CN113189619B - A method for estimating phase-keeping parameters of low-orbit constellations - Google Patents

A method for estimating phase-keeping parameters of low-orbit constellations Download PDF

Info

Publication number
CN113189619B
CN113189619B CN202110362735.9A CN202110362735A CN113189619B CN 113189619 B CN113189619 B CN 113189619B CN 202110362735 A CN202110362735 A CN 202110362735A CN 113189619 B CN113189619 B CN 113189619B
Authority
CN
China
Prior art keywords
orbit
semi
relative
major axis
ping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110362735.9A
Other languages
Chinese (zh)
Other versions
CN113189619A (en
Inventor
李新刚
裴胜伟
齐彧
黄华
佟金成
侯凤龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Space Technology CAST
Original Assignee
China Academy of Space Technology CAST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Space Technology CAST filed Critical China Academy of Space Technology CAST
Priority to CN202110362735.9A priority Critical patent/CN113189619B/en
Publication of CN113189619A publication Critical patent/CN113189619A/en
Application granted granted Critical
Publication of CN113189619B publication Critical patent/CN113189619B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mathematical Analysis (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

A low orbit constellation phase maintaining parameter estimation method belongs to the technical field of satellite orbit control. According to the invention, the orbit semi-major axis Ping Gen is indirectly estimated by using the latitude amplitude angle measured value with higher precision without directly using the orbit semi-major axis measured value output by the satellite-borne GNSS orbit determination, so that the orbit determination precision of the existing GNSS receiver is not improved, the high precision requirement of satellite constellation maintenance on the orbit semi-major axis can be met, and the configuration of a double-frequency GNSS receiver with higher price on satellites is avoided; according to the method, polynomial fitting is carried out after the relative latitude amplitude angle measured value is converted into the flat root, then the change relation between the relative latitude amplitude angle flat root and the track semi-long axis flat root is utilized, polynomial fitting is carried out on the change trend of the track semi-long axis flat root, and the fitting coefficient is calculated, so that the track semi-long axis Ping Gen at any moment is estimated indirectly, the semi-long axis flat root precision is superior to 1m, and constellation phase maintenance can be completed based on a unilateral drift ring control strategy under the condition that any semi-long axis attenuation rate is met.

Description

一种低轨星座相位保持参数估计方法A method for estimating phase-keeping parameters of low-orbit constellations

技术领域Technical Field

本发明涉及一种低轨星座相位保持参数估计方法,属于卫星轨道控制技术领域。The invention relates to a low-orbit constellation phase-keeping parameter estimation method, belonging to the technical field of satellite orbit control.

背景技术Background Art

低轨星座在运行期间需要保持相对构型稳定,防止对地面的覆盖特性发生改变。受限于轨道确定精度和轨道控制精度,卫星在轨的初始轨道参数与设计参数存在偏差,导致卫星之间的相对轨道参数发生改变,将逐渐破坏星座的相对构型;此外卫星在长期运行过程中受到各种环境摄动力影响,如地球引力场摄动、日月引力摄动、天气阻力摄动以及光压摄动等,这些摄动力导致卫星的轨道参数发生变化,也将破坏星座的构型。因此在轨运行期间需要进行一系列的星座相位保持任务来保证星座构型满足设计要求,即要求卫星之间的相对纬度幅角及不同轨道面之间的相对升交点赤经维持在一定的设计范围内。During operation, low-orbit constellations need to maintain a stable relative configuration to prevent changes in ground coverage characteristics. Limited by the accuracy of orbit determination and orbit control, there is a deviation between the initial orbital parameters of the satellite in orbit and the design parameters, resulting in changes in the relative orbital parameters between satellites, which will gradually destroy the relative configuration of the constellation; in addition, satellites are affected by various environmental perturbations during long-term operation, such as the perturbation of the earth's gravitational field, the gravitational perturbation of the sun and the moon, the perturbation of weather resistance, and the perturbation of light pressure. These perturbations cause changes in the orbital parameters of the satellite, which will also destroy the configuration of the constellation. Therefore, during the on-orbit operation, a series of constellation phase maintenance tasks are required to ensure that the constellation configuration meets the design requirements, that is, the relative latitude arguments between satellites and the relative right ascension of the ascending nodes between different orbital planes are required to be maintained within a certain design range.

同轨卫星间的相位保持策略一般以星座参考轨道作为相位保持目标,通过调整卫星相对参考轨道的半长轴平根,改变卫星相对参考轨道的相对轨道角速度,间接控制卫星相对参考轨道的相对纬度幅角平根,维持相对纬度幅角平根在一个预先设置的控制盒内,即任意时刻,相对纬度幅角平根始终不超过控制盒的边界(相对纬度幅角平根最大阈值)。The phase holding strategy between satellites in the same orbit generally takes the constellation reference orbit as the phase holding target. By adjusting the semi-major axis root mean square of the satellite relative to the reference orbit, the relative orbital angular velocity of the satellite relative to the reference orbit is changed, and the relative latitude argument root mean square of the satellite relative to the reference orbit is indirectly controlled. The relative latitude argument root mean square is maintained within a pre-set control box, that is, at any time, the relative latitude argument root mean square does not exceed the boundary of the control box (the maximum threshold of the relative latitude argument root mean square).

当卫星相对参考轨道的半长轴平根控制的越精确,星座相位保持的周期越长,需要调整的半长轴平根越小,消耗的推进剂也越少。The more accurately the semi-major axis root mean square of the satellite relative to the reference orbit is controlled, the longer the period of constellation phase maintenance is, the smaller the semi-major axis root mean square that needs to be adjusted is, and the less propellant is consumed.

此外,为了降低运载成本,低轨星座一般采用一箭多星批量发射部署方案,因此卫星舱外布局非常紧凑,推力器往往只能在卫星的某一个舱板上安装,由于推力器在卫星长期在轨工作期间的主要任务是星座相位保持,在布局受限的情况下,推力器一般在卫星的-X面(规定在轨期间,卫星三轴对地定向情况下的+X面沿飞行速度方向)安装,推力沿+X方向输出,产生沿飞行方向的切向推力。为了在星座相位保持期间不影响星间链路和对地通信业务,同轨相位保持策略一般采取单边漂移环控制,卫星仅在相对参考轨道的相对纬度幅角平根到达控制盒右边界时调整半长轴,在半长轴受大气阻力作用下逐渐降低过程中,卫星的相对纬度幅角平根向控制盒左边界漂移到最小后会逐渐向控制盒右边界漂移,形成单边漂移环。由于太阳活动影响大气密度,半长轴的衰降速度也相应变化,当半长轴衰降速度较小时,卫星相对参考轨道的半长轴平根调整量过大则会导致卫星相对参考轨道的纬度幅角平根漂出控制盒左边界,导致同轨卫星间的相位保持精度变差。In addition, in order to reduce the cost of transportation, low-orbit constellations generally adopt a batch launch deployment plan of multiple satellites with one rocket. Therefore, the satellite cabin layout is very compact, and the thruster can often only be installed on a certain cabin board of the satellite. Since the main task of the thruster during the long-term operation of the satellite in orbit is to maintain the phase of the constellation, under the condition of limited layout, the thruster is generally installed on the -X plane of the satellite (the +X plane of the satellite is along the flight speed direction when the three-axis orientation to the earth is specified during the orbit period), and the thrust is output along the +X direction to generate tangential thrust along the flight direction. In order not to affect the inter-satellite link and ground communication services during the constellation phase maintenance period, the co-orbit phase maintenance strategy generally adopts unilateral drift loop control. The satellite only adjusts the semi-major axis when the relative latitude angle root relative to the reference orbit reaches the right boundary of the control box. When the semi-major axis is gradually reduced under the action of atmospheric resistance, the relative latitude angle root of the satellite drifts to the left boundary of the control box to the minimum and then gradually drifts to the right boundary of the control box, forming a unilateral drift loop. Since solar activity affects the atmospheric density, the decay rate of the semi-major axis also changes accordingly. When the decay rate of the semi-major axis is small, if the mean root mean square adjustment of the semi-major axis of the satellite relative to the reference orbit is too large, the mean root mean square of the latitude argument of the satellite relative to the reference orbit will drift out of the left boundary of the control box, resulting in poor phase keeping accuracy between satellites on the same orbit.

目前低轨星座卫星一般通过星载GNSS导航接收机实现星上自主定轨,轨道半长轴的测量误差均方根一般大于10m,如果直接根据该测量值计算半长轴平根调整量,极易发生相对纬度幅角超控制盒边界的情况,导致单边漂移环控制策略失效。At present, low-orbit constellation satellites generally achieve autonomous orbit determination on board through onboard GNSS navigation receivers. The root mean square error of the semi-major axis of the orbit is generally greater than 10m. If the semi-major axis root mean square adjustment is calculated directly based on the measurement value, it is very easy for the relative latitude angle to exceed the control box boundary, resulting in the failure of the unilateral drift loop control strategy.

发明内容Summary of the invention

本发明解决的技术问题是:克服现有技术的不足,提供了一种低轨星座相位保持参数估计方法,通过相对纬度幅角测量值间接对轨道半长轴进行估计,可以将轨道半长轴平根的估计误差降低到1m以内,满足卫星基于单边漂移环控制策略进行星座相位保持的需要。The technical problem solved by the present invention is: to overcome the shortcomings of the prior art and provide a low-orbit constellation phase holding parameter estimation method, which indirectly estimates the orbit semi-major axis through relative latitude argument measurement values, and can reduce the estimation error of the orbit semi-major axis square root to within 1m, thereby meeting the needs of the satellite for constellation phase holding based on a unilateral drift loop control strategy.

本发明的技术解决方案是:一种低轨星座相位保持参数估计方法,包括如下步骤:The technical solution of the present invention is: a method for estimating a phase-holding parameter of a low-orbit constellation, comprising the following steps:

确定星座参考轨道和星座相位保持参数;Determine constellation reference orbit and constellation phase holding parameters;

进行相对纬度幅角平根多项式拟合,获得相对参考轨道纬度幅角平根;Perform relative latitude argument square root polynomial fitting to obtain the relative reference orbit latitude argument square root;

计算相对半长轴平根多项式系数;Calculate the relative semi-major axis square root polynomial coefficients;

估计相对半长轴平根偏差。Estimate the relative RTD of the semi-major axis.

进一步地,所述确定星座参考轨道,具体为:将低轨星座标称轨道半长轴平根作为参考轨道半长轴平根aR,参考轨道外推只考虑地球引力摄动,外推任意时间t,轨道纬度幅角平根为uR(t),轨道半长轴平根均值

Figure BDA0003006243470000031
维持不变,即
Figure BDA0003006243470000032
Further, the constellation reference orbit is determined by: taking the semi-major axis root of the nominal orbit of the low-orbit constellation as the semi-major axis root of the reference orbit a R , and the reference orbit is extrapolated by only considering the gravitational perturbation of the earth. When extrapolating any time t, the orbit latitude angle root is u R (t), and the orbit semi-major axis root mean is
Figure BDA0003006243470000031
Remain unchanged, that is
Figure BDA0003006243470000032

进一步地,确定星座相位保持参数,具体为:对于卫星受地球引力摄动、日月三体引力、大气阻力摄动、光压摄动的实际运行轨道,其轨道纬度幅角平根为u(t),定义其相对参考轨道纬度幅角平根为:Δu(t)=u(t)-uR(t);其轨道半长轴平根为a(t),定义其相对参考轨道半长轴平根为Δa(t)=a(t)-aRFurther, the constellation phase holding parameters are determined, specifically: for the actual orbit of the satellite subject to the perturbations of the earth's gravity, the sun-moon three-body gravity, the atmospheric drag perturbations, and the light pressure perturbations, the root mean square of the latitude argument of its orbit is u(t), and the root mean square of the latitude argument of its relative reference orbit is defined as: Δu(t)=u(t)-u R (t); the root mean square of the semi-major axis of its orbit is a(t), and the root mean square of the semi-major axis of its relative reference orbit is defined as Δa(t)=a(t)-a R .

进一步地,所述进行相对纬度幅角平根多项式拟合的方法为:在无轨控情况下,通过GNSS定轨获得卫星的瞬时轨道参数,利用瞬时轨道参数和平均轨道参数的转换计算卫星的纬度幅角平根u(t),利用Δu(t)=u(t)-uR(t)计算相对参考轨道纬度幅角平根Δu(t);将相对参考轨道纬度幅角平根Δu(t)用三次多项式近似为Δu(t)≈ku0+ku1(t-t0)+ku2(t-t0)2+ku3(t-t0)3;t0无轨控的起始时刻,ku0、ku1、ku2、ku3为系数。Furthermore, the method for fitting the relative latitude argument square root polynomial is: in the case of no orbit control, the instantaneous orbit parameters of the satellite are obtained by GNSS orbit determination, the latitude argument square root u(t) of the satellite is calculated by conversion of the instantaneous orbit parameters and the average orbit parameters, and the latitude argument square root Δu(t) relative to the reference orbit is calculated by Δu(t)=u(t)-u R (t); the latitude argument square root Δu(t) relative to the reference orbit is approximated by a cubic polynomial as Δu(t)≈k u0 +k u1 (tt 0 )+k u2 (tt 0 ) 2 +k u3 (tt 0 ) 3 ; t 0 is the starting time of no orbit control, and k u0 , k u1 , k u2 , and k u3 are coefficients.

进一步地,所述计算相对半长轴平根多项式系数,包括如下步骤:Further, the calculation of the relative semi-major axis flat root polynomial coefficients comprises the following steps:

将相对参考轨道半长轴平根Δa(t)用二次多项式近似为

Figure BDA0003006243470000033
其中,t0为无轨控的起始时刻;The square root of the semi-major axis of the relative reference orbit Δa(t) is approximated by a quadratic polynomial:
Figure BDA0003006243470000033
Among them, t 0 is the starting time of no track control;

根据参考轨道半长轴平根aR

Figure BDA0003006243470000034
计算出系数Ka;其中,μ为地心引力系数;According to the semi-major axis of the reference orbit a R and
Figure BDA0003006243470000034
Calculate the coefficient Ka ; where μ is the gravity coefficient;

利用

Figure BDA0003006243470000035
计算系数Δa(t0)、
Figure BDA0003006243470000036
Figure BDA0003006243470000037
use
Figure BDA0003006243470000035
Calculate the coefficient Δa(t 0 ),
Figure BDA0003006243470000036
and
Figure BDA0003006243470000037

进一步地,所述估计相对半长轴平根偏差,具体为:由确定的

Figure BDA0003006243470000038
计算出无轨控的起始时刻t0到无轨控的结束时刻tf之间任意时刻的相对参考轨道半长轴平根Δa(t)的估计值。Furthermore, the estimated relative semi-major axis root mean square deviation is specifically:
Figure BDA0003006243470000038
The estimated value of the semi-major axis square root Δa(t) of the relative reference orbit at any time between the start time t0 of no orbit control and the end time tf of no orbit control is calculated.

一种低轨星座相位保持参数估计系统,包括:A low-orbit constellation phase-holding parameter estimation system, comprising:

第一模块,确定星座参考轨道和星座相位保持参数;The first module determines the constellation reference orbit and constellation phase holding parameters;

第二模块,进行相对纬度幅角平根多项式拟合,获得相对参考轨道纬度幅角平根;The second module performs relative latitude argument square root polynomial fitting to obtain the relative reference orbit latitude argument square root;

第三模块,计算相对半长轴平根多项式系数;The third module calculates the relative semi-major axis flat root polynomial coefficients;

第四模块,估计相对半长轴平根偏差。The fourth module estimates the relative semi-major axis root-mean-square deviation.

进一步地,所述确定星座参考轨道,具体为:将低轨星座标称轨道半长轴平根作为参考轨道半长轴平根aR,参考轨道外推只考虑地球引力摄动,外推任意时间t,轨道纬度幅角平根为uR(t),轨道半长轴平根均值

Figure BDA0003006243470000046
维持不变,即
Figure BDA0003006243470000047
Further, the constellation reference orbit is determined by: taking the semi-major axis root of the low-orbit constellation nominal orbit as the semi-major axis root of the reference orbit a R , and the reference orbit is extrapolated by only considering the earth's gravitational perturbation. When extrapolating any time t, the orbit latitude angle root is u R (t), and the orbit semi-major axis root mean is
Figure BDA0003006243470000046
Remain unchanged, that is
Figure BDA0003006243470000047

进一步地,确定星座相位保持参数,具体为:对于卫星受地球引力摄动、日月三体引力、大气阻力摄动、光压摄动的实际运行轨道,其轨道纬度幅角平根为u(t),定义其相对参考轨道纬度幅角平根为:Δu(t)=u(t)-uR(t);其轨道半长轴平根为a(t),定义其相对参考轨道半长轴平根为Δa(t)=a(t)-aRFurther, the constellation phase holding parameters are determined, specifically: for the actual orbit of the satellite perturbed by the gravity of the earth, the gravity of the sun and the moon, the atmospheric drag, and the light pressure, the root mean square of the latitude argument of the orbit is u(t), and the root mean square of the latitude argument of the orbit relative to the reference orbit is defined as: Δu(t)=u(t)-u R (t); the root mean square of the semi-major axis of the orbit is a(t), and the root mean square of the semi-major axis of the orbit relative to the reference orbit is defined as Δa(t)=a(t)-a R ;

进一步地,所述进行相对纬度幅角平根多项式拟合的方法为:在无轨控情况下,通过GNSS定轨获得卫星的瞬时轨道参数,利用瞬时轨道参数和平均轨道参数的转换计算卫星的纬度幅角平根u(t),利用Δu(t)=u(t)-uR(t)计算相对参考轨道纬度幅角平根Δu(t);将相对参考轨道纬度幅角平根Δu(t)用三次多项式近似为Δu(t)≈ku0+ku1(t-t0)+ku2(t-t0)2+ku3(t-t0)3;t0无轨控的起始时刻,ku0、ku1、ku2、ku3为系数;Further, the method for fitting the relative latitude argument square root polynomial is as follows: in the case of no orbit control, the instantaneous orbit parameters of the satellite are obtained by GNSS orbit determination, the latitude argument square root u(t) of the satellite is calculated by conversion of the instantaneous orbit parameters and the average orbit parameters, and the latitude argument square root Δu(t) relative to the reference orbit is calculated by Δu(t)=u(t)-u R (t); the latitude argument square root Δu(t) relative to the reference orbit is approximated by a cubic polynomial as Δu(t)≈k u0 +k u1 (tt 0 )+k u2 (tt 0 ) 2 +k u3 (tt 0 ) 3 ; t 0 is the starting time of no orbit control, and k u0 , k u1 , k u2 , and k u3 are coefficients;

进一步地,所述计算相对半长轴平根多项式系数,包括如下步骤:Further, the calculation of the relative semi-major axis flat root polynomial coefficients comprises the following steps:

将相对参考轨道半长轴平根Δa(t)用二次多项式近似为

Figure BDA0003006243470000041
其中,t0为无轨控的起始时刻;The square root of the semi-major axis of the relative reference orbit Δa(t) is approximated by a quadratic polynomial:
Figure BDA0003006243470000041
Among them, t 0 is the starting time of no track control;

根据参考轨道半长轴平根aR

Figure BDA0003006243470000042
计算出系数Ka;其中,μ为地心引力系数;According to the semi-major axis of the reference orbit a R and
Figure BDA0003006243470000042
Calculate the coefficient Ka ; where μ is the gravity coefficient;

利用

Figure BDA0003006243470000043
计算系数Δa(t0)、
Figure BDA0003006243470000044
Figure BDA0003006243470000045
use
Figure BDA0003006243470000043
Calculate the coefficient Δa(t 0 ),
Figure BDA0003006243470000044
and
Figure BDA0003006243470000045

所述估计相对半长轴平根偏差,具体为:由确定的

Figure BDA0003006243470000051
计算出无轨控的起始时刻t0到无轨控的结束时刻tf之间任意时刻的相对参考轨道半长轴平根Δa(t)的估计值。The estimated relative semi-major axis root mean square deviation is specifically: determined by
Figure BDA0003006243470000051
The estimated value of the semi-major axis square root Δa(t) of the relative reference orbit at any time between the start time t0 of no orbit control and the end time tf of no orbit control is calculated.

一种计算机可读存储介质,所述的计算机可读存储介质存储有计算机程序,所述的计算机程序被处理器执行时实现所述一种低轨星座相位保持参数估计方法的步骤。A computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the steps of the method for estimating a phase-holding parameter of a low-orbit constellation are implemented.

一种低轨星座相位保持参数估计设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述的处理器执行所述的计算机程序时实现所述一种低轨星座相位保持参数估计方法的步骤。A low-orbit constellation phase-holding parameter estimation device comprises a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor implements the steps of a low-orbit constellation phase-holding parameter estimation method when executing the computer program.

本发明与现有技术相比的优点在于:The advantages of the present invention compared with the prior art are:

(1)本发明通过不直接利用星载GNSS定轨输出的轨道半长轴测量值,利用较高精度的纬度幅角测量值间接估计轨道半长轴平根,取得了不提高现有GNSS接收机定轨精度(典型值为10m),即可满足卫星星座维持对轨道半长轴的高精度要求,避免了在卫星上配置价格更高的双频GNSS接收机;(1) The present invention does not directly use the orbit semi-major axis measurement value output by the satellite-borne GNSS orbit determination, but uses the higher-precision latitude argument measurement value to indirectly estimate the orbit semi-major axis flat root, thereby achieving the goal of not improving the orbit determination accuracy of the existing GNSS receiver (typical value is 10m), and can meet the high-precision requirements of the satellite constellation for the orbit semi-major axis, thus avoiding the configuration of a more expensive dual-frequency GNSS receiver on the satellite;

(2)本发明通过对相对纬度幅角测量值转换为平根后进行多项式拟合,再利用相对纬度幅角平根与轨道半长轴平根之间的变化关系,对轨道半长轴平根的变化趋势进行多项式拟合并计算出拟合系数,从而间接估计任意时刻的轨道半长轴平根,取得了半长轴平根精度优于1m,满足任意半长轴衰减速率情况下基于单边漂移环控制策略均能完成星座相位保持;(2) The present invention converts the relative latitude argument measurement value into a square root and then performs polynomial fitting. Then, using the change relationship between the relative latitude argument square root and the orbit semi-major axis square root, the present invention performs polynomial fitting on the change trend of the orbit semi-major axis square root and calculates the fitting coefficient, thereby indirectly estimating the orbit semi-major axis square root at any time, and obtains a semi-major axis square root accuracy better than 1m. Under any semi-major axis attenuation rate, the constellation phase can be maintained based on the unilateral drift loop control strategy;

(3)本发明通过对相对纬度幅角测量值以及半长轴平根进行多项式拟合,取得了可在轨自主进行半长轴平根估计,实现卫星全自主星座相位保持,降低地面运控操作。(3) The present invention performs polynomial fitting on the relative latitude argument measurement value and the semi-major axis square root, thereby achieving autonomous in-orbit semi-major axis square root estimation, realizing fully autonomous constellation phase maintenance of the satellite, and reducing ground operation control operations.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为本发明方法流程图;Fig. 1 is a flow chart of the method of the present invention;

图2为本发明采用单边漂移环控制策略的相对参考轨道半长轴平根变化曲线;FIG2 is a relative reference orbit semi-major axis root mean square variation curve using a unilateral drift loop control strategy of the present invention;

图3为本发明采用单边漂移环控制策略的相对参考轨道纬度幅角平根变化曲线;FIG3 is a curve showing the relative reference orbit latitude argument root mean square change using the unilateral drift loop control strategy of the present invention;

图4为本发明无轨控段相对参考轨道纬度幅角平根变化曲线(GNSS输出和理论值);FIG4 is a curve showing the root mean square change of the latitude argument of the trackless control section relative to the reference track (GNSS output and theoretical value);

图5为本发明无轨控段相对参考轨道半长轴平根变化曲线(GNSS输出和理论值);FIG5 is a plot of the semi-major axis root mean square variation curve of the trackless control section relative to the reference track (GNSS output and theoretical value);

图6为本发明无轨控段相对参考轨道半长轴平根变化曲线(理论值和估计值);FIG6 is a semi-major axis root mean square variation curve (theoretical value and estimated value) of the trackless control section of the present invention relative to the reference track;

图7为本发明无轨控段相对参考轨道半长轴平根估计值相对理论值误差曲线。FIG. 7 is a relative error curve of the semi-major axis RPM estimation value of the trackless control section relative to the reference track relative to the theoretical value of the present invention.

具体实施方式DETAILED DESCRIPTION

为了更好的理解上述技术方案,下面通过附图以及具体实施例对本申请技术方案做详细的说明,应当理解本申请实施例以及实施例中的具体特征是对本申请技术方案的详细的说明,而不是对本申请技术方案的限定,在不冲突的情况下,本申请实施例以及实施例中的技术特征可以相互组合。In order to better understand the above technical scheme, the technical scheme of the present application is described in detail below through the accompanying drawings and specific embodiments. It should be understood that the embodiments of the present application and the specific features in the embodiments are detailed descriptions of the technical scheme of the present application, rather than limitations on the technical scheme of the present application. In the absence of conflict, the embodiments of the present application and the technical features in the embodiments can be combined with each other.

以下结合说明书附图对本申请实施例所提供的一种低轨星座相位保持参数估计方法做进一步详细的说明,具体实现方式可以包括(如图1~7所示):The following is a further detailed description of a low-orbit constellation phase-keeping parameter estimation method provided by an embodiment of the present application in conjunction with the accompanying drawings of the specification. The specific implementation method may include (as shown in Figures 1 to 7):

在本申请实施例所提供的方案中,根据相对参考轨道的半长轴平根的摄动特性将相对半长轴平根表达为二次多项式,利用GNSS获得的高精度相对纬度幅角测量值对相对纬度幅角平根进行三次多项式拟合,利用相对参考轨道的纬度幅角平根和相对半长轴平根的等价关系确定相对半长轴平根的二次多项式系数,最后通过二次多项式估算不同时刻的相对半长轴平根。具体步骤如下:In the solution provided in the embodiment of the present application, the relative semi-major axis root is expressed as a quadratic polynomial according to the perturbation characteristics of the semi-major axis root relative to the reference orbit, the relative latitude argument root is fitted with a cubic polynomial using the high-precision relative latitude argument measurement value obtained by GNSS, the quadratic polynomial coefficients of the relative semi-major axis root are determined using the equivalent relationship between the latitude argument root and the relative semi-major axis root relative to the reference orbit, and finally the relative semi-major axis root at different times is estimated using the quadratic polynomial. The specific steps are as follows:

1)定义星座参考轨道1) Define the constellation reference orbit

将低轨星座标称轨道半长轴平根作为参考轨道半长轴平根,定义为aR,参考轨道外推只考虑地球引力摄动,则外推任意时间t,轨道纬度幅角平根为uR(t),轨道半长轴平根均值

Figure BDA0003006243470000061
维持不变,即
Figure BDA0003006243470000062
The semi-major axis root mean square of the nominal orbit of the low-orbit constellation is taken as the semi-major axis root mean square of the reference orbit, which is defined as a R . The reference orbit is extrapolated by only considering the Earth's gravitational perturbation. Then, when extrapolating any time t, the orbit latitude angle root mean square is u R (t). The orbit semi-major axis root mean square is
Figure BDA0003006243470000061
Remain unchanged, that is
Figure BDA0003006243470000062

2)定义星座相位保持参数2) Define constellation phase holding parameters

对于卫星受地球引力摄动、日月三体引力、大气阻力摄动、光压摄动的实际运行轨道,其轨道纬度幅角平根为u(t),定义其相对参考轨道纬度幅角平根为:For the actual orbit of the satellite, which is perturbed by the gravity of the earth, the gravity of the sun and the moon, the atmospheric drag, and the light pressure, the root mean square of the latitude argument of the orbit is u(t). The root mean square of the latitude argument of the satellite relative to the reference orbit is defined as:

Δu(t)=u(t)-uR(t) (1)Δu(t)=u(t)-u R (t) (1)

其轨道半长轴平根为a(t),定义其相对参考轨道半长轴平根为:The mean root of the semi-major axis of its orbit is a(t), and the mean root of the semi-major axis of its relative reference orbit is defined as:

Δa(t)=a(t)-aR (2)Δa(t)=a(t)-a R (2)

3)相对纬度幅角平根多项式拟合3) Relative latitude angle square root polynomial fitting

在无轨控情况下,通过GNSS定轨可以获得卫星的瞬时轨道参数,利用瞬时轨道参数和平均轨道参数的转换公式可以计算出卫星的纬度幅角平根u(t),利用(1)式可以计算出相对参考轨道纬度幅角平根Δu(t)。In the absence of orbit control, the instantaneous orbit parameters of the satellite can be obtained through GNSS orbit determination. The satellite's latitude argument root mean square u(t) can be calculated using the conversion formula between the instantaneous orbit parameters and the average orbit parameters. The latitude argument root mean square Δu(t) relative to the reference orbit can be calculated using formula (1).

相对参考轨道纬度幅角平根Δu(t)可以用三次多项式近似为:The square root of the latitude argument Δu(t) relative to the reference orbit can be approximated by a cubic polynomial:

Δu(t)≈ku0+ku1(t-t0)+ku2(t-t0)2+ku3(t-t0)3 (3)Δu(t)≈k u0 +k u1 (tt 0 )+k u2 (tt 0 ) 2 +k u3 (tt 0 ) 3 (3)

4)相对半长轴平根多项式系数计算4) Calculation of relative semi-major axis flat root polynomial coefficients

对于低轨星座,相对参考轨道半长轴平根主要受大气阻力影响,在无轨控情况下,其可以用泰勒展开的二次多项式近似为:For low-orbit constellations, the semi-major axis root relative to the reference orbit is mainly affected by atmospheric drag. In the absence of orbit control, it can be approximated by a Taylor expansion quadratic polynomial:

Figure BDA0003006243470000071
Figure BDA0003006243470000071

其中:Δa(t0)为Δa(t)在t0时刻的值,

Figure BDA0003006243470000072
为Δa(t)在t0时刻的一阶导数,
Figure BDA0003006243470000073
为Δa(t)在t0时刻的二阶导数。Where: Δa(t 0 ) is the value of Δa(t) at time t 0 ,
Figure BDA0003006243470000072
is the first-order derivative of Δa(t) at time t 0 ,
Figure BDA0003006243470000073
is the second-order derivative of Δa(t) at time t0 .

相对参考轨道纬度幅角平根Δu(t)的变化率可以近似表示为:The rate of change of the mean square root of the latitude argument Δu(t) relative to the reference orbit can be approximately expressed as:

Figure BDA0003006243470000074
Figure BDA0003006243470000074

由于a(t)和aR相差很小,利用泰勒级数展开上式为:Since the difference between a(t) and a R is very small, the above formula can be expanded using Taylor series to:

Figure BDA0003006243470000075
Figure BDA0003006243470000075

其中

Figure BDA0003006243470000081
in
Figure BDA0003006243470000081

将(4)式代入(6)式可得:Substituting (4) into (6) we can obtain:

Figure BDA0003006243470000082
Figure BDA0003006243470000082

对(3)式求导为:The derivative of (3) is:

Figure BDA0003006243470000083
Figure BDA0003006243470000083

对比(8)式和(9)式可得:Comparing equation (8) and equation (9), we can obtain:

Figure BDA0003006243470000084
Figure BDA0003006243470000084

由以上可知,相对半长轴平根多项式系数计算步骤如下:From the above, we can know that the calculation steps of the relative semi-major axis flat root polynomial coefficients are as follows:

a)假设从t0时刻到tf时刻,卫星处于不变轨状态,通过GNSS定轨可以获得卫星的瞬时轨道参数,利用瞬时轨道参数和平均轨道参数的转换公式可以计算出卫星的轨道纬度幅角平根u(t),利用(1)式可以计算出相对参考轨道纬度幅角平根Δu(t)。a) Assuming that the satellite is in an unchanged orbit from time t0 to time tf , the instantaneous orbit parameters of the satellite can be obtained through GNSS orbit determination. The conversion formula between the instantaneous orbit parameters and the average orbit parameters can be used to calculate the satellite's orbital latitude argument u(t). Formula (1) can be used to calculate the relative reference orbital latitude argument Δu(t).

b)利用(3)式及t0时刻到tf时刻的Δu(t)值,进行三次多项式拟合可以得到多项式系数ku0、ku1、ku2和ku3b) Using equation (3) and the Δu(t) values from time t 0 to time t f , a cubic polynomial fit can be performed to obtain the polynomial coefficients ku0 , ku1 , ku2 and ku3 .

c)根据参考轨道半长轴平根aR和(7)式计算出系数Kac) Calculate the coefficient Ka based on the semi-major axis square root of the reference orbit aR and equation (7).

d)利用(10)式计算出(4)式的系数Δa(t0)、

Figure BDA0003006243470000085
Figure BDA0003006243470000086
d) Use equation (10) to calculate the coefficients Δa(t 0 ) and
Figure BDA0003006243470000085
and
Figure BDA0003006243470000086

5)相对半长轴平根偏差DA估计5) Relative semi-major axis root mean square deviation DA estimation

利用(4)式,计算t0时刻到tf时刻之间的任意时刻的相对参考轨道半长轴平根Δa(t)的近似值。Using equation (4), calculate the approximate value of the semi-major axis square root Δa(t) relative to the reference orbit at any time between t0 and tf .

本发明的具体实现过程如下:The specific implementation process of the present invention is as follows:

1)定义星座参考轨道1) Define the constellation reference orbit

将低轨星座标称轨道半长轴平根作为参考轨道半长轴平根,定义为aR,参考轨道外推只考虑地球引力摄动,则外推任意时间t,轨道纬度幅角平根为uR(t),轨道半长轴平根均值aR维持不变,即aR=aRThe semi-major axis root mean square of the nominal orbit of the low-orbit constellation is taken as the semi-major axis root mean square of the reference orbit, which is defined as a R . The reference orbit is extrapolated by only considering the Earth's gravitational perturbation. Then, for any extrapolated time t, the orbit latitude angle root mean square is u R (t), and the orbit semi-major axis root mean square a R remains unchanged, that is, a R = a R .

2)定义星座相位保持参数2) Define constellation phase holding parameters

对于卫星受地球引力摄动、日月三体引力、大气阻力摄动、光压摄动的实际运行轨道,其轨道纬度幅角平根为u(t),定义其相对参考轨道纬度幅角平根为:For the actual orbit of the satellite, which is perturbed by the gravity of the earth, the gravity of the sun and the moon, the atmospheric drag, and the light pressure, the root mean square of the latitude argument of the orbit is u(t). The root mean square of the latitude argument of the satellite relative to the reference orbit is defined as:

Δu(t)=u(t)-uR(t) (1)Δu(t)=u(t)-u R (t) (1)

其轨道半长轴平根为a(t),定义其相对参考轨道半长轴平根为:The mean root of the semi-major axis of its orbit is a(t), and the mean root of the semi-major axis of its relative reference orbit is defined as:

Δa(t)=a(t)-aR (2)Δa(t)=a(t)-a R (2)

3)相对纬度幅角平根多项式拟合3) Relative latitude angle square root polynomial fitting

在无轨控情况下,通过GNSS定轨可以获得卫星的瞬时轨道参数,利用瞬时轨道参数和平均轨道参数的转换公式可以计算出卫星的纬度幅角平根u(t),利用(1)式可以计算出相对参考轨道纬度幅角平根Δu(t)。In the absence of orbit control, the instantaneous orbit parameters of the satellite can be obtained through GNSS orbit determination. The conversion formula between the instantaneous orbit parameters and the average orbit parameters can be used to calculate the satellite's latitude argument u(t). Formula (1) can be used to calculate the latitude argument Δu(t) relative to the reference orbit.

相对参考轨道纬度幅角平根Δu(t)可以用三次多项式近似为:The square root of the latitude argument Δu(t) relative to the reference orbit can be approximated by a cubic polynomial:

Δu(t)≈ku0+ku1(t-t0)+ku2(t-t0)2+ku3(t-t0)3 (3)Δu(t)≈k u0 +k u1 (tt 0 )+k u2 (tt 0 ) 2 +k u3 (tt 0 ) 3 (3)

4)相对半长轴平根多项式系数计算4) Calculation of relative semi-major axis flat root polynomial coefficients

对于低轨星座,相对参考轨道半长轴平根主要受大气阻力影响,在无轨控情况下,其可以用泰勒展开的二次多项式近似为:For low-orbit constellations, the semi-major axis root relative to the reference orbit is mainly affected by atmospheric drag. In the absence of orbit control, it can be approximated by a Taylor expansion quadratic polynomial:

Figure BDA0003006243470000091
Figure BDA0003006243470000091

其中:Δa(t0)为Δa(t)在t0时刻的值,

Figure BDA0003006243470000092
为Δa(t)在t0时刻的一阶导数,
Figure BDA0003006243470000093
为Δa(t)在t0时刻的二阶导数。Where: Δa(t 0 ) is the value of Δa(t) at time t 0 ,
Figure BDA0003006243470000092
is the first-order derivative of Δa(t) at time t 0 ,
Figure BDA0003006243470000093
is the second-order derivative of Δa(t) at time t0 .

相对参考轨道纬度幅角平根Δu(t)的变化率可以近似表示为:The rate of change of the mean square root of the latitude argument Δu(t) relative to the reference orbit can be approximately expressed as:

Figure BDA0003006243470000094
Figure BDA0003006243470000094

由于a(t)和aR相差很小,利用泰勒级数展开上式为:Since the difference between a(t) and a R is very small, the above formula can be expanded using Taylor series to:

Figure BDA0003006243470000101
Figure BDA0003006243470000101

其中

Figure BDA0003006243470000102
in
Figure BDA0003006243470000102

将(4)式代入(6)式可得:Substituting (4) into (6) we can obtain:

Figure BDA0003006243470000103
Figure BDA0003006243470000103

对(3)式求导为:The derivative of (3) is:

Figure BDA0003006243470000104
Figure BDA0003006243470000104

对比(8)式和(9)式可得:Comparing equation (8) and equation (9), we can obtain:

Figure BDA0003006243470000105
Figure BDA0003006243470000105

由以上可知,相对半长轴平根多项式系数计算步骤如下:From the above, we can know that the calculation steps of the relative semi-major axis flat root polynomial coefficients are as follows:

a)利用(3)式及t0时刻到tf时刻的Δu(t)值,进行三次多项式拟合可以得到多项式系数ku0、ku1、ku2和ku3a) Using equation (3) and the Δu(t) values from time t0 to time tf , a cubic polynomial fit can be performed to obtain the polynomial coefficients ku0 , ku1 , ku2 and ku3 .

b)根据参考轨道半长轴平根aR和(7)式计算出系数Kab) Calculate the coefficient Ka based on the semi-major axis root mean square of the reference orbit aR and equation (7).

c)利用(10)式计算出(4)式的系数Δa(t0)、

Figure BDA0003006243470000106
Figure BDA0003006243470000107
c) Using equation (10), calculate the coefficients Δa(t 0 ) and
Figure BDA0003006243470000106
and
Figure BDA0003006243470000107

5)相对半长轴平根偏差DA估计5) Relative semi-major axis root mean square deviation DA estimation

利用(4)式,计算t0时刻到tf时刻之间的任意时刻的相对参考轨道半长轴平根Δa(t)的近似值。Using equation (4), calculate the approximate value of the semi-major axis square root Δa(t) relative to the reference orbit at any time between t0 and tf .

实施例:Example:

假设低轨星座标称轨道半长轴平根为7578.137km,偏心率平根0.001562,倾角平根60°,近地点幅角90°,真近地点角270°。同轨卫星相位保持精度要求±0.1°,相对参考轨道纬度幅角平根控制盒边界为±0.1°,GNSS定轨半长轴测量误差均方根取10m,相应的相对纬度幅角测量误差均方根为0.0001°。Assume that the semi-major axis of the nominal orbit of the low-orbit constellation is 7578.137km, the eccentricity is 0.001562, the inclination is 60°, the perigee argument is 90°, and the true perigee is 270°. The phase keeping accuracy of the satellite on the same track is required to be ±0.1°, the latitude argument control box boundary relative to the reference orbit is ±0.1°, the GNSS orbit determination semi-major axis measurement error is 10m, and the corresponding relative latitude argument measurement error is 0.0001°.

采用单边漂移环控制策略,在280天内,相对参考轨道半长轴平根变化曲线如图2所示,相对参考轨道纬度幅角平根变化曲线如图3所示。当相对参考轨道纬度幅角平根接近控制盒右边界时,通过轨道机动,需要将相对参考轨道半长轴平根控制在目标值附近,该目标值在10m~14m范围内,由于星载GNSS定轨输出的轨道半长轴误差均方根为10m,相对参考轨道半长轴平根的误差均方根也为10m,将使得实际相对参考轨道半长轴平根控制结果在0~24m之间,当相对半长轴平根控制量超过14m时,相对纬度幅角将漂出控制盒的左边界,最终导致单边漂移环控制策略失效。Using the unilateral drift loop control strategy, within 280 days, the relative reference orbit semi-major axis root mean square change curve is shown in Figure 2, and the relative reference orbit latitude argument root mean square change curve is shown in Figure 3. When the relative reference orbit latitude argument root mean square is close to the right boundary of the control box, through orbit maneuvers, the relative reference orbit semi-major axis root mean square needs to be controlled near the target value, which is in the range of 10m to 14m. Since the orbit semi-major axis root mean square error output by the onboard GNSS orbit determination is 10m, the relative reference orbit semi-major axis root mean square error is also 10m, which will make the actual relative reference orbit semi-major axis root mean square control result between 0 and 24m. When the relative semi-major axis root mean square control value exceeds 14m, the relative latitude argument will drift out of the left boundary of the control box, eventually leading to the failure of the unilateral drift loop control strategy.

利用本文的方法,以第1段无控轨道为例,时间从第0天到第50天,根据GNSS定轨获得的相对参考轨道纬度幅角平根Δu(t)测量值和理论值变化曲线见图4,根据GNSS定轨获得的相对参考轨道半长轴平根Δa(t)测量值和理论值变化曲线见图5,可以看出,Δu(t)的GNSS输出和理论值相差非常小,Δa(t)的GNSS输出和理论值相差很大。Using the method proposed in this paper, taking the first uncontrolled orbit as an example, from the 0th day to the 50th day, the measured value and theoretical value change curve of the relative reference orbit latitude argument Δu(t) obtained according to GNSS orbit determination are shown in Figure 4, and the measured value and theoretical value change curve of the relative reference orbit semi-major axis Δa(t) obtained according to GNSS orbit determination are shown in Figure 5. It can be seen that the difference between the GNSS output and the theoretical value of Δu(t) is very small, and the difference between the GNSS output and the theoretical value of Δa(t) is large.

根据(7)式可以计算出系数Ka=0.0009455°/天/m。According to formula (7), the coefficient Ka = 0.0009455°/day/m can be calculated.

利用(4)式进行三次多项式拟合可以得到ku0=0.0622°,ku1=-0.0094°/天、ku2=1.3793×10-4°/天2和ku3=3.1113×10-7°/天3,即:Using equation (4) to fit a cubic polynomial, we can obtain ku0 = 0.0622°, ku1 = -0.0094°/day, ku2 = 1.3793×10 -4 °/ day2 and ku3 = 3.1113×10 -7 °/ day3 , that is:

Δu(t)≈0.06220-0.0094(t-t0)+1.3793×10-4(t-t0)2+3.1113×10-7(t-t0)3 (11)Δu(t)≈0.0622 0 -0.0094(tt 0 )+1.3793×10 -4 (tt 0 ) 2 +3.1113×10 -7 (tt 0 ) 3 (11)

利用(10)式,可以计算出(3)式的系数Δa(t0)=9.9002m,

Figure BDA0003006243470000111
天和
Figure BDA0003006243470000112
即:Using formula (10), we can calculate the coefficient of formula (3) Δa(t 0 ) = 9.9002m,
Figure BDA0003006243470000111
Tianhe
Figure BDA0003006243470000112
Right now:

Δa(t)≈9.9002m-0.2918(t-t0)-0.0010(t-t0)2 (12)Δa(t)≈9.9002m-0.2918(tt 0 )-0.0010(tt 0 ) 2 (12)

从第0天到第50天,按照(12)式计算相对参考轨道半长轴平根Δa(t)的近似值和理论值的变化曲线见图6,相对参考轨道半长轴平根Δa(t)的近似值与理论值相比的误差变化曲线见图7。从图中可见,采用本文方法,相对参考轨道半长轴平根Δa(t)的近似值误差优于±0.7m,满足单边漂移环控制策略的在轨实施。From day 0 to day 50, the variation curves of the approximate value and the theoretical value of the semi-major axis root mean square error Δa(t) relative to the reference orbit calculated according to formula (12) are shown in Figure 6, and the variation curve of the error of the approximate value of the semi-major axis root mean square error Δa(t) relative to the reference orbit compared with the theoretical value is shown in Figure 7. It can be seen from the figure that the error of the approximate value of the semi-major axis root mean square error Δa(t) relative to the reference orbit using the method proposed in this paper is better than ±0.7m, which meets the on-orbit implementation of the unilateral drift loop control strategy.

显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the present application without departing from the spirit and scope of the present application. Thus, if these modifications and variations of the present application fall within the scope of the claims of the present application and their equivalents, the present application is also intended to include these modifications and variations.

本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。The contents not described in detail in the specification of the present invention belong to the common knowledge of those skilled in the art.

Claims (7)

1. The low-orbit constellation phase maintaining parameter estimation method is characterized by comprising the following steps of:
determining a constellation reference orbit and a constellation phase maintaining parameter;
performing relative latitude amplitude angle flat root polynomial fitting to obtain a relative reference orbit latitude amplitude angle Ping Gen;
calculating the coefficients of the opposite semi-major axis flat root polynomials;
estimating a relative semi-major axis Ping Gen deviation;
the determining constellation reference track specifically comprises the following steps: the low-orbit constellation nominal orbit semi-long axis flat root is taken as a reference orbit semi-long axis Ping Gen a R The reference orbit extrapolation only considers the gravitational perturbation, extrapolates any time t, and the orbit latitude amplitude root is u R (t) track semi-major axis Ping Gen mean
Figure FDA0004088852800000012
Is kept unchanged, i.e.)>
Figure FDA0004088852800000013
The constellation phase maintaining parameter is determined, specifically: for the actual running orbit of satellite affected by earth attraction perturbation, solar-lunar three-body attraction perturbation, atmospheric resistance perturbation and light pressure perturbation, the orbit latitude amplitude angle flat root is u (t), and the relative reference orbit latitude amplitude angle flat root is defined as: Δu (t) =u (t) -u R (t); the semi-long axis flat root of the track is a (t), and the semi-long axis flat root of the track relative to the reference track is defined as delta a (t) =a (t) -a R
The method for carrying out the relative latitude amplitude angle flat root polynomial fitting comprises the following steps: under the condition of no orbit control, obtaining instantaneous orbit parameters of a satellite by GNSS orbit determination, calculating latitude argument Ping Gen u (t) of the satellite by using conversion of the instantaneous orbit parameters and the average orbit parameters, and using Deltau (t) =u (t) -u R (t) calculating a relative reference orbit latitude argument Ping Gen u (t); approximating the relative reference orbit latitude argument Ping Gen u (t) to Deltau (t) ≡k with a cubic polynomial u0 +k u1 (t-t 0 )+k u2 (t-t 0 ) 2 +k u3 (t-t 0 ) 3 ;t 0 Start time of trackless control, k u0 、k u1 、k u2 、k u3 Is a coefficient.
2. A method of estimating phase-preserving parameters of a low-rail constellation according to claim 1, wherein said calculating coefficients of a parallel root polynomial with respect to a major axis comprises the steps of:
approximating the relative reference orbit semi-major axis Ping Gen a (t) to a quadratic polynomial
Figure FDA0004088852800000011
Wherein t is 0 Is the starting moment of trackless control;
according to the reference orbit semi-major axis Ping Gen a R And
Figure FDA0004088852800000021
calculating coefficient K a The method comprises the steps of carrying out a first treatment on the surface of the Wherein,,μ is the gravitational coefficient;
by means of
Figure FDA0004088852800000022
Calculating the coefficient Δa (t 0 )、
Figure FDA0004088852800000023
And->
Figure FDA0004088852800000024
3. The method according to claim 1, wherein the estimation is biased with respect to a semi-major axis Ping Gen, specifically: from the determination of
Figure FDA0004088852800000025
Calculating the starting time t of the trackless control 0 To the end time t of the trackless control f An estimate of the relative reference orbit semi-major axis Ping Gen a (t) at any time in between.
4. A low-rail constellation phase-preserving parameter estimation system, comprising:
a first module for determining a constellation reference orbit and a constellation phase maintaining parameter;
the second module is used for carrying out relative latitude amplitude angle flat root polynomial fitting to obtain a relative reference orbit latitude amplitude angle Ping Gen;
the third module is used for calculating the polynomial coefficient of the flat root relative to the semi-major axis;
a fourth module that estimates a deviation from the median axis Ping Gen;
the determining constellation reference track specifically comprises the following steps: the low-orbit constellation nominal orbit semi-long axis flat root is taken as a reference orbit semi-long axis Ping Gen a R The reference orbit extrapolation only considers the gravitational perturbation, extrapolates any time t, and the orbit latitude amplitude root is u R (t) track semi-major axis Ping Gen mean
Figure FDA0004088852800000027
Is kept unchanged, i.e.)>
Figure FDA0004088852800000026
The constellation phase maintaining parameter is determined, specifically: for the actual running orbit of satellite affected by earth attraction perturbation, solar-lunar three-body attraction perturbation, atmospheric resistance perturbation and light pressure perturbation, the orbit latitude amplitude angle flat root is u (t), and the relative reference orbit latitude amplitude angle flat root is defined as: Δu (t) =u (t) -u R (t); the semi-long axis flat root of the track is a (t), and the semi-long axis flat root of the track relative to the reference track is defined as delta a (t) =a (t) -a R
The method for carrying out the relative latitude amplitude angle flat root polynomial fitting comprises the following steps: under the condition of no orbit control, obtaining instantaneous orbit parameters of a satellite by GNSS orbit determination, calculating latitude argument Ping Gen u (t) of the satellite by using conversion of the instantaneous orbit parameters and the average orbit parameters, and using Deltau (t) =u (t) -u R (t) calculating a relative reference orbit latitude argument Ping Gen u (t); approximating the relative reference orbit latitude argument Ping Gen u (t) to Deltau (t) ≡k with a cubic polynomial u0 +k u1 (t-t 0 )+k u2 (t-t 0 ) 2 +k u3 (t-t 0 ) 3 ;t 0 Start time of trackless control, k u0 、k u1 、k u2 、k u3 Is a coefficient.
5. The low-rail constellation phase preserving parameter estimation system of claim 4, wherein said calculating relative semi-major axis flat root polynomial coefficients comprises the steps of:
approximating the relative reference orbit semi-major axis Ping Gen a (t) to a quadratic polynomial
Figure FDA0004088852800000031
Wherein t is 0 Is the starting moment of trackless control;
according to the reference orbit semi-major axis Ping Gen a R And
Figure FDA0004088852800000032
calculating coefficient K a The method comprises the steps of carrying out a first treatment on the surface of the Wherein μ is a gravitational coefficient;
by means of
Figure FDA0004088852800000033
Calculating the coefficient Δa (t 0 )、
Figure FDA0004088852800000034
And->
Figure FDA0004088852800000035
The estimation is biased with respect to the semi-major axis Ping Gen, specifically: from the determination of
Figure FDA0004088852800000036
Calculating the starting time t of the trackless control 0 To the end time t of the trackless control f An estimate of the relative reference orbit semi-major axis Ping Gen a (t) at any time in between.
6. A computer readable storage medium storing a computer program, which when executed by a processor performs the steps of the method according to any one of claims 1 to 3.
7. A low-rail constellation phase-preserving parameter estimation device comprising a memory, a processor and a computer program stored in said memory and executable on said processor, characterized by: the processor, when executing the computer program, performs the steps of the method of any one of claims 1 to 3.
CN202110362735.9A 2021-04-02 2021-04-02 A method for estimating phase-keeping parameters of low-orbit constellations Active CN113189619B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110362735.9A CN113189619B (en) 2021-04-02 2021-04-02 A method for estimating phase-keeping parameters of low-orbit constellations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110362735.9A CN113189619B (en) 2021-04-02 2021-04-02 A method for estimating phase-keeping parameters of low-orbit constellations

Publications (2)

Publication Number Publication Date
CN113189619A CN113189619A (en) 2021-07-30
CN113189619B true CN113189619B (en) 2023-05-09

Family

ID=76975004

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110362735.9A Active CN113189619B (en) 2021-04-02 2021-04-02 A method for estimating phase-keeping parameters of low-orbit constellations

Country Status (1)

Country Link
CN (1) CN113189619B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113901636A (en) * 2021-08-20 2022-01-07 航天科工火箭技术有限公司 Calculation method, terminal equipment and medium of rocket orbital parameters
CN114006646B (en) * 2021-09-27 2023-09-29 中国人民解放军战略支援部队航天工程大学 An orbit control frequency analysis method and device for Walker constellation configuration maintenance
CN114254262B (en) * 2021-11-22 2023-04-18 浙江大学 Method and device for maintaining autonomous configuration of heterogeneous quality ratio satellite constellation and electronic equipment
CN114852375B (en) * 2022-03-24 2024-08-30 北京控制工程研究所 A method and device for estimating relative orbital changes of formation satellites
CN115396002B (en) * 2022-05-11 2024-09-17 航天行云科技有限公司 Control method, device and processing system for constellation phase of low-orbit satellite
CN115806061B (en) * 2022-11-10 2023-05-09 北京航天驭星科技有限公司 Modeling method, model and acquisition method of satellite relative phase maintaining strategy model
CN115636111B (en) * 2022-12-21 2023-03-28 北京航天驭星科技有限公司 Phase difference maintaining method, system, device, and medium
CN117421532B (en) * 2023-12-18 2024-02-27 北京航天驭星科技有限公司 Method, system, equipment and medium for calculating attenuation rate of medium-dip angle low orbit satellite

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108055069A (en) * 2017-12-11 2018-05-18 中国人民解放军战略支援部队航天工程大学 Calculation and control method of low orbit communication and navigation enhanced hybrid constellation maintenance control boundary
CN111541477A (en) * 2019-11-25 2020-08-14 航天科工空间工程发展有限公司 Method and device for suppressing internal frequency interference of low-orbit constellation system
CN111591469A (en) * 2020-03-03 2020-08-28 航天科工空间工程发展有限公司 Low-orbit constellation system phase keeping method, system, equipment and storage medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130002484A1 (en) * 2011-07-03 2013-01-03 Daniel A. Katz Indoor navigation with gnss receivers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108055069A (en) * 2017-12-11 2018-05-18 中国人民解放军战略支援部队航天工程大学 Calculation and control method of low orbit communication and navigation enhanced hybrid constellation maintenance control boundary
CN111541477A (en) * 2019-11-25 2020-08-14 航天科工空间工程发展有限公司 Method and device for suppressing internal frequency interference of low-orbit constellation system
CN111591469A (en) * 2020-03-03 2020-08-28 航天科工空间工程发展有限公司 Low-orbit constellation system phase keeping method, system, equipment and storage medium

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于参考轨道的Walker星座相对相位保持策略;胡松杰等;《空间控制技术与应用》;20101031;第36卷(第05期);第45-49页 *
基于约化相对轨道拟平根数的长期稳定高精度卫星编队导航技术;杨盛庆等;《空间控制技术与应用》;20170228;第43卷(第01期);第30-35页 *

Also Published As

Publication number Publication date
CN113189619A (en) 2021-07-30

Similar Documents

Publication Publication Date Title
CN113189619B (en) A method for estimating phase-keeping parameters of low-orbit constellations
CN102424116B (en) Method for optimizing orbital transfer strategy of geostationary orbit satellite
CN113343442B (en) A method and system for solving fixed-time finite fuel multi-pulse transfer orbits
US8205839B2 (en) Methods and apparatus for node-synchronous eccentricity control
CN110429974B (en) Fast Alignment Method and Device Based on Regression Orbit Constellation
US6439507B1 (en) Closed-loop spacecraft orbit control
CN103678814B (en) The eccentricity prebias method for designing of critical inclination near-circular orbit
EP0692425A1 (en) Method and system for formationkeeping between orbiting spacecraft by varying their ballistic coefficients
Kirschner et al. Flight dynamics aspects of the GRACE formation flying
CN113665849A (en) Autonomous phase control method combining EKF filtering algorithm and neural network
CN106094529A (en) Thruster Auto-calibration method in-orbit under formation task multiple-pulse control condition
CN112486196B (en) A Fast Trajectory Optimization Method for Aircraft Satisfying Strict Time and Position Constraints
CN112357115B (en) Satellite orbit correction method
CN115562325A (en) Method for realizing off-track control by utilizing out-of-plane thruster through attitude bias
CN113221267B (en) Engine performance parameter correction method based on-orbit data
CN114771873A (en) A method for autonomous and precise maintenance of ultra-low orbit satellite orbits
CN110077627A (en) A kind of space laser interference gravitational wave orbital exponent method and system
Leomanni et al. An adaptive groundtrack maintenance scheme for spacecraft with electric propulsion
CN115344808A (en) Low-orbit constellation system high-precision phase holding method considering long period term
Kos et al. Altair descent and ascent reference trajectory design and initial dispersion analyses
WO2008118140A2 (en) Methods and apparatus for node-synchronous eccentricity control
US7185858B2 (en) Spacecraft gyro calibration system
CN111290433A (en) Long-term autonomous formation combined pipeline maintaining method
Iwata Precision on-board orbit model for attitude control of the advanced land observing satellite (ALOS)
Treder Space station GN&C overview for payloads

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant