CN113167274B - 旋转式压缩机构、旋转式压缩机和旋转式发动机 - Google Patents

旋转式压缩机构、旋转式压缩机和旋转式发动机 Download PDF

Info

Publication number
CN113167274B
CN113167274B CN201980068741.4A CN201980068741A CN113167274B CN 113167274 B CN113167274 B CN 113167274B CN 201980068741 A CN201980068741 A CN 201980068741A CN 113167274 B CN113167274 B CN 113167274B
Authority
CN
China
Prior art keywords
piston
cylinder
pump
rotary
compression mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980068741.4A
Other languages
English (en)
Other versions
CN113167274A (zh
Inventor
阮海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN113167274A publication Critical patent/CN113167274A/zh
Application granted granted Critical
Publication of CN113167274B publication Critical patent/CN113167274B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/18Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/123Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially or approximately radially from the rotor body extending tooth-like elements, co-operating with recesses in the other rotor, e.g. one tooth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/082Details specially related to intermeshing engagement type machines or engines
    • F01C1/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/12Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type
    • F01C1/123Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type with tooth-like elements, extending generally radially from the rotor body cooperating with recesses in the other rotor, e.g. one tooth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/082Details specially related to intermeshing engagement type pumps
    • F04C18/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/16Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/20Geometry of the rotor

Abstract

本发明涉及高效的吸气和压缩旋转机构,特别是在压缩机和真空或液压系统如油泵、液压电机、液压变速箱的领域中,具有安装在两个轴上并由一对匹配齿轮驱动的活塞块的压缩机构,特别是使用该机构以产生旋转电机的应用,该电机具有多压缩级、力产生级和连续燃料燃烧状态。本发明中的新型旋转叶片结构在具有相同半径的曲面之间提供紧密接触,其是“表面对表面”的接触,其密封性比“线”接触好很多。

Description

旋转式压缩机构、旋转式压缩机和旋转式发动机
技术领域
本发明涉及高效的旋转式压缩机构,特别是在如油泵、液压电机、液压变速箱的压缩机和真空或液压系统领域中,具有安装在两个轴上并由一对匹配齿轮驱动的活塞块的压缩机构,特别是使用该机构来产生一个具有多压缩级、力产生级和持续燃料燃烧状态的旋转电机的应用。
背景技术
目前在实际应用中有许多压缩或真空旋转机构,如螺杆式压缩机、叶轮泵、旋转叶片鼓风机、离心式风扇等。每种类型都有自己的优缺点。例如,双叶片旋转鼓风机的流量大,结构简单,但由于密封性差,压力低,螺杆式压缩机的工作压力相对较高,但通常必须用油密封,因此应安装复杂的滤油系统等。
目前的旋转叶片空气压缩机,如鼓风机、螺杆式空气压缩机,旋转叶片之间或旋转叶片与压缩机室壳体之间的密封位置通常以“线”的形式暴露,该“线”作为具有不同曲线半径的两个曲面的接触。
通常,旋转式压缩机或旋转真空比往复式压缩机具有更简单的结构和更高的流量,但是旋转式压缩机难以保持其工作室密封,因为难以产生绝对的精度,并且难以将密封旋转芯和室壁之间的间隙或旋转芯之间的间隙的部件放置在一起。
具有产生力的平移运动机构的发动机有以下缺点:
-必须有将平移运动转变为旋转运动的机构,如连杆、曲轴等。这使得往复式发动机的结构复杂化,制造成本高,发动机难以维持其动平衡,维修保养方式复杂。
-对于往复式电机,进入燃烧室的进气流量不稳定,在高速旋转模式的情况下,进气的惯性延迟会降低进气效率,在高速旋转模式下,增加容量的能力迅速降低。如果要增加发动机容量,必须使用附加的增压系统。
-平移运动部件的功率损耗随着电机转数的平方比而增加。产生作用在发动机支架上的大的动态载荷也遵循相同的比率,从而缩短发动机部件的寿命。
发明内容
内容
本发明的目的是创造一种旋转式压缩机构,其具有:
结构简单,易于制作;
泄漏少,效率高;
不使用润滑油或密封油;
全旋转平衡;
流量大;
平衡泵内部压力产生的力;
摩擦力小;
轻松提高发动机功率。
为了实现上述目标,本发明提供了一种具有旋转叶片(类似于鼓风机)的旋转式压缩机构,但具有特殊的结构以增加密封性。本发明中的新型旋转叶片结构在具有相同半径的弯曲表面之间提供紧密接触,该紧密接触是一种“表面对表面”的接触,其密封性比“线”接触好得多。请注意,这里的“接触”一词是象征性表示,因为实际上有必要避免旋转叶片之间或旋转叶片与压缩机室之间的实际接触,以消除工作过程中可能导致压缩机部件的损坏的摩擦,而且在工作过程中为压缩机部件的热膨胀创造空间。密封位置的“表面对表面”接触有利于在旋转芯和泵室之间或旋转部件之间的所有间隙处安装密封部件。同时,旋转芯的轮廓不需要精确制作,同时仍不影响泵室的密封性。
然而,基于压缩结构必须是固体结构、完全动平衡和制造简单的事实,所以此处的旋转叶片结构分为两个主要部分:
-主叶片:由于其密封部件都是如在往复式压缩机活塞中一样“表面对表面”的形式,我们可以称它为旋转活塞。它是压缩机构的主要工作部件。这些主旋转叶片对称地安装在副叶片的两侧。
-副叶片:其结构与现有叶片式压缩机中的旋转叶片相同,密封位置为“线”接触。然而,与压缩机构的所有密封部件相比,这些密封位置非常小,因此压缩机构的密封效果高于传统的旋转叶片机构。尽管该副叶片也部分地参与压缩,但其主要用途是放置主旋转部件并驱动主叶片。该副叶片部分直接安装在驱动轴上。此处我们称之为支承板。
为了压缩机的高效率,本发明还为活塞的顶面和支承板提供了特殊的轮廓。两者都具有相同的基础轮廓,并且对这些轮廓进行改变以适应其不同的工作要求,这将在后面讨论。
本发明还涉及具有类似于基于旋转压缩结构的燃气轮机的燃料燃烧和力产生膨胀模式的旋转式发动机。这种发动机循环类似于燃气轮机循环,即布雷顿循环。与燃气轮机的唯一区别是在此处气体的运行是在封闭空间中,而燃气轮机中气体的运行是在开放空间。发动机以这样的模式运行,即由燃烧室中的压力加载的进气压力远高于汽车循环发动机的进气压力。因此,这些旋转电机需要一个以上的压缩级来实现高负载压力和进气效率。使用上述新型压缩机构的旋转电机有两个选项。两个选项都适用于布雷顿循环。
附图说明
图1A是示出处于独立状态的压缩机的总体结构和主要细节的概况的透视图;
图1B是示出工作位置细节的纵向截面图;
图2是示出活塞和活塞板厚度的比较的可拆卸部件的透视图;
图3是示出如何创建活塞轮廓和支承板基线的示意图;
图4是示出活塞边界和基本参数的影响的示意图;
图5是示出支承板边缘和基本参数的示意图;
图6是示出可以安装密封杆的位置的剖视图;
图7是根据选项1的发动机原理的示意图;
图8是示出根据选项1的发动机运行级的示意图;
图9是示出根据选项2的发动机运行原理的示意图;
图10是示出活塞和活塞板的主要轮廓轨迹的示图。
具体实施方式
图1:压缩机的总体结构和主要细节的概述:
一对驱动齿轮(1)紧固在两个轴(11)上,它们相应地驱动活塞一起工作;由于形成泵室的泵壁上的定位支架,泵壁(2)和泵壳(4)精确地组装在一起;滚珠轴承(5)是支撑轴的轴承,轴放置在从泵壁(2)突出的气缸(3)中;弹簧(6)也设置在气缸(3)中,其一直将密封环(7)推到靠近支承板(9)的一侧,以密封气缸(3)的顶面和支承板(9)的一侧之间的间隙;
支承板(9)紧固在轴(11)和活塞(8)上;活塞(8)对称地安装在板(9)的两侧,并通过轴(11)的旋转中心对称,这使围绕轴(11)的整个块完全平衡,同时提高了整个单元在运行期间的承载能力;扫描杆(12)密封活塞(8)内部和气缸(3)周围之间的间隙;
扫描杆(13)密封气缸(3)的凹面和相对的活塞(8)的外侧之间的间隙;扫描杆(14)密封泵室(4)内部和活塞(8)外部之间的间隙;密封板(10)密封活塞(8)侧面和泵壁之间的间隙。
图2:活塞和活塞板厚度的对比图
活塞的厚度是D,支承板的厚度是d。d/D的比越小,运行越好,只要其能保证泵运行时板的耐久性。
图3:用于创建活塞头和支承板的基础轮廓
假设我们有点A、o、p、q、r和平面B。其中:
直线段op=H是两个泵轴的中心之间的距离。
点A在通过两个点o和p的平面B内绕点o旋转,其半径为段oq。点A将从点r开始,绕点o旋转,直到点A与点q重合。此时,点A旋转了角度α。点A的轨迹将为弧qr。平面B以与点A相同的角速度绕点p旋转,但方向相反。点A的oq转弯半径将是活塞的外半径或支承板的半径。当点A围绕点o旋转角度α时,平面B也围绕点p旋转角度α,但方向相反。点A在平面B上的轨迹为曲线段qs。曲线qs是活塞和支承板的基本轮廓。
图4:描述如何创建活塞轮廓和基本参数
活塞顶部的轮廓
在上图中,我们有4个成对对称的活塞块,活塞P1通过轴线T1与活塞P2对称,活塞P3通过轴线T2与活塞块P4对称。活塞块在由压缩机壳和气缸C1和C2限定的空间内反向旋转。
活塞顶部的轮廓由两条曲线ab和bc构成。曲线ad是上一部分所提到的活塞表面的基本轮廓。我们将取曲线ad上的任一点b,以旋转中心T2为中心并经过点b的圆将具有半径R3。曲线bc通过穿过旋转中心T2和点b的直线ef与基础轮廓的剩余部分bd对称。顶部活塞轮廓由曲线ab和bc构成,其中曲线ab是基本轮廓ad的一部分。
活塞顶部的轮廓由两条曲线ab和bc构成,其中曲线ab是基础曲线abd的一部分,基础曲线abd是上一部分提到的曲线。曲线bc通过穿过旋转中心T2和点b的直线ef与基础曲线的剩余部分bd对称。
活塞另一端的轮廓与旋转中心对称地对齐,使得活塞的两个顶点和旋转中心形成的角度为90度。角度gkh将为90度。
对于活塞叶片,一直有H<(R1+R2),这是气缸C1和气缸C2上凹曲线段存在的条件,即,长度mn>0。
这种新型压缩机构具有增加的气缸C1和C2,这两个气缸安装在压缩机室的壁上,其中心轴线与活塞块的旋转中心重合,气缸的外半径分别与活塞块的内半径重合。这些气缸被圆弧mn凹切,圆弧mn的半径对应于活塞块的外半径,圆弧mn的中心与相对的活塞块的旋转中心重合。气缸的长度等于活塞块的宽度。这使活塞块的密封完全成为“表面对表面”接触,与现有的旋转叶片压缩机相比,压缩机的密封性显著提高。
对称活塞块在支承板上的安装是为了使压缩机的整个旋转运动完全平衡,压缩机可以在高旋转模式下运行,提供压缩机的高耐用性和高流量。
R1、R2和R3的不同大小比率以及两个旋转中心T1和T2之间的距离H将产生具有不同压缩流量和压缩比的压缩机。
斜线部分PV1是由活塞顶部P1,P2的轮廓、气缸的外侧表面和压缩机壳以及支承板的侧面限定的体积。斜线部分PV2的体积小于气缸C1、C2上的弧形表面mn以及活塞顶部P1、P4的轮廓和支承板的侧面在旋转期间形成封闭空间时所限定的体积。
活塞顶部的轮廓不涉及密封,即两个轴线上的两个活塞的活塞顶部不需要相互接触,实际上在运行期间它们之间的间隙大小完全由设计者选取。密封完全取决于泵室内表面、活塞体表面、气缸外表面和支承板侧面之间的间隙。活塞顶部的轮廓仅用于优化压缩比,以提高压缩机的效率。这使压缩机的结构更简单。加工活塞顶部轮廓、支承板轮廓和该对驱动齿轮时的精度,不像其他旋转叶片压缩机那样严格。
图5:描述支承板的轮廓和基本参数。
支承板是金属板,其厚度比活塞的厚度小得多,支承板在压缩机室的中间位置安装在压缩机的旋转轴上,位于气缸C1和C2的两端之间。支承板的前边缘在结构上类似于活塞头的前边缘,但是有一个小得多的曲线bc,该曲线bc位于轮廓支承处顶部,其目的只是“钝化”支承板的尖锐边缘。支承板的半径R3可以近似认为是支承板的外半径R1。支承板的轮廓实际上是活塞轮廓的特殊情况,当R1+R2=H时,在这种情况下曲线长度mn=0。
DV1是由一个支承板的轮廓以及支承板的侧面和压缩机壳限定的体积。
DV2是由两个支承板的两个轮廓和支承板的侧面以及气缸C1、C2上的弧形表面mn在形成封闭空间时限定的体积。
支承板的主要任务是将具有旋转轴的活塞块安装到均匀的旋转块中,支承板也可以像具有“线”接触的形式的旋转叶片的压缩机的旋转叶片那样非常小部分地参与压缩,然而,因为支承板的厚度与活塞块的厚度相比非常小,所以它不太影响压缩机的密封性。
支承板的厚度仅设计得足够耐用,以避免压缩机工作过程中的损坏。活塞块可以单独制造,然后安装在支承板上,也可以与支承板整体制造。支承板的外半径等于活塞块的外半径,因此整个块的外半径为R1,这使压缩机的腔室形状变成简单的圆柱形,与传统的螺杆式空气压缩机或叶片式鼓风机的机械腔室非常相似,制造简单,没有任何特殊之处。
结合活塞和支承板,有以下基本参数:
压缩机的压缩比为E:E=(PV1+DV1)/(PV2+DV2)
压缩机的流量为V:V=4(PV1+DV1)*转速。
由于支承板的厚度与活塞块的厚度相比较小,所以压缩机的压缩比主要是PV1和PV2之间的比值的结果。
R1、R2、R3和H的比值产生不同的压缩机压缩量和压缩比,当设计的流量增加时,压缩比减小,反之亦然。
两个轴的轴线之间的距离可能在以下范围内波动:
H=1.35R1至1.75R1
活塞R2的内半径可能在以下范围内波动:
R2=0.45R1至0.8R1
半径R3在以下范围内划分活塞顶部轮廓:
R3=R2+0.5(R1-R2)至
R3=R2+0.6(R1-R2)
压缩比E将为:E=6至30
其中R1是活塞的外半径。
如果泵的所有密封部件都由合适的材料制成,例如低摩擦、耐磨、耐热的材料,压缩机将不需要油来润滑或密封。
图6:可以安装密封杆的位置:
扫描杆(14)放置在泵壳上,以密封活塞外侧和泵壳内壁之间的间隙;扫描杆(12)放置在气缸(H1.3)上,以密封活塞内部和气缸(H1.3)外部之间的间隙;密封板(10)安装在活塞上,以密封活塞侧和泵壁(H1.2)之间的间隙;密封板(7)安装在气缸的端部,以密封气缸顶部(H1.3)和支承板侧面(H1.9)之间的间隙;扫描杆(13)安装在气缸(H1.3)上,以密封气缸(H1.3)的凹面和相对侧的活塞外侧。
图7:根据选项1的发动机工作原理示意图:
空气通过主压缩机(20)的入口。在初次空气压缩之后,空气被送入气罐(22),并继续进入二次压缩机(21)。高压空气通过单向阀(23)进入燃烧室(23)。此处,燃料通过高压喷嘴(25)与压缩空气混合,在燃烧室(24)中喷射。燃烧气体被引导到力产生级。当旋转气体分配阀(26)打开进气室(27)并关闭活塞顶部的腔室时,燃烧气体通过进入进气室(27)。当旋转气体分配阀(26)关闭进气室(27)并打开活塞顶部的腔室时,热空气将膨胀并产生能量。
旋转气体分配阀(26)根据电机轴的旋转速度而被驱动,使得空气分配和膨胀过程平稳。
每个力产生级有4个活塞,所以在压缩层的一次旋转中将有燃烧气体的4个膨胀过程。
腔室(27)在活塞膨胀体积上的比例可以达到1∶25或更大,从而利用燃烧气体的膨胀能量,提高发动机的效率。
压缩级和力产生级由一对齿轮通过两个主动轴驱动。旋转气体分配阀(26)由皮带齿轮对(29)和(30)驱动,皮带齿轮对(29)和(30)以与发动机轴相同的速度旋转。
此处的原理图显示发动机有两个连续的压缩级和两个平行的力产生级,压缩或力产生层的数量取决于目标或实际要求可能更多或更少。
图8:根据选项1对发动机运行级的描述:
H8-a:旋转阀(RV)是具有门入口和出口的中空管;皮带轮(N2)通过齿形皮带或链条连接到驱动轴上,并随着与电机轴相同的速度旋转的空气阀(RV)传递到皮带轮(N1);在每个旋转阀(RV)上,一个力产生级有4个气体门:门1、2、3和4;门1和门2与门3和门4沿阀门错开;腔室(L)和(R)也按以下顺序交替放置:门1和门2对应腔室(R)放置,门3和门4对应腔室(L)设置;在每个产生力的级有4个活塞,所以在压缩层的一次旋转中将有燃烧气体的4个膨胀过程。
空腔(27)在活塞膨胀体积上的比例可以达到1∶25或更大,从而利用燃烧气体的膨胀能量,提高发动机的效率。
压缩级和力产生级由一对齿轮通过两个主动轴驱动。旋转气体分配阀(26)由带齿轮对(29)和(30)驱动,带齿轮对(29)和(30)以与发动机轴相同的速度旋转。
此处的原理图显示,发动机有两个连续的压缩级和两个平行的力产生级,压缩或力产生层的数量可能或多或少取决于目标或实际要求。
图8:根据选项1对发动机运行阶段的描述:
H8-a:旋转阀(RV)是具有门入口和出口的中空管;带轮(N2)通过齿形带或链条附结到驱动轴上,空气阀(RV)以与电机轴相同的速度旋转时,传送至带轮(N1),;在每个旋转阀(RV)上,一个力产生级有4个气体门:门1、2、3和4;门1和门2与门3和门4沿阀门错开;室(L)和(R)也按以下顺序交替放置:门1和门2对应空腔(R)放置,门3和门4对应空腔(L)设置;高压下的燃烧气体通过管道(Gl)穿过门2和门3进入旋转阀(RV);燃烧气体开始在高压下通过管道(Gl)穿过门2和门3进入旋转阀(RV);燃烧气体开始从腔室(L)膨胀到左边的活塞室;废气通过排气门(G2)。
H8-b:燃烧气体从阀门(RV)内部通过门1进入腔室(R);膨胀过程在左活塞室继续;燃烧气体仍通过门2进入阀(RV)。
H8-c:左端活塞室的膨胀;向腔室(R)中填充高压空气的过程结束。
H8-d:来自腔室(R)的燃烧气体开始膨胀进入右活塞室。
H8-e:燃烧气体通过门4进入旋转阀(RV);燃烧气体通过门3进入腔室(L);右活塞室的膨胀过程继续。
H8-f:燃烧气体通过门4和门1流入旋转阀(RV);右活塞室的膨胀过程结束。
H8-g:燃烧气体通过门1继续进入旋转阀(RV);燃烧气体从腔室(L)膨胀到左活塞室;燃烧气体通过门2进入腔室(R)。
H8-h:左活塞和右活塞之间的密封件。
-同一轴线上的力产生层的活塞组件被布置成围绕轴线均匀旋转,以便为发动机产生平滑的扭矩。因此,来自燃烧室的燃烧气体混合物一直持续不断地被加载到旋转阀中。
当空气供应阀关闭时,其将允许膨胀空气进入活塞室,因此如果这些关闭的室的体积足够大,发动机能够通过使膨胀压力接近环境压力,而将热气的能量最大化。发动机将实现高效率。
-电机具有对称和完全旋转的所有细节,没有往复运动,因此发动机完全旋转平衡。
-发动机使用连续的燃料燃烧,因此发动机可以使用多种类型的燃料。
-发动机很容易通过密封部件被密封在在相对运动的部件之间。
图9:根据选项2的发动机运行原理图示:
空气通过多个连续的压缩级压缩,即压缩级(Vc1)、(Vc2)和(Vc3);高压压缩空气通过单向阀(W)进入燃烧室(C);燃料通过喷嘴(F)喷入燃烧室(C),与空气混合燃烧;燃烧气体通过多个连续的力产生级膨胀,其有力产生级(Ve1)、(Ve2)和(Ve3);这些级的工作体积随着膨胀气体的方向而增加。
图10:
基础曲线的轨迹
计算基础曲线轨迹的方程式为:
Bx=H.cos(α-β)-R1.cos(3β-2α)
By=H.sin(α-β)+R1.sin(3β-2α)
其中:
角opd=β
角opa=γ
角opb=α
(α是点B在基础曲线上运行时的可变角度,α在点B与点d重合时的初始值为β,B点与a点重合时的最终值为γ)。
R1是活塞的外半径;
R2是活塞的内径;
H是两个轴之间的距离;
基础曲线是曲线ad。

Claims (6)

1.旋转式压缩机构,其包括:
泵室,其内设有中心线相互平行的气缸,两个泵轴分别位于所述气缸的中心线,所述泵轴由一对匹配的齿轮驱动;两个支承板分别紧固在两个泵轴上且位于泵室的中间;在支承板两侧均设置有气缸,所述压缩机构内设置有四个气缸;两个所述支承板的直径等于所述泵室的内径;
两个泵壁,所述气缸从所述泵壁的一端伸出并进入所述支承板同一侧的两个活塞之间的空间,所述气缸的顶部靠近所述支承板的侧面,所述气缸的中心线与泵轴的中心线重合,所述气缸的外径等于所述活塞的内径;与另一泵轴相对应的一侧,气缸表面有凹弧,所述凹弧的半径等于所述活塞的外半径;所述凹弧的中心线与泵壳内的另一侧泵轴的中心线重合;
所述活塞成对对称地安装在所述支承板的侧面,并通过泵轴的中心线对称地安装;所述活塞的外径由所述支承板的直径和所述泵室的内径决定;所述活塞的内径等于从所述泵壁伸出的气缸的外径;运行时,活塞将绕平行穿过所述支承板的泵轴旋转,并在泵壳的内表面和气缸的外表面之间的空间中旋转;
通过在穿过两个点o和p的平面B内以转弯半径R1围绕点o旋转点A,创建活塞顶部边界的基础曲线;其中,R1是活塞的外半径,点o和p是两个泵轴中心;点A的起点是r,且终点是q;平面B以与点A相同的角速度围绕点p旋转,但方向相反;点A将在平面B上描绘曲线qs,曲线qs是创建活塞的面轮廓的基础曲线,其中,op=H是两个泵轴中心之间的距离;
活塞顶部的轮廓由曲线ab和bc组成,其中曲线ab是所述基础曲线的一部分;曲线bc是所述基础曲线的剩余部分bd通过穿过泵轴旋转中心T1或T2和点b的线ef与所述基础曲线的剩余部分bd对称而形成,其中,点b是所述基础曲线上的任一点;
对于活塞,存在H<(R1+R2),R2是活塞的内半径,这是位于两个泵轴上的相互平行的气缸C1和气缸C2上的压接段mn存在的条件,即,长度mn>0;
对于活塞,存在H<(R1+R2),这是所述气缸C1和气缸C2的凹曲线存在的条件,即,长度mn>0;所述气缸C1和气缸C2安装在泵壁上,其中心轴线与所述活塞的旋转中心重合,所述气缸的外半径与所述活塞的内半径相等;所述气缸被切割出凹弧,凹弧的半径等于所述活塞的外半径,并且所述凹弧的中心与相对的活塞的旋转中心重合;所述气缸C1和气缸C2的长度等于所述活塞的宽度;
所述支承板是金属板,所述支承板在所述泵室的中间位置安装在所述压缩机构的泵轴上且两侧均设置有气缸;所述支承板的前边缘的结构与活塞的前边缘的结构相类似,曲线bc在支承板顶部的轮廓上,以钝化支承板的尖锐边缘;所述支承板的外半径R3等于所述活塞的外半径R1;所述支承板的轮廓是活塞轮廓的特殊情况,当R1+R2=H时,曲线长度mn=0;
所述支承板的外半径R3等于所述活塞的外半径R1,这使得压缩机构的工作腔为圆柱形;
结合活塞和支承板,有以下基本参数:
所述压缩机构的压缩比为E:E=(PV1+DV1)/(PV2+DV2)
所述压缩机构的流量为V:V=4*(PV1+DV1)*转速;
其中:
PV1是由同一支承板上的两个相对的活塞顶部P1、P2的轮廓、气缸的外侧表面、泵壳内表面以及支承板的侧面限定的体积,PV2是由气缸C1、气缸C2上的在压接段mn上的弧形表面以及分别位于不同支承板上的活塞顶部P1、P4的轮廓和支承板的侧面在旋转期间形成封闭空间时限定的体积;
DV1是由一个支承板的轮廓以及支承板的侧面和泵壳内表面限定的体积;
DV2是由两个支承板的两个轮廓和支承板的侧面以及气缸C1、气缸C2上的在压接段mn上的弧形表面形成封闭空间时限定的体积;
两个泵轴中心之间的距离在以下范围内波动:
H=1.35R1至1.75R1
活塞的内半径R2在以下范围内波动:
R2=0.45R1至0.8R1
支承板的外半径R3在以下范围内划分活塞顶部的轮廓:
R3=R2+0.5(R1-R2)至
R3=R2+0.6(R1-R2)
压缩机构的压缩比E为:E=6至30
计算基础曲线的轨迹的方程式为:
Bx=H.cos(α-β)-R1.cos(3β-2α)
By=H.sin(α-β)+R1.sin(3β-2α)
其中:
角opd=β
角opa=γ
角opb=α
α是点b在基础曲线上运行时的可变角度,α在点b与点d重合时的初始值为β,在点b与点a重合时的最终值为γ;
H是两个泵轴中心之间的距离;
所述基础曲线是曲线ad。
2.根据权利要求1所述的旋转式压缩机构,其中所述旋转式压缩机构还具有:
第一密封杆,放置在所述泵壳的内部,以密封所述活塞的外部和所述泵壳的内壁之间的间隙;
第二密封杆,围绕所述气缸的圆周放置,以密封所述气缸的外表面和相同泵轴上的活塞的内表面之间的间隙;
第三密封杆,放置在所述气缸的凹面上,以密封所述气缸的凹面和相对侧的活塞的外部之间的间隙;
第一密封板,放置在气缸的端部,以密封气缸的端面和支承板的侧面之间的间隙;
第二密封板,安装在活塞上,以密封活塞侧面和泵壁之间的间隙。
3.空气压缩机,其包括根据权利要求1所述的旋转式压缩机构,其中所述旋转式压缩机构在压缩模式运行。
4.旋转马达,其由多个连续的压缩层构成,所述压缩层具有根据权利要求1或权利要求2所述的旋转式压缩机构,以产生高压压缩空气,所述压缩空气后续与燃料混合,并在位于力产生结构外部的燃烧室中燃烧。
5.根据权利要求4所述的旋转马达,其中燃烧后的燃料混合物被分开到旋转空气阀的封闭腔室,在封闭腔室的力产生结构膨胀,所述力产生结构根据权利要求1或权利要求2的旋转式压缩机构产生并且平行放置,其中,在所述力产生结构中的所述旋转式压缩机构以发动机模式运行,膨胀以产生力。
6.根据权利要求4所述的旋转马达,其中,燃烧后的燃料气体混合物直接膨胀到由根据权利要求1或权利要求2所述的旋转式压缩机构构成的多个连续的力产生结构,其中,在所述力产生结构中的所述旋转式压缩机构在发动机模式下运行,膨胀以产生力。
CN201980068741.4A 2018-10-19 2019-07-08 旋转式压缩机构、旋转式压缩机和旋转式发动机 Active CN113167274B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
VN1-2018-04633 2018-10-19
VN1201804633 2018-10-19
PCT/VN2019/000011 WO2020082095A2 (en) 2018-10-19 2019-07-08 Suction/compression rotating mechanism, rotary compressor and rotary engine

Publications (2)

Publication Number Publication Date
CN113167274A CN113167274A (zh) 2021-07-23
CN113167274B true CN113167274B (zh) 2024-01-30

Family

ID=82023251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980068741.4A Active CN113167274B (zh) 2018-10-19 2019-07-08 旋转式压缩机构、旋转式压缩机和旋转式发动机

Country Status (4)

Country Link
US (1) US11873813B2 (zh)
EP (1) EP3867530A2 (zh)
CN (1) CN113167274B (zh)
WO (1) WO2020082095A2 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002070776A (ja) * 2000-08-25 2002-03-08 Kashiyama Kogyo Kk 複合型真空ポンプ
CN1546865A (zh) * 2003-12-10 2004-11-17 浙江大学 一种近似密封的双头螺杆
JP2011064078A (ja) * 2009-09-15 2011-03-31 Orion Machinery Co Ltd クローポンプ及びその製造方法
CN103038512A (zh) * 2009-10-02 2013-04-10 乌戈·J·科佩洛维茨 用于构造排量和压缩比可动态变化的旋转压缩机和马达的系统
CN108343605A (zh) * 2018-05-10 2018-07-31 中国石油大学(华东) 一种三爪爪式真空泵

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4324538A (en) 1978-09-27 1982-04-13 Ingersoll-Rand Company Rotary positive displacement machine with specific lobed rotor profiles
US4430050A (en) 1982-01-25 1984-02-07 Ingersoll-Rand Company Rotary, positive-displacement machine
KR870002354A (ko) 1985-08-26 1987-03-31 양기와 축동력 발생장치
AU2002213836A1 (en) 2000-11-04 2002-05-15 Mjm A/S A displacement apparatus and a rotor for such an apparatus
CN1656316A (zh) 2002-05-20 2005-08-17 Ts株式会社 真空泵
US9611847B2 (en) * 2009-04-16 2017-04-04 Eaton Industrial Corporation Aircraft main engine fuel pump with multiple gear stages using shared journals
JP5584862B2 (ja) 2010-03-19 2014-09-10 オリオン機械株式会社 二軸回転ポンプ及びその製造方法
CN101864991A (zh) * 2010-06-10 2010-10-20 姚镇 星旋式流体马达或发动机和压缩机及泵
CN103375404B (zh) * 2012-04-30 2017-12-01 伊顿公司 具有用于转子面间隙控制的可移动端板的正排量泵组件
US9470228B2 (en) * 2012-07-03 2016-10-18 Brian J. O'Connor Multiple segment lobe pump
EP2927423A1 (en) 2014-03-24 2015-10-07 S. INOX S.p.A. Two-rotor rotary engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002070776A (ja) * 2000-08-25 2002-03-08 Kashiyama Kogyo Kk 複合型真空ポンプ
CN1546865A (zh) * 2003-12-10 2004-11-17 浙江大学 一种近似密封的双头螺杆
JP2011064078A (ja) * 2009-09-15 2011-03-31 Orion Machinery Co Ltd クローポンプ及びその製造方法
CN103038512A (zh) * 2009-10-02 2013-04-10 乌戈·J·科佩洛维茨 用于构造排量和压缩比可动态变化的旋转压缩机和马达的系统
CN108343605A (zh) * 2018-05-10 2018-07-31 中国石油大学(华东) 一种三爪爪式真空泵

Also Published As

Publication number Publication date
EP3867530A2 (en) 2021-08-25
WO2020082095A2 (en) 2020-04-23
US11873813B2 (en) 2024-01-16
US20220196016A1 (en) 2022-06-23
CN113167274A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
US9322272B2 (en) Planetary rotary type fluid motor or engine and compressor or pump
US7549850B2 (en) Rotary mechanism
EP1784563B1 (en) Concentric internal combustion rotary engine
US6305345B1 (en) High-output robust rotary engine with a symmetrical drive and improved combustion efficiency having a low manufacturing cost
WO2006046027A1 (en) Rotary vane engine
US7314035B2 (en) Rotary vane engine and thermodynamic cycle
US7421986B2 (en) Rotary radial internal combustion piston engine
US3187507A (en) Thermodynamic machine
EP1016785A1 (en) Eccentric sliding vane equilibrium rotor device and its applications
CN113167274B (zh) 旋转式压缩机构、旋转式压缩机和旋转式发动机
CN103821715A (zh) 平动旋转式压缩机械
CA2162678A1 (en) Rotary vane mechanical power system
WO2011013184A1 (ja) 回転ピストン機械
CN113374573B (zh) 周流式涡轮机
RU2699864C1 (ru) Роторная машина объемного типа
RU2414610C1 (ru) Роторно-поршневой двигатель внутреннего сгорания
Garside A new Wankel-type compressor and vacuum pump
US20090028739A1 (en) Ring turbo-piston engine and ring turbo-piston supercharger
AU2004269045B2 (en) Rotary mechanism
CN210422766U (zh) 流体能量转换装置及转子发动机
CN109798244B (zh) 五角转子压缩机
JP4344451B2 (ja) 回転式流体機械
US20050260092A1 (en) Turbostatic compressor, pump, turbine and hydraulic motor and method of its operation
RU2152522C1 (ru) Роторно-поршневой двигатель внутреннего сгорания
RU2362883C2 (ru) Роторно-лопастной двигатель и механизм преобразования колебательно-угловых движений ротара во вращение выходного вала

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant