CN113162375B - Modeling method for switch loss prediction in IGBT dynamic process - Google Patents
Modeling method for switch loss prediction in IGBT dynamic process Download PDFInfo
- Publication number
- CN113162375B CN113162375B CN202110477808.9A CN202110477808A CN113162375B CN 113162375 B CN113162375 B CN 113162375B CN 202110477808 A CN202110477808 A CN 202110477808A CN 113162375 B CN113162375 B CN 113162375B
- Authority
- CN
- China
- Prior art keywords
- krill
- turn
- igbt
- data
- loss
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 241000239366 Euphausiacea Species 0.000 claims abstract description 170
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 48
- 238000005457 optimization Methods 0.000 claims abstract description 7
- 238000012545 processing Methods 0.000 claims abstract 3
- 238000012360 testing method Methods 0.000 claims description 54
- 230000033001 locomotion Effects 0.000 claims description 41
- 230000002431 foraging effect Effects 0.000 claims description 13
- 239000011159 matrix material Substances 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 claims description 8
- 238000009792 diffusion process Methods 0.000 claims description 8
- 230000006698 induction Effects 0.000 claims description 8
- 238000011156 evaluation Methods 0.000 claims description 6
- 238000010606 normalization Methods 0.000 claims description 5
- 238000012216 screening Methods 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims description 2
- 235000013305 food Nutrition 0.000 claims description 2
- 241000239370 Euphausia superba Species 0.000 claims 15
- 235000009508 confectionery Nutrition 0.000 claims 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 4
- 241000238557 Decapoda Species 0.000 claims 1
- 241000237537 Ensis Species 0.000 claims 1
- 241000239368 Euphausia Species 0.000 claims 1
- 239000004784 Superba Substances 0.000 claims 1
- 102100029469 WD repeat and HMG-box DNA-binding protein 1 Human genes 0.000 claims 1
- 101710097421 WD repeat and HMG-box DNA-binding protein 1 Proteins 0.000 claims 1
- 241000238565 lobster Species 0.000 claims 1
- 230000002093 peripheral effect Effects 0.000 claims 1
- 230000017525 heat dissipation Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 4
- 238000013021 overheating Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000013178 mathematical model Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/36—Circuit design at the analogue level
- G06F30/367—Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Geometry (AREA)
- Molecular Biology (AREA)
- Data Mining & Analysis (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Mathematical Physics (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Feedback Control In General (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明涉及一种IGBT动态过程中开关损耗预测的建模方法,是基于佳点磷虾群算法优化极限学习机的IGBT开关损耗预测方法,步骤是:首先,获取IGBT动态特性试验数据;其次,在完成试验数据处理、极限学习机和磷虾群算法基本参数设定后,利用佳点集算法优化初始磷虾群,以此作为极限学习机的权值阈值,并计算佳点磷虾适应度。在寻优过程中,佳点磷虾以莱维飞行和余弦控制因子为翼不断更新其位置,并计算佳点磷虾的适应度,直至结束;最后,根据佳点磷虾寻得的极限学习机最优权值阈值,预测、输出IGBT开、关损耗值。本发明通过对算法寻优实行动态性调整,使得预测模型的预测精度高、预测速度快,预测结果对于工程师改进IGBT模块的散热系统等具有较好的指导意义。
The invention relates to a modeling method for switching loss prediction in the dynamic process of an IGBT, which is an IGBT switching loss prediction method optimized by an extreme learning machine based on the Jiadian krill swarm algorithm. After completing the experimental data processing, the basic parameter setting of the extreme learning machine and the krill swarm algorithm, the optimal point set algorithm is used to optimize the initial krill swarm, which is used as the weight threshold of the extreme learning machine, and the fitness of the good point krill is calculated. . In the process of optimization, Jiadian krill continuously updates its position with Levi flight and cosine control factor as wings, and calculates the fitness of Jiadian krill until the end; finally, according to the extreme learning obtained by Jiadian krill The optimal weight threshold of the machine is used to predict and output the IGBT on and off loss values. The invention implements dynamic adjustment for algorithm optimization, so that the prediction model has high prediction accuracy and fast prediction speed, and the prediction result has good guiding significance for engineers to improve the heat dissipation system of the IGBT module.
Description
技术领域technical field
本发明的技术方案属于电力电子器件IGBT可靠性技术领域,具体的说是一种IGBT动态过程中开关损耗预测的建模方法。The technical scheme of the invention belongs to the technical field of IGBT reliability of power electronic devices, in particular to a modeling method for switching loss prediction in the dynamic process of IGBT.
背景技术Background technique
随着能源危机的不断加重,电力电子技术不断发展,有效地促进了社会的进步与发展。作为现代电力电子开关的IGBT,广泛地应用于电力系统、电动汽车和高速牵引等领域。然而,以IGBT为核心的光伏逆变器发生的故障约占总故障的37%。在电力电子系统的失效故障中,由温度引发的故障约占总故障的55%,并且器件的温度,与其安全裕度和热循环寿命之间呈现负相关关系。故障的发生严重影响了系统的正常运行,降低了系统运行的可靠性。因此,研究IGBT工作中的过热疲劳以及过热损耗则显得尤为重要。With the continuous aggravation of the energy crisis, the continuous development of power electronic technology has effectively promoted the progress and development of society. IGBTs, as modern power electronic switches, are widely used in power systems, electric vehicles, and high-speed traction. However, the failures of PV inverters with IGBT as the core account for about 37% of the total failures. Among the failure failures of power electronic systems, the failures caused by temperature account for about 55% of the total failures, and there is a negative correlation between the temperature of the device, its safety margin and thermal cycle life. The occurrence of faults seriously affects the normal operation of the system and reduces the reliability of the system operation. Therefore, it is particularly important to study the overheating fatigue and overheating loss in IGBT operation.
国内外学者对IGBT的过热疲劳以及过热损耗的研究主要集中于IGBT开关损耗计算方面。IGBT的开关损耗是指在一个周期内,消耗在IGBT上的功率。开关损耗与IGBT集-射极电压、集电极电流、开关频率及其驱动电路上的电阻、电压等有着密切的关系。并且IGBT的可靠性与其开关损耗产生的温升波动有很大关系,温升升到某一阈值会引起器件的热损伤。因此,若对IGBT的开关损耗进行建模预测,有利于对器件的封装散热设计、驱动电路设计等,避免器件运行时因IGBT开关损耗产生的热量导致温升波动过大而引起器件的失效。因此,对IGBT进行开关损耗预测有一定的意义。近年来一些学者对IGBT的开关损耗进行预测并取得了一定的成绩。The research on overheating fatigue and overheating loss of IGBT by domestic and foreign scholars mainly focuses on the calculation of IGBT switching loss. The switching loss of an IGBT refers to the power dissipated on the IGBT in one cycle. The switching loss is closely related to the IGBT collector-emitter voltage, collector current, switching frequency and the resistance and voltage on the driving circuit. And the reliability of the IGBT has a great relationship with the temperature rise fluctuation caused by the switching loss, and the temperature rise to a certain threshold will cause thermal damage to the device. Therefore, if the switching loss of IGBT is modeled and predicted, it is beneficial to the package heat dissipation design and drive circuit design of the device, so as to avoid the failure of the device caused by the excessive temperature rise fluctuation caused by the heat generated by the IGBT switching loss during the operation of the device. Therefore, it is meaningful to predict the switching loss of IGBT. In recent years, some scholars have predicted the switching loss of IGBT and achieved certain results.
目前计算IGBT开关损耗的方法大致分为三种:基于物理模型的开关损耗计算、基于数学模型的计算方法和基于智能模型的开关损耗预测。首先,基于物理模型的开关损耗计算,是利用仿真软件模拟仿真IGBT的动态特性,进而计算出IGBT的开关损耗,计算结果精度较高,但是构建模型的过程比较复杂,仿真速度较慢;其次是基于数学模型的开关损耗计算,常用的方法是查阅IGBT技术手册计算开关损耗,但是计算值与实际值差别很大,而多项式模型虽然预测精度有所提高,但是预测速度相对较慢;最后是基于智能模型的开关损耗预测,其预测精度和预测速度相对于前二者有了提高,但是智能模型在参数选取方面,若选取不当,会导致智能模型陷入局部最优解,不利于模型寻找全局最优解。At present, there are three methods for calculating IGBT switching loss: switching loss calculation based on physical model, calculation method based on mathematical model and switching loss prediction based on intelligent model. First of all, the switching loss calculation based on the physical model uses the simulation software to simulate the dynamic characteristics of the IGBT, and then calculates the switching loss of the IGBT. The calculation result has high accuracy, but the process of building the model is more complicated and the simulation speed is slow; secondly, For the calculation of switching loss based on the mathematical model, the common method is to refer to the IGBT technical manual to calculate the switching loss, but the calculated value is very different from the actual value. Although the prediction accuracy of the polynomial model is improved, the prediction speed is relatively slow; The switching loss prediction of the intelligent model has improved prediction accuracy and prediction speed compared with the former two, but in the aspect of parameter selection of the intelligent model, if the parameter selection is improper, the intelligent model will fall into the local optimal solution, which is not conducive to the model to find the global optimal solution. optimal solution.
因此,针对现有的测量方法的预测精度不高,以及选取最优智能模型参数预测IGBT开关损耗等问题。本发明以极限学习机作为理论主体,以佳点集、磷虾群算法和余弦控制因子为填充,以集电极电流、直流母线电压、开关频率和门极电压为输入,以开通损耗、关断损耗为输出建立IGBT动态过程中开关损耗预测的数学模型。本发明以多变量输入,充分考虑了影响IGBT开关损耗的多种因素,提高开关损耗的预测精度,而且不易陷入局部最优解,因此本发明有一定的实用价值。Therefore, the prediction accuracy of the existing measurement methods is not high, and the optimal intelligent model parameters are selected to predict the IGBT switching loss. The invention takes the extreme learning machine as the theoretical main body, fills in the optimal point set, krill swarm algorithm and cosine control factor, takes the collector current, DC bus voltage, switching frequency and gate voltage as the input, and uses the turn-on loss, turn-off Loss for the output establishes a mathematical model for the prediction of switching losses during IGBT dynamics. The invention takes multi-variable input, fully considers various factors affecting the switching loss of the IGBT, improves the prediction accuracy of the switching loss, and is not easy to fall into the local optimal solution, so the invention has certain practical value.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是:提供一种IGBT动态过程中开关损耗预测的建模方法,基于IGBT功率模块的动态特性试验,获取IGBT模块直流母线电压、集电极电流、门极电压和开关频率数据,及其开通、关断损耗数据,以直流母线电压、集电极电流、门极电压和开关频率数据为输入,以开通、关断损耗数据为输出,建立佳点磷虾群算法优化的极限学习机(GKH-ELM)为理论支撑的多参数IGBT开关损耗的预测模型;与现有的方法相比,经过佳点集算法的优化,磷虾群算法变为佳点磷虾群算法,该算法在种群初始化时,佳点磷虾个体分布更加均匀,有利于寻找全局最优解;引入余弦控制因子和莱维飞行,则使得佳点磷虾群算法的参数在前中期慢慢加快,中后期逐渐减速,逐渐趋于全局收敛,实现佳点磷虾群的动态搜索;GKH-ELM的提出弥补了现有模型预测精度的不足,对提高IGBT工作可靠性具有重要的现实意义。The technical problem to be solved by the present invention is to provide a modeling method for switching loss prediction in the dynamic process of IGBT, and obtain the DC bus voltage, collector current, gate voltage and switching frequency of the IGBT module based on the dynamic characteristic test of the IGBT power module. Data, and its turn-on and turn-off loss data, take DC bus voltage, collector current, gate voltage and switching frequency data as input, and use turn-on and turn-off loss data as output to establish the optimal limit of Jiadian krill swarm algorithm The learning machine (GKH-ELM) is a multi-parameter IGBT switching loss prediction model supported by theory; compared with the existing methods, after the optimization of the good point set algorithm, the krill swarm algorithm becomes the good point krill swarm algorithm. When the algorithm is initialized, the individual distribution of Jiadian krill is more uniform, which is conducive to finding the global optimal solution; the introduction of cosine control factor and Levy flight makes the parameters of the Jiadian krill swarm algorithm gradually speed up in the early and middle stages, and the It gradually decelerates in the later stage, and gradually tends to global convergence, so as to realize the dynamic search of krill swarms at the best point. The proposal of GKH-ELM makes up for the lack of prediction accuracy of the existing model, and has important practical significance for improving the reliability of IGBT operation.
本发明解决该技术问题所采用的技术方案是:一种IGBT动态过程中开关损耗预测的建模方法,是基于佳点磷虾群算法优化极限学习机的IGBT开关损耗预测的方法,其步骤如下:The technical scheme adopted by the present invention to solve the technical problem is: a modeling method for switching loss prediction in the dynamic process of IGBT, which is a method for optimizing the IGBT switching loss prediction method of extreme learning machine based on Jiadian krill swarm algorithm, and the steps are as follows :
步骤一,获取IGBT动态特性试验数据Step 1: Obtain IGBT dynamic characteristic test data
(1.1)通过IGBT动态特性试验获取m组试验数据,每组数据包括IGBT模块的直流母线电压、集电极电流、门极电压和开关频率数据,及其开通、关断损耗数据;(1.1) Obtain m groups of test data through the IGBT dynamic characteristic test, each group of data includes the DC bus voltage, collector current, gate voltage and switching frequency data of the IGBT module, and its turn-on and turn-off loss data;
步骤二,对IGBT动态特性试验数据进行归一化处理和分配Step 2: Normalize and distribute the test data of IGBT dynamic characteristics
(2.1)使用归一化公式(1)对IGBT动态特性试验数据进行归一化处理:(2.1) Use the normalization formula (1) to normalize the test data of IGBT dynamic characteristics:
(2.2)将归一化后的试验数据分为学习数据和测试数据,分配比例为:(2.2) Divide the normalized test data into learning data and test data, and the distribution ratio is:
学习数据的数量∶测试数据的数量=A∶B;The number of learning data: the number of test data = A: B;
因此,IGBT的m组动态特性试验数据分为m×A/(A+B)组学习数据,和m×B/(A+B)组测试数据;每组包括六个变量,IGBT模块的开通、关断损耗,和IGBT模块的直流母线电压、集电极电流、门极电压和开关频率;Therefore, the m groups of dynamic characteristic test data of IGBT are divided into m×A/(A+B) groups of learning data and m×B/(A+B) groups of test data; each group includes six variables, the turn-on of the IGBT module , turn-off losses, and the DC bus voltage, collector current, gate voltage and switching frequency of the IGBT module;
步骤三,设置和初始化极限学习机参数Step 3: Set and initialize extreme learning machine parameters
极限学习机的参数需要设置每一层的节点数和初始化极限学习机的权值及阈值,包括:The parameters of the extreme learning machine need to set the number of nodes in each layer and initialize the weights and thresholds of the extreme learning machine, including:
设置极限学习机的输入层节点数为num_in个;Set the number of input layer nodes of the extreme learning machine to num_in;
设置极限学习机的隐含层节点数为num_hid个;Set the number of hidden layer nodes of the extreme learning machine to num_hid;
设置极限学习机的输出层节点数为num_out个,尽管预测为IGBT的开通或关断损耗,由于分别预测,所以num_out=1;Set the number of output layer nodes of the extreme learning machine to num_out, although the prediction is the turn-on or turn-off loss of the IGBT, num_out=1 due to the prediction respectively;
步骤四,设置磷虾群算法基本参数,完成极限学习机输入层到隐含层节点的权值和阈值的分配Step 4: Set the basic parameters of the krill swarm algorithm, and complete the assignment of weights and thresholds from the input layer of the extreme learning machine to the hidden layer nodes
(4.1)磷虾群算法的参数需要设置初始磷虾群中磷虾的数量、磷虾群寻优的最大迭代次数、每只磷虾所含数据的维度和磷虾群的初始数据,包括:(4.1) The parameters of the krill swarm algorithm need to set the number of krill in the initial krill swarm, the maximum number of iterations for krill swarm optimization, the dimension of the data contained in each krill and the initial data of the krill swarm, including:
设置初始磷虾群中磷虾的数量为n;Set the number of krill in the initial krill group to n;
设置磷虾群寻优的最大迭代次数为Iteration_max;Set the maximum number of iterations for krill swarm optimization to Iteration_max;
设置每只磷虾所含数据的维度为dim;dim是由极限学习机输入层节点和隐含层节点所决定,dim=num_in×num_hid+num_hid;Set the dimension of the data contained in each krill to dim; dim is determined by the extreme learning machine input layer node and hidden layer node, dim=num_in×num_hid+num_hid;
初始化磷虾群的种群数据,并将此作为极限学习机输入层到隐含层节点的权值和阈值。方法为:利用MATLAB软件,采用分圆域的方法在dim维的单位空间内生成一个包含n个点的集合Xn(i),Xn(i)的构造公式见公式(2):Initialize the population data of the krill swarm and use this as the weights and thresholds of the extreme learning machine input layer to the hidden layer nodes. The method is: use MATLAB software to generate a set X n (i) containing n points in the dim-dimensional unit space by using the method of dividing the circle domain. The construction formula of X n (i) is shown in formula (2):
Xn(i)={[(r1×i),(r2×i),...,(rj×i),...,(rdim×i)],1≤i≤n,1≤j≤dim} (2)X n (i)={[(r 1 ×i),(r 2 ×i),...,(r j ×i),...,(r dim ×i)], 1≤i≤n , 1≤j≤dim} (2)
式中,dim表示每一个佳点的数据维度;并且(rj×i)为rj×i的小数部分,q是满足2×dim+3≤q的最小素数。通过公式(2)得到佳点矩阵X:In the formula, dim represents the data dimension of each good point; And (r j ×i) is the fractional part of r j ×i, and q is the smallest prime number satisfying 2×dim+3≤q. The optimal point matrix X is obtained by formula (2):
矩阵X中,xij∈[Lb,Ub](1≤i≤n,1≤j≤dim),Ub、Lb分别为变量xij的上、下边界。将佳点矩阵X作为磷虾群算法中第一代的磷虾种群数据矩阵,记为佳点磷虾群。因此,式(3)中,X1,X2,...,Xi,...,Xn表示佳点磷虾群中第1,2,3,...,i,...,n只佳点磷虾,xij表示第i只佳点磷虾上第j维上的数据。因此,极限学习机输入层到隐含层节点的权值和阈值初始化完毕。In the matrix X, x ij ∈ [L b , U b ] (1≤i≤n, 1≤j≤dim), and U b and L b are the upper and lower boundaries of the variable x ij , respectively. Take the good point matrix X as the first generation krill population data matrix in the krill swarm algorithm, and record it as the good point krill group. Therefore, in formula (3), X 1 , X 2 , ..., X i , ..., X n represent the first, second, third, ..., i, ... , n good-point krill, x ij represents the data on the jth dimension on the i-th good-point krill. Therefore, the weights and thresholds of the extreme learning machine input layer to the hidden layer nodes are initialized.
(4.2)考虑到极限学习机输入层和隐含层的节点数量,将每只佳点磷虾的dim维数据进行分配,将佳点磷虾的[1,num_in×num_hid]维数据作为极限学习机输入层到隐含层的权值,将佳点磷虾的[num_in×num_hid+1,dim]维数据作为极限学习机输入层到隐含层的阈值,并将上述分配的数据导入极限学习机中。至此,极限学习机的参数设置基本完成。(4.2) Considering the number of nodes in the input layer and hidden layer of the extreme learning machine, the dim-dimensional data of each Jiadian krill is allocated, and the [1, num_in×num_hid] dimensional data of Jiadian krill is used as extreme learning. The weights from the input layer of the machine to the hidden layer, take the [num_in×num_hid+1, dim] dimension data of the krill from the extreme learning machine as the threshold from the input layer to the hidden layer of the extreme learning machine, and import the above-distributed data into extreme learning in the machine. So far, the parameter setting of the extreme learning machine is basically completed.
步骤五,利用佳点磷虾群算法优化极限学习机,并计算每只磷虾的适应度值Step 5: Optimize the extreme learning machine using Jiadian krill swarm algorithm, and calculate the fitness value of each krill
(5.1)建立佳点磷虾群算法-极限学习机的预测模型,称之为GKH-ELM预测模型,用于预测IGBT开通损耗或关断损耗。将佳点磷虾群算法中的每只佳点磷虾数据作为GKH-ELM预测模型的输入层节点到隐含层节点的一组权值和阈值;将步骤(2.2)获得的m×A/(A+B)组学习数据导入极限学习机中,学习数据分为两部分:输入数据和输出数据。一组输入数据包括4个变量,分别为IGBT模块的直流母线电压、集电极电流、门极电压和开关频率,输出数据为IGBT模块的开通损耗或关断损耗。将学习数据导入极限学习机之后,会获得n组,每组m×A/(A+B)个IGBT开通损耗或关断损耗预测值,并通过公式(4)计算每只佳点磷虾的适应度值,即每只佳点磷虾对应下的极限学习机的预测性能评估值,(5.1) Establish a prediction model of Jiadian Krill Swarm Algorithm-Extreme Learning Machine, called GKH-ELM prediction model, to predict IGBT turn-on loss or turn-off loss. Take the data of each good point krill in the good point krill swarm algorithm as a set of weights and thresholds from the input layer node to the hidden layer node of the GKH-ELM prediction model; (A+B) group of learning data is imported into the extreme learning machine, and the learning data is divided into two parts: input data and output data. A set of input data includes 4 variables, namely the DC bus voltage, collector current, gate voltage and switching frequency of the IGBT module, and the output data is the turn-on loss or turn-off loss of the IGBT module. After importing the learning data into the extreme learning machine, n groups of m×A/(A+B) IGBT turn-on loss or turn-off loss prediction values for each group will be obtained, and the The fitness value, that is, the prediction performance evaluation value of the extreme learning machine corresponding to each good point krill,
公式(4)中,F为每只佳点磷虾的适应度值,适应度值越大越好;pk为IGBT动态特性试验获得的数据,以此视为IGBT的开通损耗或关断损耗的实际值;p′k为IGBT开通损耗或关断损耗的预测值;N为极限学习机开通损耗或关断损耗的预测输出个数,即学习期间N为m×A/(A+B)。同理,在测试期间,N=m×B/(A+B)。In formula (4), F is the fitness value of each good point krill, and the larger the fitness value, the better; p k is the data obtained from the IGBT dynamic characteristic test, which is regarded as the difference between the turn-on loss or turn-off loss of the IGBT. Actual value; p′ k is the predicted value of IGBT turn-on loss or turn-off loss; N is the predicted output number of extreme learning machine turn-on loss or turn-off loss, that is, N is m×A/(A+B) during the learning period. Similarly, during testing, N=m×B/(A+B).
(5.2)筛选适应度高的佳点磷虾,记录和保留佳点磷虾群算法中适应度值最大的佳点磷虾位置数据。筛选适应度高的佳点磷虾包括:筛选当代最优适应度的佳点磷虾,以及比较当代最优佳点磷虾和历史最优佳点磷虾的适应度值,选择最优。即,若则记录佳点磷虾i第t次运动的位置数据;若则记录当代最优佳点磷虾位置数据,并记为历史最优佳点磷虾。(5.2) Screen Jiadian krill with high fitness, and record and retain the position data of Jiadian krill with the largest fitness value in the Jiadian krill swarm algorithm. The selection of good-point krill with high fitness includes: screening the best-fit krill in the contemporary era, and comparing the fitness values of the contemporary best-point krill and the historical best-point krill, and selecting the optimal one. That is, if Then record the position data of the t-th movement of Jiadian krill i; if Then record the position data of the krill at the best point of the present time, and record it as the best point of krill in history.
步骤六,对佳点磷虾群算法进行改进,寻找全局最优解Step 6: Improve the good point krill swarm algorithm to find the global optimal solution
(6.1)更新步骤四或公式(13)得到的佳点磷虾群X。佳点磷虾个体的位置更新运动,主要包括诱导运动Ii、觅食运动Fi和物理扩散运动Pi,其公式分别见(5)、(6)、(7):(6.1) Update the good point krill group X obtained in
公式(5)中,表示第i只佳点磷虾的第t次诱导运动,同理表示第i只佳点磷虾的第t-1次诱导运动;Imax表示最大诱导速度,取Imax=0.01;表示周围佳点磷虾第t次对第i只佳点磷虾产生的影响,而表示历史最优佳点磷虾对佳点磷虾i产生的诱导作用;ωI为诱导运动的惯性权重,范围是[0,1]。In formula (5), Represents the t-th induced motion of the i-th best point krill, and the same is true Indicates the t-1th induced motion of the i-th best point krill; Imax represents the maximum induction speed, taking Imax =0.01; represents the t-th impact of the surrounding krill at the best spot on the i-th best spot krill, and Indicates the induction effect of the historical optimal point krill on the good point krill i; ω I is the inertia weight of the induced motion, the range is [0, 1].
公式(6)中,Fi t表示第i只佳点磷虾的第t次觅食运动,同理Fi t-1表示第i只佳点磷虾的第t-1次觅食运动;表示当前食物对第i只佳点磷虾的诱导强度,表示历史最优佳点磷虾对佳点磷虾i运动的觅食牵引力;vF表示磷虾的觅食速度,取vF=0.02;ωF为觅食运动的诱导权重,其范围是[0,1]。In formula (6), F i t represents the t-th foraging movement of the i-th best spot krill, and similarly F i t-1 represents the t-1th foraging movement of the i-th best spot krill; represents the induction intensity of the current food on the i-th best spot krill, is the foraging traction force of the krill at the best point in history to the motion of krill i at the best point in history; v F is the foraging speed of krill, taking v F = 0.02; ω F is the induction weight of the foraging movement, and its range is [ 0, 1].
公式(7)中,表示第i只佳点磷虾的第t次物理扩散运动;Pmax表示佳点磷虾扩散的最大速度,取Pmax=0.005;t表示当前运动次数;δi为当前佳点磷虾的随机扩散的方向向量,且δi∈[0,1]。In formula (7), Represents the t-th physical diffusion movement of the i -th krill in the best spot; Pmax represents the maximum speed of the krill diffusion in the best spot, taking Pmax = 0.005; t represents the current number of movements; the direction vector of the diffusion, and δ i ∈ [0, 1].
因此,佳点磷虾i在第t次运动时的位置运动的变化量见式(8),以及其第t次运动结束后的位置见公式(9):Therefore, the variation of the positional movement of Jiadian krill i during the t-th movement See formula (8), and its position after the t-th motion is shown in formula (9):
记佳点磷虾i第t次运动结束后的位置作为第t+1次运动的初始位置。Note the position of Jiadian krill i after the t-th exercise as the initial position of the t+1th movement.
(6.2)引入余弦控制因子和莱维飞行改进佳点磷虾群的位置更新公式。余弦控制因子用于改进佳点磷虾诱导运动公式(5)和觅食运动公式(6)中的ωI和ωF,改进公式见式(10)。(6.2) Introduce cosine control factor and Levy flight to improve the position update formula of krill swarm in good point. The cosine control factor is used to improve ω I and ω F in the krill induced movement formula (5) and foraging movement formula (6), and the improved formula is shown in formula (10).
莱维飞行用于改进公式(9),并对莱维飞行进行设定。若佳点磷虾群最优适应度值超过20次迭代不发生变化,便启动莱维飞行,直至磷虾群的最优适应度值发生变化。莱维飞行公式见(11):Levi flight is used to improve formula (9) and set Levi flight. If the optimal fitness value of the krill swarm in Jiadian does not change after more than 20 iterations, the Levy flight is started until the optimal fitness value of the krill swarm changes. See (11) for the Levi flight formula:
其中,u和ε均服从标准正态分布,且β=1.5,而φ的计算公式见式(12)。Among them, both u and ε obey the standard normal distribution, and β=1.5, and the calculation formula of φ is shown in formula (12).
因此,结合公式(9)、(10)、(11)、(12)得到改进后的佳点磷虾位置更新公式(13),因而佳点磷虾群X中每个个体的位置根据公式(13)进行位置更新,生成新的位置。Therefore, combining formulas (9), (10), (11), and (12), the improved Jiadian krill position update formula (13) is obtained, so the position of each individual in the Jiadian krill group X is The position is updated according to formula (13) to generate a new position.
步骤七,判断磷虾群的当前运动次数t是否达到了磷虾群算法设定的最大迭代次数Iteration_max。若t<Iteration_max,则返回步骤五;若t=Iteration_max,则执行步骤八。Step 7: It is judged whether the current number of motions t of the krill swarm has reached the maximum number of iterations Iteration_max set by the krill swarm algorithm. If t<Iteration_max, go back to step five; if t=Iteration_max, go to step eight.
步骤八,输出IGBT开通损耗、关断损耗预测结果Step 8: Output the prediction results of IGBT turn-on loss and turn-off loss
将步骤五中获得的历史最优佳点磷虾位置数据作为GKH-ELM预测模型的最优权值和阈值;将m组动态试验特性试验数据中的m×B/(A+B)数据作为测试数据,每组测试数据包括:IGBT模块的开通或关断损耗,和IGBT模块的直流母线电压、集电极电流、门极电压和开关频率;将IGBT模块的直流母线电压、集电极电流、门极电压和开关频率作为GKH-ELM预测模型的输入数据,并预测IGBT开通或关断损耗值;将IGBT动态特性试验获取的开通或关断损耗数据作为GKH-ELM预测IGBT开通或关断损耗值的参考值,并利用公式(4)计算其适应度值,即计算最优佳点磷虾位置下的极限学习机预测性能评估值。The historical optimal krill location data obtained in
借助MATLAB软件在计算机的显示屏上显示步骤八预测的IGBT的开通、关断损耗值和实际开通、关断损耗值对比图,以及IGBT的测试数据的开通、关断损耗值预测的均方根误差RMSE和决定系数R2。With the help of MATLAB software, the comparison chart of the turn-on and turn-off loss values of the IGBT predicted in step 8 and the actual turn-on and turn-off loss values, as well as the predicted rms of the turn-on and turn-off loss values of the IGBT test data, are displayed on the display screen of the computer. Error RMSE and coefficient of determination R 2 .
上述的一种IGBT动态过程中开关损耗预测的建模方法,所述的IGBT参数,如:IGBT模块的直流母线电压、集电极电流、门极电压、开关频率和其开通、关断损耗是为本技术领域技术人员所熟知的。The above-mentioned modeling method of switching loss prediction in the dynamic process of IGBT, the IGBT parameters, such as: DC bus voltage, collector current, gate voltage, switching frequency and its turn-on and turn-off losses of the IGBT module are: well known to those skilled in the art.
上述的一种IGBT动态过程中开关损耗预测的建模方法,所述的佳点集算法、磷虾群算法、极限学习机、余弦控制因子和莱维飞行公式是已有技术,是为本技术领域技术人员所熟知的。The above-mentioned modeling method for switching loss prediction in the dynamic process of IGBT, the good point set algorithm, the krill swarm algorithm, the extreme learning machine, the cosine control factor and the Levy flight formula are the prior art and are the present technology. well known to those skilled in the art.
上述的一种IGBT动态过程中开关损耗预测的建模方法,所述将IGBT动态特性试验获得的参数数据输入计算机中的输入方法是公知的方法,所述计算机、显示器和MATLAB计算机软件均是通过商购获得的。The above-mentioned modeling method of switching loss prediction in the dynamic process of the IGBT, the input method of inputting the parameter data obtained by the IGBT dynamic characteristic test into the computer is a well-known method, and the computer, the display and the MATLAB computer software are all obtained. Commercially obtained.
本发明的有益效果是:本发明与现有的技术相比有以下特点,The beneficial effects of the present invention are: compared with the prior art, the present invention has the following characteristics,
(1)本发明采用基于佳点磷虾群算法优化极限学习机构建的GKH-ELM预测模型,对IGBT的开通、关断损耗进行预测,实现了IGBT的开通、关断损耗的高精度、高可靠预测,有利于工程师改进IGBT模块的散热系统等,提高IGBT运行的可靠性;(1) The present invention adopts the GKH-ELM prediction model constructed by optimizing the extreme learning machine based on Jiadian krill swarm algorithm to predict the turn-on and turn-off losses of the IGBT, and realizes the high-precision and high-precision turn-on and turn-off losses of the IGBT. Reliable prediction is helpful for engineers to improve the cooling system of IGBT modules, etc., and improve the reliability of IGBT operation;
(2)本发明建立的基于佳点磷虾群算法优化极限学习机的IGBT开关损耗预测模型,以佳点集算法初始化的磷虾群算法为载体,对极限学习机的最优权值和阈值进行全局搜索,同时引入余弦控制因子和莱维飞行公式实现对最优解的动态搜索;(2) The IGBT switching loss prediction model of the extreme learning machine based on the optimal point krill swarm algorithm is established in the present invention, and the krill swarm algorithm initialized by the good point set algorithm is used as the carrier to optimize the optimal weights and thresholds of the extreme learning machine. Perform global search, and introduce cosine control factor and Levy flight formula to realize dynamic search for optimal solution;
(3)本发明一种IGBT动态过程中开关损耗预测的建模方法,该方法的扩展能力强、兼容性强,不仅可对影响IGBT的开关损耗的因素进行扩展,而且也可扩展到其他领域,如继电器寿命预测、光伏发电预测等。(3) The present invention is a modeling method for predicting switching loss in the dynamic process of IGBT. The method has strong scalability and compatibility, and can not only expand the factors affecting the switching loss of IGBT, but also can be extended to other fields , such as relay life prediction, photovoltaic power generation prediction, etc.
附图说明Description of drawings
下面结合附图和实施例对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
图1是本发明方法的流程示意图。FIG. 1 is a schematic flow chart of the method of the present invention.
图2是IGBT动态过程中开关损耗预测的模型框图。Figure 2 is a block diagram of the model for the prediction of switching losses during IGBT dynamics.
图3是本发明对IGBT的开通损耗可靠性预测的显示图。FIG. 3 is a display diagram showing the reliability prediction of the turn-on loss of the IGBT according to the present invention.
图4是本发明对IGBT的关断损耗可靠性预测的显示图。FIG. 4 is a display diagram showing the reliability prediction of the turn-off loss of the IGBT according to the present invention.
具体实施方式Detailed ways
图1表明本发明一种IGBT动态过程中开关损耗预测的建模方法的流程是,开始→获取IGBT动态特性试验数据→分配、归一化试验数据→设置、初始化极限学习机参数→设置磷虾群算法基本参数→利用佳点集算法初始化磷虾群初值→计算佳点磷虾群的适应度值,并记录当代最优、历史最优佳点磷虾的位置数据→利用改进位置公式更新佳点磷虾的位置→判断当前佳点磷虾的迭代次数是否达到了最大迭代次数,若未达到则继续计算佳点磷虾群的适应度值,并更新佳点磷虾的位置;若达到,则执行下一步骤→输出IGBT开关损耗预测结果→结束。Fig. 1 shows the process flow of a modeling method for switching loss prediction in the dynamic process of an IGBT according to the present invention: start→acquisition of test data of IGBT dynamic characteristics→distribution and normalization of test data→setup and initialization of extreme learning machine parameters→setup krill Basic parameters of the swarm algorithm → Initialize the initial value of the krill swarm by using the good point set algorithm → Calculate the fitness value of the krill group in the good point, and record the position data of the current optimal and historical optimal krill → Update using the improved position formula The position of Jiadian krill → determine whether the current number of iterations of Jiadian krill has reached the maximum number of iterations, if not, continue to calculate the fitness value of Jiadian krill group, and update the position of Jiadian krill; , then execute the next step→output the IGBT switching loss prediction result→end.
图2表明IGBT动态过程中开关损耗预测的模型框图。该模型以IGBT模块的直流母线电压、集电极电流、门极电压和开关频率为输入,以IGBT开通、关断损耗为输出,以极限学习机为主体,以佳点集算法初始化的磷虾群算法为载体,以余弦控制因子和莱维飞行公式为翼,建立了基于佳点磷虾群算法优化极限学习机构建的IGBT开关损耗预测模型。Figure 2 shows a block diagram of the model for the prediction of switching losses during IGBT dynamics. This model takes the DC bus voltage, collector current, gate voltage and switching frequency of the IGBT module as the input, and takes the IGBT turn-on and turn-off losses as the output, takes the extreme learning machine as the main body, and uses the krill swarm initialized by the good point set algorithm. Taking the algorithm as the carrier and the cosine control factor and the Levy flight formula as the wings, an IGBT switching loss prediction model based on the optimal extreme learning machine based on the Jiadian krill swarm algorithm was established.
实施例Example
本发明采用PC机作为平台进行模型搭建,其中CPU为i5-3230M 2.60GHz,安装内存为4GB,操作系统为Windows 7-64位,使用MATLAB R2016a版本。IGBT模块选用Macmic公司的MMG75S120B6HN,模块的额定值为1200V/75A,模块包括两个完全相同的IGBT芯片和续流二极管,且IGBT芯片和FWD芯片的间距为6.4毫米。The invention uses a PC as a platform for model building, wherein the CPU is i5-3230M 2.60GHz, the installed memory is 4GB, the operating system is Windows 7-64 bits, and the MATLAB R2016a version is used. The IGBT module is MMG75S120B6HN from Macmic Company. The rated value of the module is 1200V/75A. The module includes two identical IGBT chips and freewheeling diodes, and the distance between the IGBT chip and the FWD chip is 6.4 mm.
步骤一,获取IGBT动态特性试验数据Step 1: Obtain IGBT dynamic characteristic test data
(1.1)通过IGBT动态特性试验获取240组试验数据,每组数据包括直流母线电压、集电极电流、门极电压和开关频率数据,以及IGBT模块的开通、关断损耗数据;(1.1) Obtain 240 sets of test data through IGBT dynamic characteristic test, each set of data includes DC bus voltage, collector current, gate voltage and switching frequency data, as well as turn-on and turn-off loss data of IGBT modules;
步骤二,对IGBT动态特性试验数据进行归一化处理和分配Step 2: Normalize and distribute the test data of IGBT dynamic characteristics
(2.1)使用公式(1)对IGBT特性试验数据进行归一化处理;(2.1) Use formula (1) to normalize the IGBT characteristic test data;
(2.2)将归一化后的试验数据分为学习数据和测试数据,分配比例为:(2.2) Divide the normalized test data into learning data and test data, and the distribution ratio is:
学习数据的数量∶测试数据的数量=8∶2;The number of learning data: the number of test data = 8:2;
因此,IGBT的240组动态特性试验数据分为192组学习数据,和48组测试数据;每组数据包括六个变量,IGBT模块的开通、关断损耗,和IGBT模块的直流母线电压、集电极电流、门极电压和开关频率;Therefore, the 240 sets of dynamic characteristic test data of IGBT are divided into 192 sets of learning data and 48 sets of test data; each set of data includes six variables, the turn-on and turn-off losses of the IGBT module, and the DC bus voltage and collector of the IGBT module. current, gate voltage and switching frequency;
步骤三,设置和初始化极限学习机参数Step 3: Set and initialize extreme learning machine parameters
设置极限学习机的输入层节点数num_in=4;Set the number of input layer nodes of the extreme learning machine num_in=4;
设置极限学习机的隐含层节点数num_hid=7;Set the number of hidden layer nodes of the extreme learning machine num_hid=7;
设置极限学习机的输出层节点数num_out=1;Set the number of output layer nodes of the extreme learning machine num_out=1;
步骤四,设置磷虾群算法的基本参数,完成极限学习机输入层到隐含层节点的权值和阈值分配Step 4: Set the basic parameters of the krill swarm algorithm, and complete the weight and threshold assignment from the input layer of the extreme learning machine to the hidden layer nodes
设置磷虾群中磷虾的数量n=50;set the number of krill in the krill group n=50;
设置磷虾群寻优的最大迭代次数Iteration_max=100;Set the maximum number of iterations for krill group optimization Iteration_max=100;
设置每只磷虾所含数据的维度dim=num_in×num_hid+num_hid=4×7+7=35;Set the dimension of the data contained in each krill dim=num_in×num_hid+num_hid=4×7+7=35;
初始化磷虾群位置数据以此作为极限学习机输入层到隐含层节点的权值和阈值。方法为:利用MATLAB软件,采用分圆域的方法在35维的单位空间中生成一个包含50个点的集合X50(i),其构造公式见公式(2)。利用式(2)构造佳点矩阵X时,需确定q和xij的上、下边界Ub、Lb,由于q≥2×35+3=73,且q为该范围内的最小素数素数,所以q取73;Ub、Lb分别赋值为1、-1;进而得到佳点矩阵X,以此作为磷虾群的第一代种群位置数据矩阵,并记为佳点磷虾群。Initialize the krill swarm location data as the weights and thresholds of the extreme learning machine input layer to the hidden layer nodes. The method is as follows: use MATLAB software to generate a set X 50 (i) containing 50 points in a 35-dimensional unit space by using the method of dividing the circle domain. Its construction formula is shown in formula (2). When using the formula (2) to construct the optimal point matrix X, the upper and lower boundaries U b and L b of q and x ij need to be determined. Since q≥2×35+3=73, and q is the smallest prime number within this range , so q is set to 73; U b and L b are assigned as 1 and -1 respectively; and then the good point matrix X is obtained, which is used as the first-generation population position data matrix of the krill group, and is recorded as the good point krill group.
基于极限学习机输入层和隐含层节点的数量,将每只佳点磷虾的35维数据进行分配,将佳点磷虾的[1,28]维数据作为极限学习机输入层到隐含层的权值,将佳点磷虾的[29,35]维数据作为极限学习机输入层到隐含层的阈值,至此,极限学习机的参数设置全部完成。Based on the number of extreme learning machine input layer and hidden layer nodes, the 35-dimensional data of each Jiadian krill is allocated, and the [1, 28] dimensional data of Jiadian krill is used as the input layer of the extreme learning machine to the hidden layer. The weight of the layer, the [29, 35] dimensional data of Jiadian krill is used as the threshold from the input layer of the extreme learning machine to the hidden layer. So far, the parameter settings of the extreme learning machine are all completed.
步骤五,利用佳点磷虾群算法优化极限学习机,并计算每只佳点磷虾的适应度值Step 5: Optimize the extreme learning machine using Jiadian krill swarm algorithm, and calculate the fitness value of each Jiadian krill
(5.1)建立基于佳点磷虾群算法-极限学习机的预测模型,称之为GKH-ELM预测模型,用于预测IGBT开通或关断损耗。预测过程如下:将佳点磷虾群算法中的每只佳点磷虾数据作为GKH-ELM预测模型的输入层节点到隐含层节点的一组权值和阈值;将192组学习数据导入极限学习机中,学习数据包括:输入数据和输出数据。一组输入数据包括:IGBT模块的直流母线电压、集电极电流、门极电压和开关频率,输出数据为IGBT模块的开通损耗或关断损耗。将学习数据导入极限学习机之后,会获得50组、每组192个IGBT开通损耗或关断损耗值,并通过公式(4)计算每只佳点磷虾的适应度值,即每只佳点磷虾对应下的极限学习机的性能评估值。(5.1) Establish a prediction model based on Jiadian krill swarm algorithm-extreme learning machine, called GKH-ELM prediction model, to predict IGBT turn-on or turn-off loss. The prediction process is as follows: take each good point krill data in the good point krill swarm algorithm as a set of weights and thresholds from the input layer node to the hidden layer node of the GKH-ELM prediction model; import 192 sets of learning data into the limit In the learning machine, the learning data includes: input data and output data. A set of input data includes: DC bus voltage, collector current, gate voltage and switching frequency of the IGBT module, and the output data is the turn-on loss or turn-off loss of the IGBT module. After importing the learning data into the extreme learning machine, the turn-on loss or turn-off loss value of 50 groups of 192 IGBTs in each group will be obtained, and the fitness value of each good point krill is calculated by formula (4), that is, each good point The performance evaluation value of extreme learning machine under krill.
(5.2)筛选适应度高的佳点磷虾,记录和保留佳点磷虾群算法中适应度值最大的佳点磷虾位置数据。筛选适应度高的佳点磷虾包括:筛选当代最优适应度的佳点磷虾,以及比较当代最优佳点磷虾和历史最优佳点磷虾的适应度值,选择最优。即,若则记录佳点磷虾i第t次运动的位置数据;若则记录当代最优佳点磷虾的位置数据。(5.2) Screen Jiadian krill with high fitness, and record and retain the position data of Jiadian krill with the largest fitness value in the Jiadian krill swarm algorithm. The selection of good-point krill with high fitness includes: screening the best-point krill at the contemporary optimal fitness level, and comparing the fitness values of the contemporary optimal-point-point krill and the historical optimal-point krill, and selecting the optimal one. That is, if Then record the position data of the t-th movement of Jiadian krill i; if The position data of the contemporary best point krill is recorded.
步骤六,利用改进后的佳点磷虾群位置更新公式(13)更新佳点磷虾的位置。In step 6, the position of Jiadian krill is updated using the improved Jiadian krill group position update formula (13).
步骤七,判断佳点磷虾群的当前运动次数t是否达到了佳点磷虾群算法设定的100次的最大迭代次数。若t<100,则返回步骤五;若t=100,则执行步骤八。Step 7: Determine whether the current number of movements t of the Jiadian krill swarm has reached the maximum number of iterations of 100 set by the Jiadian krill swarm algorithm. If t<100, go back to step five; if t=100, go to step eight.
步骤八,输出IGBT开通损耗、关断损耗预测结果Step 8: Output the prediction results of IGBT turn-on loss and turn-off loss
将步骤五中获得历史最优佳点磷虾位置数据作为GKH-ELM预测模型的最优权值和阈值;将240组动态试验特性试验数据中的48组数据作为测试数据,每组测试数据包括:IGBT模块的开通或关断损耗,和IGBT模块的直流母线电压、集电极电流、门极电压和开关频率;将IGBT模块的直流母线电压、集电极电流、门极电压和开关频率作为GKH-ELM预测模型的输入数据,并预测IGBT开通或关断损耗值;将IGBT动态特性试验获取的开通或关断损耗数据作为GKH-ELM预测IGBT开通或关断损耗值的参考值,并利用公式(4)计算其适应度值,即计算最优佳点磷虾下的极限学习机预测性能评估值。The krill location data at the historical optimum point obtained in
借助MATLAB软件在计算机的显示屏上显示步骤八预测的IGBT开通、关断损耗值和实际开通、关断损耗值对比图,以及IGBT的测试数据的开通损耗预测的均方根误差RMSE=0.3772、决定系数R2=0.9984;关断损耗预测的均方根误差RMSE=0.0368、决定系数R2=0.9991。With the help of MATLAB software, the IGBT turn-on and turn-off loss values predicted in step 8 and the actual turn-on and turn-off loss values are displayed on the display screen of the computer, as well as the root mean square error RMSE=0.3772, The coefficient of determination R 2 =0.9984; the root mean square error of turn-off loss prediction RMSE=0.0368, and the coefficient of determination R 2 =0.9991.
表1 用本发明方法与现有的技术方法对开通损耗预测预测比较表Table 1 Comparison table of turn-on loss prediction and prediction by the method of the present invention and the existing technical method
表2 用本发明方法与现有的技术方法对开通损耗预测预测比较表Table 2 Comparison table of turn-on loss prediction and prediction using the method of the present invention and the existing technical method
从表1,表2中可以看出,GKH-ELM模型无论在RMSE还是R2方面均优于其他算法。From Table 1, Table 2 , it can be seen that the GKH-ELM model outperforms other algorithms in terms of RMSE and R2.
上述实施案例中,所述的IGBT参数,如IGBT模块的直流母线电压、集电极电流、门极电压、开关频率和其开通、关断损耗是为本领域技术人员所熟知的;所述的佳点集算法、磷虾群算法、极限学习机、余弦控制因子和莱维飞行公式是已有技术,是为本技术领域技术人员所熟知的;所述将IGBT动态特性试验获得的参数数据输入计算机中的输入方法是公知的方法,所述计算机、显示器和MATLAB计算机软件均是通过商购获得的。In the above implementation cases, the IGBT parameters, such as the DC bus voltage, collector current, gate voltage, switching frequency, and turn-on and turn-off losses of the IGBT module are well known to those skilled in the art; Point set algorithm, krill swarm algorithm, extreme learning machine, cosine control factor and Levy flight formula are existing technologies and are well known to those skilled in the art; the parameter data obtained by the IGBT dynamic characteristic test is input into the computer The input method in is a well-known method, and the computer, display and MATLAB computer software are all commercially available.
以上仅为本发明较好的实施方式,但本发明的保护范围并不仅限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围内。The above is only a better embodiment of the present invention, but the protection scope of the present invention is not limited to this. Equivalent replacements or changes should be included within the protection scope of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110477808.9A CN113162375B (en) | 2021-04-30 | 2021-04-30 | Modeling method for switch loss prediction in IGBT dynamic process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110477808.9A CN113162375B (en) | 2021-04-30 | 2021-04-30 | Modeling method for switch loss prediction in IGBT dynamic process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113162375A CN113162375A (en) | 2021-07-23 |
CN113162375B true CN113162375B (en) | 2022-04-12 |
Family
ID=76872718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110477808.9A Expired - Fee Related CN113162375B (en) | 2021-04-30 | 2021-04-30 | Modeling method for switch loss prediction in IGBT dynamic process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113162375B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107368858A (en) * | 2017-07-28 | 2017-11-21 | 中南大学 | A kind of parametrization measurement multi-model intelligent method for fusing of intelligent environment carrying robot identification floor |
CN109101738A (en) * | 2018-08-24 | 2018-12-28 | 河北工业大学 | A kind of IGBT module degree of aging appraisal procedure |
CN109918720A (en) * | 2019-01-23 | 2019-06-21 | 广西大学 | Transformer fault diagnosis method based on krill swarm optimization support vector machine |
-
2021
- 2021-04-30 CN CN202110477808.9A patent/CN113162375B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107368858A (en) * | 2017-07-28 | 2017-11-21 | 中南大学 | A kind of parametrization measurement multi-model intelligent method for fusing of intelligent environment carrying robot identification floor |
CN109101738A (en) * | 2018-08-24 | 2018-12-28 | 河北工业大学 | A kind of IGBT module degree of aging appraisal procedure |
CN109918720A (en) * | 2019-01-23 | 2019-06-21 | 广西大学 | Transformer fault diagnosis method based on krill swarm optimization support vector machine |
Non-Patent Citations (2)
Title |
---|
"Combination of krill herd algorithm with chaos theory in global optimization problems";Leila Gharavian et al.;《2013 3rd Joint Conference of AI & Robotics and 5th RoboCup Iran Open International Symposium》;20130408;全文 * |
"鳞虾群算法的改进及其在结构可靠性分析中的应用";程立翔;《中国优秀博硕士学位论文全文数据库(硕士)基础科学辑》;20210215;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN113162375A (en) | 2021-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109101738B (en) | IGBT module aging degree evaluation method | |
US11913986B2 (en) | Reliability evaluation method and system of microgrid inverter IGBT based on segmented LSTM | |
CN105825019B (en) | A kind of insulated gate bipolar transistor IGBT module temperature derivation algorithm | |
CN112001127A (en) | A method of IGBT junction temperature prediction | |
CN1184978A (en) | Hot Carrier Degradation Estimation Method | |
CN113794254B (en) | A thermal management strategy configuration method, device, computer equipment and storage medium | |
CN115017787A (en) | Equivalent modeling method and system of wind farm voltage ride through characteristics based on intelligent algorithm | |
CN115270698A (en) | Chip global automatic layout method based on deep reinforcement learning | |
CN112329244A (en) | Optimal power loss equivalent modeling method for IGBT junction temperature estimation | |
CN111538366A (en) | Maximum power point tracking method, system, device and medium | |
CN114386253A (en) | Method and device for realizing mixed step length real-time simulation system based on event driving | |
CN113162375B (en) | Modeling method for switch loss prediction in IGBT dynamic process | |
CN1731645A (en) | Voltage Control Method Based on Soft Partition in Power System | |
CN115313763A (en) | New energy vehicle motor thermal management and control method | |
CN115271454A (en) | Flexible resource aggregation feasible domain accurate modeling and approximation method, device and equipment | |
CN113065229A (en) | A real-time power budgeting technique for many-core dark silicon chips | |
Liu et al. | High precision igbt health evaluation method: Extreme learning machine optimized by improved krill herd algorithm | |
CN113158601A (en) | High-reliability board-level fan-out SiC MOSFET packaging structure optimization method | |
CN108121875A (en) | A kind of Topology Optimization Method that platform is solved based on Matlab and CFX joints | |
CN113904578B (en) | Model predictive control method without weight coefficients for single-phase cascaded H-bridge converter | |
CN113868916B (en) | LFVPSO-BPNN-based multi-loop groove cabling temperature rise prediction method | |
CN115310285A (en) | Method for constructing digital twin model of motor temperature field of new energy automobile | |
CN115081328A (en) | Motor multi-objective optimization method based on improved particle swarm optimization | |
CN112994493A (en) | Finite set double-vector model prediction control method and system for three-level inverter | |
CN116861826A (en) | An IGBT dynamic process switching loss modeling method based on an improved prediction model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220412 |
|
CF01 | Termination of patent right due to non-payment of annual fee |