CN113185491A - 凝胶剂修饰的多孔海绵疏水材料及制备方法及用途 - Google Patents

凝胶剂修饰的多孔海绵疏水材料及制备方法及用途 Download PDF

Info

Publication number
CN113185491A
CN113185491A CN202110333921.XA CN202110333921A CN113185491A CN 113185491 A CN113185491 A CN 113185491A CN 202110333921 A CN202110333921 A CN 202110333921A CN 113185491 A CN113185491 A CN 113185491A
Authority
CN
China
Prior art keywords
hydrophobic material
gel
sponge
acetal
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110333921.XA
Other languages
English (en)
Inventor
宋健
张宝浩
贾婧
颜汝玉
张宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202110333921.XA priority Critical patent/CN113185491A/zh
Publication of CN113185491A publication Critical patent/CN113185491A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/041,3-Dioxanes; Hydrogenated 1,3-dioxanes
    • C07D319/061,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0202Separation of non-miscible liquids by ab- or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08J2361/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08J2361/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了凝胶剂修饰的多孔海绵疏水材料及制备方法及用途,其制备方法为:将缩醛取代的葡萄糖酰胺与甲醇混合,在搅拌下加热至溶解制成缩醛取代的葡萄糖酰胺甲醇溶液,简称溶液一,将海绵浸入溶液一中,8‑12分钟取出干燥,得到凝胶剂修饰的多孔海绵疏水材料。本发明开发了一种简便而经济的浸涂法来制备凝胶剂修饰的多孔海绵疏水材料,工艺简单、成本低廉。实验证明凝胶剂修饰的多孔海绵疏水材料具有良好的吸油性能,能够快速地选择性吸收各种油类和/或有机溶剂,通过简单的挤压即可收集被吸收的物质,凝胶剂修饰的多孔海绵疏水材料可以重复利用,具有出色的可循环性。在油水分离方面有很大的应用价值。

Description

凝胶剂修饰的多孔海绵疏水材料及制备方法及用途
技术领域
本发明属于精细化工技术领域,具体涉及一种凝胶剂修饰的多孔海绵疏水材料及制备方 法及用途。
背景技术
超分子凝胶是由低分子量凝胶因子(分子量小于3000)通过自组装形成的一种介于液体 和固体之间的典型软材料,凝胶因子通过各种非共价相互作用(例如氢键,π-π作用,静电作 用和范德华力)在溶剂中自组装形成纤维状、棒状、带状或球状聚集体,聚集体进一步缠绕 形成三维网状结构,并通过表面张力和毛细作用将溶液束缚于其中。由于非共价键在一定程 度上动态可逆,超分子凝胶相对于聚合物凝胶具有可逆性、刺激响应性、自修复性和一定的 生物相容性等优势(Chem.Soc.Rev.2016,45(15):4226-4251.)。
频繁发生的海洋溢油和有机污染物泄漏事故对海洋生态环境具有持久的严重负面影响, 并且会带来巨大的经济损失。常规的溢油处理方法包括围油栏、原位燃烧、物理吸附和使用 化学分散剂等(Small.2015,11(39):5222-5229)。在这些方法中,使用吸附剂不仅对环境无害, 还能回收油品,被认为是一种更理想的选择。常见的吸附材料有改性粘土、片状石墨和纤维 素材料等,这些材料通常有吸油率低、可回收性差和成本高等缺点,限制了它们的实际应用 (J.Porous Mater.2003,10(3):159-170)。近年来,低密度高孔隙率的多孔海绵在油水分离领 域引起了人们的关注。商业海绵都是两亲性的,为了使海绵在油水分离过程中具有高吸油能 力和良好的疏水性,目前已经开发了许多方法对商业海绵进行表面改性。用SiO2(J Ind Eng Chem.2016,40:47-53),Ag(Chempluschem.2014,79(6):850-856),Fe3O4(Mater.Lett.2017, 190:119-122)等无机纳米颗粒作为表面涂层的方法需要对颗粒进行复杂的预处理,石墨烯 (ACS Appl.Mater.Interfaces.2013,5(20):10018-10026)和碳纳米管(Colloids Surf.A Physicochem.Eng.Asp.2018,551:9-16)等碳材料也常用于海绵的表面改性,但制备工艺繁琐, 成本较高。因此,寻找一种低成本、无污染、制备工艺简单的疏水材料对开发新型高效吸油 材料来说十分有意义。
发明内容
本发明的目的在于克服现有技术的不足,提供一种缩醛取代的葡萄糖酰胺。
本发明的第二个目的是提供一种缩醛取代的葡萄糖酰胺的制备方法。
本发明的第三个目的是提供凝胶剂修饰的多孔海绵疏水材料。
本发明的第四个目的是提供凝胶剂修饰的多孔海绵疏水材料的制备方法。
本发明的第五个目的是提供凝胶剂修饰的多孔海绵疏水材料在吸附油类和有机溶剂的用 途。
本发明的技术方案概述如下:
一种缩醛取代的葡萄糖酰胺,如式I所示:
Figure BDA0002996514690000021
其中,n=8、10或12。
一种缩醛取代的葡萄糖酰胺的制备方法,包括如下步骤:
缩醛取代的葡萄糖酸甲酯Ⅱ与脂肪族二元胺反应,得到缩醛取代的葡萄糖酰胺,反应式 如下:
Figure BDA0002996514690000022
其中,n=8、10或12。
一种凝胶剂修饰的多孔海绵疏水材料的制备方法,包括如下步骤:将缩醛取代的葡萄糖 酰胺与甲醇混合,在搅拌下加热至溶解制成浓度为1-10毫克/毫升的缩醛取代的葡萄糖酰胺甲 醇溶液,简称溶液一,将海绵浸入溶液一中,8-12分钟取出干燥,得到凝胶剂修饰的多孔海 绵疏水材料。
所述海绵为三聚氰胺海绵、聚氨酯海绵或聚醚海绵。
上述制备方法制备的凝胶剂修饰的多孔海绵疏水材料。
上述凝胶剂修饰的多孔海绵疏水材料在吸附油类或有机溶剂的用途。
本发明的优点:
本发明使用一种缩醛取代的葡萄糖酰胺(超分子凝胶剂)作为海绵的表面改性材料,开 发了一种简便而经济的浸涂法来制备凝胶剂修饰的多孔海绵疏水材料,工艺简单、成本低廉。 本发明将海绵在热的缩醛取代的葡萄糖酰胺甲醇溶液中浸渍,干燥,实验证明凝胶剂修饰的 多孔海绵疏水材料具有良好的吸油性能,能够快速地选择性吸收各种油类和/或有机溶剂,通 过简单的挤压即可收集被吸收的物质,凝胶剂修饰的多孔海绵疏水材料可以重复利用,具有 出色的可循环性。在油水分离方面有很大的应用价值。
附图说明
图1为一种凝胶剂修饰的多孔海绵疏水材料在空气中的水接触角。其中a为实施例4制 备;b为实施例5制备;c为实施例3制备;
图2为实施例3制备的凝胶剂修饰的多孔海绵疏水材料循环使用过程中的吸附容量变化 图。
具体实施方式
下面结合具体实施例对本发明作进一步的说明。
实施例1
本发明所用原料2,4-(3,4-二甲基苯亚甲基)-D-葡萄糖酸甲酯(II)用下述方法制成:
Figure RE-GDA0003121412580000031
在10℃的水浴条件下,向装有机械搅拌器、温度计的1L四口瓶中加入50wt%的D-葡萄 糖酸水溶液(172.62g)、甲醇(100mL)和浓盐酸(200mL),搅拌10min。将59.04g的3,4-二甲基 苯甲醛溶于200mL甲醇中,将3,4-二甲基苯甲醛的甲醇溶液滴加到四口瓶中,随着反应进行 体系有白色固体析出,持续搅拌24h。反应完毕后向体系中加入100mL水,搅拌2h后抽滤, 滤饼用蒸馏水洗涤至中性,然后滤饼在二氯甲烷中加热回流洗涤三次,烘干得到产品93.71g, 产率为65.3%;熔点为175.3-176.9℃;1H NMR(400MHz,DMSO-d6,TMS,25℃):δ7.31(s,1H,Ar-H),7.23(dd,J=7.7,1.7Hz,1H,Ar-H),7.17(d,J=7.8Hz,1H,Ar-H),5.57(s,1H, OCHO),4.91(d,J=8.3Hz,1H,OH),4.77(d,J=6.0Hz,1H,OH),4.72(d,J=1.8Hz,1H, CH),4.46(t,J=5.8Hz,1H,OH),4.03(d,J=8.2Hz,1H,CH),3.80(m,1H,CH),3.71(m,3H,CH3),3.68(m,1H,CH),3.58(m,1H,CH2),3.42(dt,1H,CH2),2.26(d,J=4.0Hz, 6H,CH3);13C NMR(100MHz,DMSO-d6):δ169.33,137.15,136.06,129.32,128.04,124.45, 100.31,79.35,79.15,69.44,63.54,62.92,52.00,19.82,19.66。得到2,4-(3,4-二甲基苯亚 甲基)-D-葡萄糖酸甲酯(Ⅱ)。
实施例2
缩醛取代的葡萄糖酰胺(Ⅰ-1)的制备方法,包括如下步骤:
向装有磁力搅拌的100mL三口瓶中加入2,4-(3,4-二甲基苯亚甲基)-D-葡萄糖酸甲酯(Ⅱ) 3.27g、甲醇50mL、催化剂4-二甲氨基吡啶0.03g,于40℃下加热搅拌30min后加入十二二 胺6.01g,加热搅拌反应12h。反应结束后将产物抽滤,滤饼用甲醇洗涤抽干得到粗品。将粗 品用甲醇重结晶,烘干得到白色固体3.06g,产率为62%;熔点为;1H NMR(400MHz,MeOD) δ7.39(s,1H),7.31(d,J=7.7Hz,1H),7.15(d,J=7.8Hz,1H),5.65(s,1H),4.88(s,9H),4.45(s, 1H),4.21(s,1H),3.89(s,2H),3.79(d,J=10.8Hz,1H),3.67(d,J=10.5Hz,1H),3.34(dd,J= 9.3,7.8Hz,4H),2.70–2.57(m,2H),2.30(d,J=7.5Hz,6H),1.60–1.41(m,4H),1.31(s,15H). 得到缩醛取代的葡萄糖酰胺Ⅰ-1。
反应式如下:
Figure BDA0002996514690000041
用辛二胺或癸二胺替代本实施例的十二二胺,其它同本实施例,依次分别得到缩醛取代 的葡萄糖酰胺(I-2)和缩醛取代的葡萄糖酰胺(I-3)。
实施例3
凝胶剂修饰的多孔海绵疏水材料的制备方法,包括如下步骤:将缩醛取代的葡萄糖酰胺 (Ⅰ-1)与甲醇混合,在搅拌下加热至65℃溶解,制成浓度为5mg/mL的缩醛取代的葡萄糖 酰胺(Ⅰ-1)甲醇溶液,简称溶液一,将切成1cm3的三聚氰胺海绵预处理(用丙酮和去离子 水洗涤并干燥),浸入溶液一中,10分钟取出干燥,得到凝胶剂修饰的多孔海绵疏水材料(简 称A12)。
实施例4
凝胶剂修饰的多孔海绵疏水材料的制备方法,包括如下步骤:将缩醛取代的葡萄糖酰胺 (Ⅰ-2)与甲醇混合,在搅拌下加热至50℃溶解,制成浓度为1mg/mL的缩醛取代的葡萄糖 酰胺(Ⅰ-2)甲醇溶液,简称溶液一,将切成1cm3的三聚氰胺海绵预处理(用丙酮和去离子 水洗涤并干燥),浸入溶液一中,12分钟取出干燥,得到凝胶剂修饰的多孔海绵疏水材料(简 称A8)。
实施例5
凝胶剂修饰的多孔海绵疏水材料的制备方法,包括如下步骤:将缩醛取代的葡萄糖酰胺 (Ⅰ-3)与甲醇混合,在搅拌下加热至80℃溶解制成浓度为10mg/mL的缩醛取代的葡萄糖酰 胺(Ⅰ-3)甲醇溶液,简称溶液一,将切成1cm3的三聚氰胺海绵预处理(用丙酮和去离子水 洗涤并干燥),浸入溶液一中,8分钟取出干燥,得到凝胶剂修饰的多孔海绵疏水材料简称 (A10)。
用聚氨酯海绵或聚醚海绵替代本实施例的三聚氰胺海绵,其它同本实施例,制备出相应 的凝胶剂修饰的多孔海绵疏水材料。
实施例6
凝胶剂修饰的多孔海绵疏水材料的油水分离性能测试如下:
(1)疏水性:使用JC2000D1接触角测量仪(中国上海POWEREACH)在室温下测量凝胶剂修饰的多孔海绵疏水材料的水接触角。
普通海绵在空气中的水接触角为0°。
A8的水接触角为128.3°(图1a);
A10的水接触角为127.9°(图1b);
A12的水接触角为129°(图1c)。
凝胶剂修饰的多孔海绵疏水材料具有良好的疏水性,不会吸收水。
(2)饱和吸附能力测试:将预先称重实施例3、4或5制备的凝胶剂修饰的多孔海绵疏水材 料浸入盛有不同有机溶剂或油品的烧杯中,饱和吸附后取出,待液体不再滴落后称重,饱和 吸附能力通过如下公式计算
Figure BDA0002996514690000061
其中,Q为饱和吸附能力,g/g;m为凝胶剂修饰的多孔海绵疏水材料吸附后的质量,g; m0为凝胶剂修饰的多孔海绵疏水材料吸附前的质量,g。测试结果如表1所示,凝胶剂修饰 的多孔海绵疏水材料具有出色的吸附性能。
表1凝胶剂修饰的多孔海绵疏水材料对不同有机溶剂和油品的吸附能力
Figure BDA0002996514690000062
(3)循环使用性能:以A12为例,表现出优异的重复使用性能,在50次吸附-挤压循环之后, 其吸附容量保持率在90%以上(图2)。

Claims (6)

1.一种缩醛取代的葡萄糖酰胺,其特征如式(I)所示:
Figure FDA0002996514680000011
其中,n=8、10或12。
2.权利要求1的一种缩醛取代的葡萄糖酰胺的制备方法,其特征是包括如下步骤:
缩醛取代的葡萄糖酸甲酯Ⅱ与脂肪族二元胺反应,得到缩醛取代的葡萄糖酰胺,反应式如下:
Figure FDA0002996514680000012
其中,n=8、10或12。
3.一种凝胶剂修饰的多孔海绵疏水材料的制备方法,其特征是包括如下步骤:将权利要求1的缩醛取代的葡萄糖酰胺与甲醇混合,在搅拌下加热至溶解制成浓度为1-10毫克/毫升的缩醛取代的葡萄糖酰胺甲醇溶液,简称溶液一,将海绵浸入溶液一中,8-12分钟取出干燥,得到凝胶剂修饰的多孔海绵疏水材料。
4.根据权利要求3所述的制备方法,其特征在于所述海绵为三聚氰胺海绵、聚氨酯海绵或聚醚海绵。
5.权利要求3或4的制备方法制备的凝胶剂修饰的多孔海绵疏水材料。
6.权利要求5的凝胶剂修饰的多孔海绵疏水材料在吸附油类或有机溶剂的用途。
CN202110333921.XA 2021-03-29 2021-03-29 凝胶剂修饰的多孔海绵疏水材料及制备方法及用途 Pending CN113185491A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110333921.XA CN113185491A (zh) 2021-03-29 2021-03-29 凝胶剂修饰的多孔海绵疏水材料及制备方法及用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110333921.XA CN113185491A (zh) 2021-03-29 2021-03-29 凝胶剂修饰的多孔海绵疏水材料及制备方法及用途

Publications (1)

Publication Number Publication Date
CN113185491A true CN113185491A (zh) 2021-07-30

Family

ID=76974410

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110333921.XA Pending CN113185491A (zh) 2021-03-29 2021-03-29 凝胶剂修饰的多孔海绵疏水材料及制备方法及用途

Country Status (1)

Country Link
CN (1) CN113185491A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115888661A (zh) * 2022-11-10 2023-04-04 西南科技大学 一种海绵与铁氧化物水性涂料复合物及其制备与应用方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105175388A (zh) * 2015-10-15 2015-12-23 天津大学 N-胺烷基取代葡萄糖酰胺及其制备方法与应用
CN109201014A (zh) * 2018-10-22 2019-01-15 西南石油大学 一种多孔吸油材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105175388A (zh) * 2015-10-15 2015-12-23 天津大学 N-胺烷基取代葡萄糖酰胺及其制备方法与应用
CN109201014A (zh) * 2018-10-22 2019-01-15 西南石油大学 一种多孔吸油材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BAOHAO ZHANG ET AL: "Porous amorphous powder form phase-selective organogelator for rapid recovery of leaked aromatics and spilled oils", 《JOURNAL OF HAZARDOUS MATERIALS》 *
JIAHUI LIU ET AL: "Flexible and highly transparent two-component", 《CHEMICAL COMMUNICATIONS》 *
ZHANG J ET AL: "Smart Materials for Environmental Remediation Based on Two-Component Gels: Room-Temperature-Phase-Selective Gelation for the Removal of Organic Pollutants Including Nitrobenzene/O-Dichlorobenzene, and Dye Molecules from the Wastewater", 《NANOSCALE RESEARCH LETTERS》 *
宋健 等: "可用于溢油处理的室温凝胶剂的制备及性能研究", 《天津大学学报(自然科学与工程技术版)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115888661A (zh) * 2022-11-10 2023-04-04 西南科技大学 一种海绵与铁氧化物水性涂料复合物及其制备与应用方法
CN115888661B (zh) * 2022-11-10 2024-04-05 西南科技大学 一种海绵与铁氧化物水性涂料复合物及其制备与应用方法

Similar Documents

Publication Publication Date Title
Zhang et al. Ultralight, hydrophobic, sustainable, cost-effective and floating kapok/microfibrillated cellulose aerogels as speedy and recyclable oil superabsorbents
Zhang et al. Direct and postsynthesis of tin-incorporated SBA-15 functionalized with sulfonic acid for efficient biodiesel production
JP7148929B2 (ja) シクロデキストリンポリマー及びその製造方法
Zhang et al. Designed synthesis of sulfonated polystyrene/mesoporous silica hollow nanospheres as efficient solid acid catalysts
Dai et al. Assembly of ultralight dual network graphene aerogel with applications for selective oil absorption
WO2012128747A1 (en) Graphite oxide coated particulate material and uses thereof
Zhou et al. Green preparation and selective permeation of d-Tryptophan imprinted composite membrane for racemic tryptophan
Ebrahimi et al. Facile and novel ambient pressure drying approach to synthesis and physical characterization of cellulose-based aerogels
CN112898571B (zh) 多孔交联材料及其制备方法与应用
Cao et al. Highly compression-tolerant and durably hydrophobic macroporous silicone sponges synthesized by a one-pot click reaction for rapid oil/water separation
Weng et al. Review on synthesis of three-dimensional graphene skeletons and their absorption performance for oily wastewater
CN113185491A (zh) 凝胶剂修饰的多孔海绵疏水材料及制备方法及用途
Gao et al. Preparation of boron nitride nanofibers/PVA composite foam for environmental remediation
Wei et al. Autocatalytic synthesis of molecular-bridged silica aerogels with excellent absorption and super elasticity
CN109201014B (zh) 一种多孔吸油材料及其制备方法
Guo et al. Formation of boronate-based macroporous copolymer via emulsion-assisted interface self-assembly method for specific enrichment of Naringin
CN113582159B (zh) 一种高电容多孔碳材料及其制备方法
Zhang et al. Multicovalent crosslinked double-network graphene–polyorganosiloxane hybrid aerogels toward efficient thermal insulation and water purification
CN112940140B (zh) 一步法制备超气湿性纳米微晶纤维素的方法及应用
Li et al. Vertical porous aerogel based on polypyrrole and bimetallic modified β-cyclodextrin polymer-chitosan for efficient solar evaporation
Zheng et al. Superhydrophobic conjugated porous organic polymer coated polyurethane sponge for efficient oil/water separation
KR20110073491A (ko) 요소 화합물, 요소 화합물의 자기 집합체 및 자기 집합체를 함유하는 오르가노겔 및 오르가노겔의 제조 방법
Zhang et al. Facile one-pot preparation of chiral monoliths with a well-defined framework based on the thiol–ene click reaction for capillary liquid chromatography
KR101154326B1 (ko) 디우레아를 포함하는 유기-무기 혼성 실리카 중간세공 분자체 및 그 제조방법
CN112898540B (zh) 含柱芳烃或去柱芳烃的多孔共轭聚合物及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210730