得到。需要说明的是,所述阀瓣永磁体202可以为阀瓣本体200提供一个排斥力,即可以理解为阀瓣永磁体的磁性方向与磁性触发件的磁性方向不同,阀瓣永磁体为阀瓣本体提供一个排斥力,磁性触发件为阀瓣本体提供一个吸引力,阀瓣本体在上述两个力的协同作用下,可以更快地实现翻转闭合。Exemplarily, the shape of the
进一步地,在所述阀瓣上还设置有保护片204,所述保护片204置于所述凹槽203的表面并通过四颗螺钉进行固定,对凹槽203内部的阀瓣永磁体202进行保护,防止外部灰尘异物等对阀瓣永磁体202的磁性造成影响。Further, a
需要说明的是,当采用在阀瓣上设置永磁体为阀瓣提供一个排斥力,结合触发磁性件提供的吸引力来实现阀瓣的快速翻转闭合时,由于需要在阀瓣上开设凹槽,凹槽的存在会降低阀瓣的整体强度,对于保高压的使用环境并不合适,因此可以选择只有触发磁性件提供吸引力的方式。当在一些特殊环境(钻进角度要求苛刻,保压能力要求不是很高),如煤矿坑道内,倾斜向上钻取时,需要阀盖拥有更大的旋转闭合能力,此时可以选择在阀瓣上设置永磁体的方式。It should be noted that when a permanent magnet is used on the valve disc to provide a repulsive force for the valve disc, combined with the attractive force provided by the triggering magnetic member to realize the rapid flipping and closing of the valve disc, due to the need to open a groove on the valve disc, The existence of the groove will reduce the overall strength of the valve disc, which is not suitable for the high-pressure environment, so you can choose a way to only trigger the magnetic piece to provide attractive force. In some special environments (the drilling angle is demanding and the pressure holding capacity is not very high), such as in the coal mine tunnel, when drilling inclined upwards, the valve cover needs to have a greater rotation and closing ability. At this time, the valve disc can be selected. The way to set the permanent magnet on it.
在本实施例中,所述连接臂201可以是弹性片,所述弹性片一端固定在所述阀瓣本体上,另一端包括一个O型连接部,通过所述O型连接部与所述阀座活动连接。容易理解的是,所述弹性片与所述阀瓣本体相接处与所述凹槽203位于同一直线上。也就是说,所述凹槽203与弹性片与阀瓣本体相接处均位于所述阀瓣本体的中轴线上。通过将所述凹槽203与弹性片与阀瓣本体相接处均位于所述阀瓣本体的中轴线上,可以使得当磁性阀瓣被触发磁性件排斥时,磁性阀瓣不会发生倾斜偏转。In this embodiment, the connecting
在本实施例的一种实现方式中,所述磁性阀座10包括筒本体100以及固定在所述筒本体100内部的磁体110。In an implementation of this embodiment, the
具体来说,结合图5,所述筒本体100为两端开口的圆柱形筒体,所述筒本体100的材质可以是金属材质,如铸铁、钢等。所述筒本体100的一端设置有凹形连接部101,所述凹形连接部101包括两个挂耳,在所述挂耳上设置有螺孔,将连接臂的O型连接部设置在所述凹形连接部101内,螺栓依次穿过挂耳上的螺孔、连接臂上的通孔将连接臂与所述筒本体100活动连接。Specifically, referring to FIG. 5 , the
在本实施例中,所述磁体110为筒状磁体,所述筒状磁体可以是至少由两个瓦型片磁体沿圆周方向拼接形成,示例性地,如为四个瓦型片磁体沿圆周方向拼接形成,其中,瓦型片磁体的充磁方向可以相同也可以不相同,所述充磁方向包括轴向充磁方向,径向充磁方向。其中,四个瓦型片磁体中相邻的两个瓦型片磁体之间可以通过粘结剂粘结在一起。所用到的粘结剂种类可以是环氧类粘结剂,当然也可以是其他种类的粘结剂。In this embodiment, the
进一步地,磁体110的个数可以根据需要进行设置,如还可以将瓦型片磁体的个数设置为六个、八个等,通过改变瓦型片的充磁方向可以灵活地对磁力方向进行调节。Further, the number of
示例性地,当所述磁体110由六片瓦型磁体拼接而成时,可以将相邻的两个瓦型片的充磁方向设置不不相同,又或者说将六个瓦型片磁体相邻的两个归为一组,分成三组,其中的一组的充磁方向与另外两组的充磁方向不相同(其中一组的充磁方向为径向,另外两组的充磁方向为轴向,或者其中一组的充磁方向为轴向,另外两组的充磁方向为径向)。Exemplarily, when the
在本实施例中,所述筒状磁体的材质可以是稀土永磁材料,如稀土永磁材料的牌号为N52。通过在阀座内设置磁体,可以使磁性阀瓣与所述阀座紧密闭合。In this embodiment, the material of the cylindrical magnet may be a rare earth permanent magnet material, for example, the brand name of the rare earth permanent magnet material is N52. By arranging a magnet in the valve seat, the magnetic valve flap can be tightly closed with the valve seat.
如图4所示,在本实施例的一种实现方式中,所述筒状本体100的内壁上设置有第一台阶部120,所述第一台阶部120将筒状本体100的内部空间分成两个部分(如第一部分,第二部分,其中,第一部分为靠近所述磁性阀瓣的部分,第二部分为远离所述磁性阀瓣的部分),所述第一台阶部120位于筒状本体100的中部上部(可以理解为筒状本体内部空间被第一台阶部120分成的两部分的长度是不相同的,如所述第一台阶部将筒状本体分成的两部分中,第一部分的长度占整个筒状本体长度的1/3,第二部分的长度占整个筒状本体长度的2/3,又或者是第一部分的长度占整个筒状本体长度的1/4,第二部分的长度占整个筒状本体长度的3/4),装配时,可以将所述筒状本体100套设在所述筒状磁体110的外表面,所述筒状磁体的一端抵靠在所述第一台阶部120上,即所述筒状磁体110沿所述第一台阶部设置。As shown in FIG. 4 , in an implementation manner of this embodiment, a first stepped
在本实施例中,所述筒状磁体110位于所述第二部分。将筒状磁体设置在所述第二部分(远离所述磁性阀瓣)可以避免在取样过程中,对磁性阀瓣的开启造成干扰。In this embodiment, the
基于相同的发明构思,本发明实施例还提供一种保真控制器,结合图6,其包括钻机外筒40,预紧力杆件50,磁性阀瓣20,磁性阀瓣上的阀瓣永磁体202,筒本体100设置在所述同本体100内的磁体110以及用于吸引所述磁性阀瓣的触发磁性件30。取心完成后,磁性阀瓣20在没有了阻挡以后,触发磁性件30给磁性阀瓣提供一个吸引力,将磁性阀瓣向内(朝向阀座内部的方向)翻转,当磁性阀盖在磁力的作用下克服了自身的重力以及摩擦阻力后,移动至阀座口部,实现对阀座的闭合,同时由于阀座内设置有磁体,该磁体对磁性阀座也提供一个吸引力,将磁性阀盖牢牢地固定在阀座的口部。需要说明的是,在所述磁性阀座的背离所述磁性阀盖的一端部还设置有密封设备(图中未示出),通过该密封设备可以对磁性阀座进行密封,使磁性阀座构成一个密闭的空间,其中所述的密封设备的具体结构为现有保真控制器中常用的结构,在此不再赘述。Based on the same inventive concept, an embodiment of the present invention also provides a fidelity controller, in conjunction with FIG. 6 , which includes a drilling rig
在本实施例中,保真控制器中设置有基于磁场作用的保压控制装置,由于基于磁场作用的保压控制装置的阀盖可以在不同的角度下闭合,从而使得该保真控制器能够在不同钻取角度下进行取心,极大地方便了取心操作,同时由于利用的是磁力,因此可以使保真控制器的结构较为简单。In this embodiment, the fidelity controller is provided with a pressure-holding control device based on the action of a magnetic field. Since the valve cover of the pressure-holding control device based on the action of a magnetic field can be closed at different angles, the fidelity controller can Coring at different drilling angles greatly facilitates the coring operation, and at the same time, because the magnetic force is used, the structure of the fidelity controller can be relatively simple.
综上所述,本发明实施例提供一种基于磁场作用的保压控制装置及保真控制器,其包括:磁性阀座,与所述磁性阀座一端活动连接的阀瓣,以及用于吸引所述阀瓣的触发磁性件;所述阀盖处于打开状态时,所述触发磁性件与所述阀盖的第一端面相对,所述第一端面为所述阀盖的朝向所述磁性阀座内部的端面,通过阀瓣与阀座之间的磁力可以为阀瓣与阀座之间的闭合提供可靠的保证。同时,触发磁性件与阀瓣之间的吸引力可以很好的克服阀瓣自身的重力以及阀瓣与连接臂(弹片)之间的摩擦力。从而实现在不同状态下都能使阀座与阀瓣紧密闭合。同时,阀座内部的磁体同样会使得阀盖拥有一定的磁势,从而克服重力势,达到持续闭合的效果。In summary, the embodiments of the present invention provide a pressure-holding control device and a fidelity controller based on the action of a magnetic field, which include: a magnetic valve seat, a valve flap movably connected to one end of the magnetic valve seat, and a magnetic valve seat for attracting The trigger magnetic member of the valve flap; when the valve cover is in an open state, the trigger magnetic member is opposite to the first end face of the valve cover, and the first end face is the valve cover facing the magnetic valve The end face inside the seat can provide a reliable guarantee for the closure between the valve disc and the valve seat through the magnetic force between the valve disc and the valve seat. At the same time, the attractive force between the triggering magnetic member and the valve flap can well overcome the gravity of the valve flap itself and the frictional force between the valve flap and the connecting arm (shrapnel). Thus, the valve seat and the valve disc can be tightly closed in different states. At the same time, the magnet inside the valve seat will also make the valve cover have a certain magnetic potential, so as to overcome the gravitational potential and achieve the effect of continuous closure.
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。It should be understood that the application of the present invention is not limited to the above examples. For those of ordinary skill in the art, improvements or transformations can be made according to the above descriptions, and all these improvements and transformations should belong to the protection scope of the appended claims of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110349469.6A CN113202435B (en) | 2021-03-31 | 2021-03-31 | Pressure maintaining control device based on magnetic field effect and fidelity controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110349469.6A CN113202435B (en) | 2021-03-31 | 2021-03-31 | Pressure maintaining control device based on magnetic field effect and fidelity controller |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113202435A CN113202435A (en) | 2021-08-03 |
CN113202435B true CN113202435B (en) | 2022-08-23 |
Family
ID=77025989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110349469.6A Active CN113202435B (en) | 2021-03-31 | 2021-03-31 | Pressure maintaining control device based on magnetic field effect and fidelity controller |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113202435B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113958279A (en) * | 2021-10-29 | 2022-01-21 | 深圳大学 | Magnetic-triggered multi-directional pressure-holding coring device and rock sample extraction method with simple structure |
CN116591631B (en) * | 2023-06-05 | 2024-09-17 | 深圳大学 | Pressure maintaining controller pretightening force enhancing mechanism utilizing external rotation and using method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202082440U (en) * | 2011-01-21 | 2011-12-21 | 徐晓明 | Flue check valve with self-attractive force |
CN204610984U (en) * | 2015-05-08 | 2015-09-02 | 福建科达消防阀门制造有限公司 | A kind of safety check |
CN108953624A (en) * | 2018-08-13 | 2018-12-07 | 四川大学 | Hauberk formula flap valve |
CN111911638A (en) * | 2020-07-01 | 2020-11-10 | 深圳大学 | Pressure maintaining controller capable of drilling in any direction based on magnetic force triggering |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9163479B2 (en) * | 2007-08-03 | 2015-10-20 | Baker Hughes Incorporated | Flapper operating system without a flow tube |
-
2021
- 2021-03-31 CN CN202110349469.6A patent/CN113202435B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202082440U (en) * | 2011-01-21 | 2011-12-21 | 徐晓明 | Flue check valve with self-attractive force |
CN204610984U (en) * | 2015-05-08 | 2015-09-02 | 福建科达消防阀门制造有限公司 | A kind of safety check |
CN108953624A (en) * | 2018-08-13 | 2018-12-07 | 四川大学 | Hauberk formula flap valve |
CN111911638A (en) * | 2020-07-01 | 2020-11-10 | 深圳大学 | Pressure maintaining controller capable of drilling in any direction based on magnetic force triggering |
Also Published As
Publication number | Publication date |
---|---|
CN113202435A (en) | 2021-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113202435B (en) | Pressure maintaining control device based on magnetic field effect and fidelity controller | |
US8191634B2 (en) | Magnetic flapper shock absorber | |
US8038120B2 (en) | Magnetically coupled safety valve with satellite outer magnets | |
CN103122965B (en) | Magnetic liquid damping vibration attenuating device | |
CN111911638A (en) | Pressure maintaining controller capable of drilling in any direction based on magnetic force triggering | |
JP2018510302A (en) | Gas bearings with porous media pressurized from the outside to prevent leakage and discharge in valves | |
JPS61236980A (en) | Magnetic rapid operation gate valve | |
CN105240432B (en) | A kind of single order buoyancy magnetic liquid shock absorber for space | |
CN104948627B (en) | A kind of single order law of buoyancy magnetic fluid damper with magnetism shielding hood | |
CN113513597B (en) | A magnetic pressure-holding control device | |
CN111933384A (en) | Magnetic field combination method for combining tile-shaped magnet into hollow cylinder, permanent magnet and application | |
CN112963108A (en) | Coring equipment capable of realizing pressure maintaining by magnetic force triggering | |
CN103122964B (en) | Magnetic liquid damping vibration reduction device | |
JP2005164013A (en) | Rotary damper device | |
US20220294327A1 (en) | Magnetic coupler with force balancing | |
CN108242196B (en) | A Particle Injection Mechanism in Microgravity Environment for Space Science Experiments | |
JP3202406U (en) | Magnet damping stay | |
US11067190B2 (en) | Linear magnetic valve actuator with external magnets and internal magnetic flux path | |
WO2022205682A1 (en) | Magnetic closure simulation device for flap valve | |
CN113958279A (en) | Magnetic-triggered multi-directional pressure-holding coring device and rock sample extraction method with simple structure | |
JP6846774B2 (en) | Flow path opening / closing device and flow path opening / closing method using the flow path switching device | |
CN113236164B (en) | Clamping mechanism of magnetic force trigger device and magnetic force closing simulation device of flap valve | |
CN202249177U (en) | Locating device of locking handle of reinforced concrete protective airtight door | |
CN218780784U (en) | A plunger-type spool structure | |
CN106051203A (en) | Stop valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |