CN113161506A - Perovskite light-emitting diode and preparation method thereof - Google Patents

Perovskite light-emitting diode and preparation method thereof Download PDF

Info

Publication number
CN113161506A
CN113161506A CN202110428625.8A CN202110428625A CN113161506A CN 113161506 A CN113161506 A CN 113161506A CN 202110428625 A CN202110428625 A CN 202110428625A CN 113161506 A CN113161506 A CN 113161506A
Authority
CN
China
Prior art keywords
perovskite
spin
layer
coating
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110428625.8A
Other languages
Chinese (zh)
Other versions
CN113161506B (en
Inventor
秦川江
张德重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Applied Chemistry of CAS
Original Assignee
Changchun Institute of Applied Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Applied Chemistry of CAS filed Critical Changchun Institute of Applied Chemistry of CAS
Priority to CN202110428625.8A priority Critical patent/CN113161506B/en
Publication of CN113161506A publication Critical patent/CN113161506A/en
Application granted granted Critical
Publication of CN113161506B publication Critical patent/CN113161506B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

The invention provides a perovskite light-emitting diode and a preparation method thereof, belonging to the technical field of light-emitting diodes. The perovskite light-emitting diode comprises the following components in sequence from bottom to top: a glass substrate having an ITO conductive film; a hole transport layer; a nanoparticle and/or crypt ether doped quasi-two-dimensional perovskite light emitting layer; an electron transport layer; a finishing layer; and an electrode. The invention also provides a preparation method of the perovskite light-emitting diode. The luminescent layer of the perovskite light-emitting diode is a quasi-two-dimensional perovskite thin film doped with nano particles and/or crypt ether, the structural order distribution in the quasi-two-dimensional perovskite thin film can be narrowed through doping, and the appearance of phases with lower or higher orders is reduced, so that the non-radiative recombination in the thin film is inhibited; based on this mechanism, a light emitting diode device having higher External Quantum Efficiency (EQE) is finally obtained.

Description

Perovskite light-emitting diode and preparation method thereof
Technical Field
The invention belongs to the technical field of light emitting diodes, and particularly relates to a perovskite light emitting diode with a nano particle and/or crypt ether doped quasi-two-dimensional perovskite layer and a preparation method thereof.
Background
The traditional organic-inorganic hybrid three-dimensional perovskite material has the advantages of high carrier mobility, low trap state density and the like, and is widely applied to the photovoltaic field at present. However, since the exciton binding energy is low and it is difficult to limit the free diffusion of carriers, high radiative recombination efficiency cannot be obtained, making it impossible to directly apply to a light emitting diode. The construction of the quasi-two-dimensional perovskite is an effective way for improving the exciton binding energy of the perovskite material and enhancing the quantum confinement, thereby improving the radiative recombination efficiency. The multiple quantum well structure in the quasi-two-dimensional perovskite has stronger dielectric shielding and quantum confinement characteristics, and the exciton binding energy of the material can reach hundreds of meV, so the material has great application potential in the fields of light-emitting diodes, lasers and the like. However, the quasi-two-dimensional perovskite thin film prepared in general still has strong defect-induced non-radiative recombination inside, so that the thin film has a certain loss of fluorescence quantum yield and has excitation light intensity dependence. This is because the phenomenon that the order of the quasi-two-dimensional perovskite thin film prepared by the conventional solution method is impure inevitably occurs. Because of the solubility difference of different precursor components of the perovskite and the difference of the cation steric hindrance, the gradient distribution of quasi-two-dimensional orders in the direction vertical to the film is finally caused, wherein the perovskite phase of low order is mainly concentrated at the bottom of the film, and the high order phase is concentrated near the surface of the film. The wider quasi-two-dimensional order distribution can cause the fluorescence quantum yield of the film to be reduced, because the grain size of the perovskite phase with lower order in the film is relatively smaller, more grain boundaries are formed to cause the defect state density to be increased, and the non-radiative recombination is intensified; meanwhile, the perovskite phase with a higher order number in the film has lower exciton binding energy and quantum confinement capacity, excitons are easy to dissociate, the radiative recombination rate is reduced due to free diffusion of carriers, and the probability of defect-induced non-radiative recombination is increased. Therefore, regulating and controlling the structural order distribution in the quasi-two-dimensional perovskite thin film to narrow the order distribution so as to avoid the occurrence of a perovskite phase with a lower order or a higher order, and the method is an effective strategy for improving the fluorescence quantum yield of the thin film and the luminous efficiency of a device.
Disclosure of Invention
The luminescent layer of the perovskite light-emitting diode is a quasi-two-dimensional perovskite thin film doped with the nanoparticles and/or the crypt ether, the structural order distribution in the quasi-two-dimensional perovskite thin film can be narrowed through doping, the appearance of phases with lower or higher orders can be reduced, and the non-radiative recombination in the thin film can be inhibited; based on this mechanism, a light emitting diode device having higher External Quantum Efficiency (EQE) is finally obtained.
In order to achieve the above purpose, the technical scheme of the invention is as follows:
the invention provides a perovskite light emitting diode, which sequentially comprises the following components from bottom to top:
a glass substrate having an ITO (indium tin oxide) conductive thin film (ITO as a device anode);
a hole transport layer;
a perovskite light emitting layer;
an electron transport layer;
a finishing layer;
an electrode (as the device cathode);
it is characterized in that the preparation method is characterized in that,
the perovskite luminescent layer is a quasi-two-dimensional perovskite thin film doped with nanoparticles and/or crypt ether.
In the above technical solution, it is preferable that: the perovskite luminescent layer is PEA2FAn-1PbnBr3n+1Wherein PEA is phenylethylamine, FA is formamidine, n is the order of the quasi-two-dimensional perovskite structure, and the value of n is 3-8; the doped nano particles are ZrO with the grain diameter of 10-50 nm2、TiO2、ZnO、SnO2NiO or SrTiO3(ii) a The cryptate is 4,7,13,16,21, 24-hexaoxy-1, 10-diazabicyclo [8.8.8]]Hexacosane or 4,7,13,16, 21-pentaoxy-1, 10-diazabicyclo [8.8.5]]And twenty three alkanes.
In the above technical solution, it is preferable that: the hole transport layer is PVK (polyvinylcarbazole).
In the above technical solution, it is preferable that: the electron transport layer is TPBi (1,3, 5-tri (1-phenyl-1H-benzimidazole-2-yl) benzene).
In the above technical solution, it is preferable that: the modification layer is LiF.
In the above technical solution, it is preferable that: the electrode is Al.
In the above technical solution, it is preferable that: the thickness of the ITO conductive film is 80-150 nm, the thickness of the hole transport layer is 20-40 nm, the thickness of the perovskite luminescent layer is 30-150 nm, the thickness of the electron transport layer is 30-60 nm, the thickness of the modification layer is 0.8-1.6 nm, and the thickness of the electrode is 80-120 nm.
The invention also provides a preparation method of the perovskite light-emitting diode, which comprises the following steps:
(1) cleaning a substrate
Sequentially placing the glass substrate with the ITO conductive film in deionized water, acetone and isopropanol, respectively ultrasonically cleaning for 15-30 minutes, and then drying;
(2) preparation of PVK hole transport layer by spin coating method
Preparing a PVK chlorobenzene solution with the concentration of 5-15 mg/mL, and spin-coating the PVK chlorobenzene solution on the surface of the ITO conductive film obtained in the step (1), wherein the spin-coating speed is 2000-4500 rpm, and the spin-coating time is 30-50 seconds; then annealing for 20-40 minutes at 100-150 ℃, and finally cooling to room temperature; obtaining a PVK hole transport layer with the thickness of 20-40 nm;
(3) preparation of nano-particle and/or crypt ether doped perovskite luminescent layer by spin coating method
(3-1) firstly dispersing the nanoparticles in Dimethylformamide (DMF), preparing 0.2-1.0 mg/mL of DMF dispersion liquid of the nanoparticles, and ultrasonically dispersing for 4-8 hours; 0.1-0.6 mmol of PbBr20.08-0.48 mmol of FABr, 0.04-0.24 mmol of PEABr and 0.01-0.06 mmol of CH3NH3Dissolving Cl in a mixed solution of 0.5mL of the DMF dispersion solution of the nano particles and 0.5mL of dimethyl sulfoxide (DMSO); then spin-coating the solution on the surface of the PVK hole transport layer obtained in the step (2), wherein the spin-coating rotation speed is 4000-8000 rpm, the spin-coating time is 30-50 seconds, and 0.1-0.5 mL of ethyl acetate, diethyl ether, toluene or chlorobenzene is dripped on the rotating surface in the 10-15 seconds from the beginning of spin-coating to serve as an anti-solvent; finally, annealing for 10-30 minutes at 80-120 ℃ to obtain a perovskite luminescent layer with the thickness of 30-150 nm;
or (3-2) adding 0.1-0.6 mmol of PbBr20.08-0.48 mmol of FABr, 0.04-0.24 mmol of PEABr and 0.01-0.06 mmol of CH3NH3Cl was dissolved in a mixed solution of 0.5mL of DMF dispersion and 0.5mL of DMSO,adding 0.001-0.012 mmol of cryptand ether, and stirring at room temperature for 1-3 hours; then spin-coating the solution on the surface of the PVK hole transport layer obtained in the step (2), wherein the spin-coating rotation speed is 4000-8000 rpm, the spin-coating time is 30-50 seconds, and 0.1-0.5 mL of ethyl acetate, diethyl ether, toluene or chlorobenzene is dripped on the rotating surface in the 10-15 seconds from the beginning of spin-coating to serve as an anti-solvent; finally, annealing for 10-30 minutes at 80-120 ℃ to obtain a perovskite luminescent layer with the thickness of 30-150 nm;
or (3-3) firstly dispersing the nanoparticles in Dimethylformamide (DMF), preparing 0.2-1.0 mg/mL of DMF dispersion liquid of the nanoparticles, and ultrasonically dispersing for 4-8 hours; 0.1-0.6 mmol of PbBr20.08-0.48 mmol of FABr, 0.04-0.24 mmol of PEABr and 0.01-0.06 mmol of CH3NH3Dissolving Cl into a mixed solution of 0.5mL of nano particle DMF dispersion liquid and 0.5mL of dimethyl sulfoxide, adding 0.001-0.012 mmol of cryptand, and stirring at room temperature for 1-3 hours; then spin-coating the solution on the surface of the PVK hole transport layer obtained in the step (2), wherein the spin-coating rotation speed is 4000-8000 rpm, the spin-coating time is 30-50 seconds, and 0.1-0.5 mL of ethyl acetate, diethyl ether, toluene or chlorobenzene is dripped on the rotating surface in the 10-15 seconds from the beginning of spin-coating to serve as an anti-solvent; finally, annealing for 10-30 minutes at 80-120 ℃ to obtain a perovskite luminescent layer with the thickness of 30-150 nm;
(4) preparation of TPBi electron transport layer, LiF modification layer and Al electrode by vacuum evaporation method
At 1X 10-4~5×10-4And (3) sequentially evaporating a TPBi electron transport layer with the thickness of 30-60 nm, a LiF modification layer with the thickness of 0.8-1.6 nm and an Al electrode with the thickness of 80-120 nm on the surface of the perovskite luminescent layer obtained in the step (3) under the vacuum condition of Pa, so that the perovskite luminescent diode based on the doping of the nano particles and/or the cryptate is obtained.
In the technical scheme, the nano particles in the step (3) are ZrO with grain diameter of 10-50 nm2、TiO2、ZnO、SnO2NiO or SrTiO3
In the technical scheme, the cryptate in the step (3) is 4,7,13,16,21, 24-hexaoxy-1, 10-diazabicyclo [8.8.8] hexacosane or 4,7,13,16, 21-pentaoxy-1, 10-diazabicyclo [8.8.5] tricosane.
The invention has the beneficial effects that:
the luminescent layer of the perovskite light-emitting diode is a quasi-two-dimensional perovskite thin film doped with nano particles and/or crypt ether, the structural order distribution in the quasi-two-dimensional perovskite thin film can be narrowed through doping, and the appearance of phases with lower or higher orders is reduced, so that the non-radiative recombination in the thin film is inhibited; based on this mechanism, a light emitting diode device having higher External Quantum Efficiency (EQE) is finally obtained.
Drawings
The present invention will be described in further detail with reference to the accompanying drawings and specific embodiments.
Fig. 1 is a schematic structural view of a perovskite light emitting diode of the present invention.
FIG. 2 is a normalized fluorescence spectrum curve of the perovskite luminescent layer prepared in embodiments 1-4 of the present invention.
FIG. 3 is a graph comparing the fluorescence quantum yields of perovskite light-emitting layers prepared in examples 1 to 4 of the present invention.
FIG. 4 is an EQE-current density curve of perovskite light emitting diodes prepared in embodiments 1-4 of the present invention.
The reference numerals in fig. 1 are denoted as:
the solar cell comprises a 1-glass substrate, a 2-ITO conductive film, a 3-hole transport layer, a 4-perovskite luminescent layer, a 5-electron transport layer, a 6-modification layer and a 7-electrode.
Detailed Description
The invention firstly provides a quasi-two-dimensional perovskite light-emitting diode based on nano-particle and/or crypt ether doping, which sequentially comprises the following components from bottom to top: a glass substrate 1 having an ITO (indium tin oxide) conductive film 2 (ITO as a device anode); a hole transport layer 3; a nanoparticle and/or crypt ether doped quasi-two-dimensional perovskite light emitting layer 4; an electron transport layer 5; a finishing layer 6; electrode 7 (as the device cathode). The schematic structure of the device is shown in fig. 1.
The luminescent layer of the perovskite light-emitting diode device is a quasi-two-dimensional perovskite thin film doped with nano particles and/or crypt ether, the structural order distribution in the quasi-two-dimensional perovskite thin film can be narrowed through doping, the appearance of phases with lower or higher orders is reduced, and accordingly non-radiative recombination in the thin film is inhibited. Based on this mechanism, a light emitting diode device having higher External Quantum Efficiency (EQE) is finally obtained.
More specifically, the perovskite light emitting diode of the invention is sequentially composed of a glass substrate 1(ITO is used as a device anode) with an ITO (indium tin oxide) conductive film 2, a PVK (polyvinylcarbazole) hole transport layer 3, a nano particle and/or hole ether doped quasi-two-dimensional perovskite light emitting layer 4, a TPBi (1,3, 5-tri (1-phenyl-1H-benzimidazole-2-yl) benzene) electron transport layer 5, a LiF modification layer 6 and an Al electrode 7 (used as a device cathode) from bottom to top; the thickness of the ITO conductive film 2 is 80-150 nm, the thickness of the PVK hole transport layer 3 is 20-40 nm, the thickness of the nano particle and/or hole ether doped quasi-two-dimensional perovskite light emitting layer 4 is 30-150 nm, the thickness of the TPBi electron transport layer 5 is 30-60 nm, the thickness of the LiF modification layer 6 is 0.8-1.6 nm, and the thickness of the Al electrode 7 is 80-120 nm; the schematic structure of the device is shown in fig. 1.
In the device structure, the quasi-two-dimensional perovskite light-emitting layer 4 doped with the nano-particles and/or the crypt ether is PEA2FAn- 1PbnBr3n+1Wherein PEA: phenethylamine, FA: formamidine, n: the order of the quasi-two-dimensional perovskite structure is 3-8; the doped nano particles are ZrO with the grain diameter of 10-50 nm2、TiO2、ZnO、SnO2NiO or SrTiO3(ii) a The cryptate is 4,7,13,16,21, 24-hexaoxy-1, 10-diazabicyclo [8.8.8]]Hexacosane or 4,7,13,16, 21-pentaoxy-1, 10-diazabicyclo [8.8.5]]And twenty three alkanes.
The perovskite light emitting diode device of the invention based on the quasi two-dimensional perovskite light emitting layer 4 doped by nano particles and/or hole ether can obtain narrower quasi two-dimensional structure order distribution, and the main mechanism is as follows: the nano particles can improve the permeability of a perovskite layer, and promote the extraction of an anti-solvent to the solvent in the spin-coating film-anti-solvent cleaning process so as to inhibit the segregation of organic cations; the cryptate can selectively complex lead ions to slow down the crystallization speed, so that the integral crystallization of the film is more uniform. By utilizing the synergistic action mechanism of the two, narrower order distribution in the quasi-two-dimensional perovskite thin film can be further obtained, and the occurrence of perovskite phases with lower or higher orders is avoided.
The perovskite light-emitting diode of the invention has the main working principle that: under the external bias, electrons and holes are respectively injected from the cathode and the anode of the device and respectively flow through the electron transport layer 5 and the hole transport layer 3, and finally recombination and light emission are carried out on the perovskite light emitting layer 4. The quasi-two-dimensional perovskite light-emitting layer 4 based on nano-particles and/or crypt ether doping has a narrower structural order distribution, so that non-radiative recombination is effectively inhibited, and the device can obtain higher EQE.
The invention also provides a preparation method of the perovskite light-emitting diode, which comprises the following steps:
(1) cleaning a substrate
Sequentially placing the glass substrate 1 with the ITO conductive film 2 in deionized water, acetone and isopropanol, respectively ultrasonically cleaning for 15-30 minutes, and then drying;
(2) preparation of PVK hole transport layer 3 by spin coating
Preparing a PVK chlorobenzene solution with the concentration of 5-15 mg/mL, and spin-coating the PVK chlorobenzene solution on the surface of the ITO conductive film 2 obtained in the step (1), wherein the spin-coating speed is 2000-4500 rpm, and the spin-coating time is 30-50 seconds; then annealing for 20-40 minutes at 100-150 ℃, and finally cooling to room temperature; obtaining a PVK hole transport layer 3 with the thickness of 20-40 nm;
(3) preparation of nano-particle and/or crypt ether doped perovskite luminescent layer 4 by spin coating method
(3-1) firstly dispersing the nanoparticles in Dimethylformamide (DMF), preparing 0.2-1.0 mg/mL of DMF dispersion liquid of the nanoparticles, and ultrasonically dispersing for 4-8 hours; 0.1-0.6 mmol of PbBr20.08-0.48 mmol of FABr, 0.04-0.24 mmol of PEABr and 0.01-0.06 mmol of CH3NH3Dissolving Cl in a mixed solution of 0.5mL of the DMF dispersion solution of the nano particles and 0.5mL of dimethyl sulfoxide (DMSO); then spin-coating the solution on the surface of the PVK hole transport layer 3 obtained in the step (2), wherein the spin-coating speed is 4000-8000 rpm, and the spin-coating time is 30-EDripping 0.1-0.5 mL of ethyl acetate, ether, toluene or chlorobenzene serving as an anti-solvent on the rotating surface at the 10 th-15 th second from the beginning of spin coating for 50 seconds; finally, annealing for 10-30 minutes at 80-120 ℃ to obtain a perovskite luminescent layer 4 with the thickness of 30-150 nm;
or (3-2) adding 0.1-0.6 mmol of PbBr20.08-0.48 mmol of FABr, 0.04-0.24 mmol of PEABr and 0.01-0.06 mmol of CH3NH3Dissolving Cl in a mixed solution of 0.5mL of DMF dispersion liquid and 0.5mL of DMSO, adding 0.001-0.012 mmol of cryptand, and stirring at room temperature for 1-3 hours; then spin-coating the solution on the surface of the PVK hole transport layer 3 obtained in the step (2), wherein the spin-coating speed is 4000-8000 rpm, the spin-coating time is 30-50 seconds, and 0.1-0.5 mL of ethyl acetate, ether, toluene or chlorobenzene is dripped on the rotating surface in the 10-15 seconds from the beginning of spin-coating to serve as an anti-solvent; finally, annealing for 10-30 minutes at 80-120 ℃ to obtain a perovskite luminescent layer 4 with the thickness of 30-150 nm;
or (3-3) firstly dispersing the nanoparticles in Dimethylformamide (DMF), preparing 0.2-1.0 mg/mL of DMF dispersion liquid of the nanoparticles, and ultrasonically dispersing for 4-8 hours; 0.1-0.6 mmol of PbBr20.08-0.48 mmol of FABr, 0.04-0.24 mmol of PEABr and 0.01-0.06 mmol of CH3NH3Dissolving Cl into a mixed solution of 0.5mL of nano particle DMF dispersion liquid and 0.5mL of dimethyl sulfoxide, adding 0.001-0.012 mmol of cryptand, and stirring at room temperature for 1-3 hours; then spin-coating the solution on the surface of the PVK hole transport layer 3 obtained in the step (2), wherein the spin-coating speed is 4000-8000 rpm, the spin-coating time is 30-50 seconds, and 0.1-0.5 mL of ethyl acetate, ether, toluene or chlorobenzene is dripped on the rotating surface in the 10-15 seconds from the beginning of spin-coating to serve as an anti-solvent; finally, annealing for 10-30 minutes at 80-120 ℃ to obtain a perovskite luminescent layer 4 with the thickness of 30-150 nm;
(4) TPBi electron transport layer 5, LiF modification layer 6 and Al electrode 7 prepared by vacuum evaporation method
At 1X 10-4~5×10-4Sequentially evaporating TPBi electron transport layers 5 with the thickness of 30-60 nm on the surfaces of the perovskite light emitting layers obtained in the step (3) under the vacuum condition of Pa, wherein the thickness of the TPBi electron transport layers is 08-1.6 nm of LiF modification layer 6 and 80-120 nm of Al electrode 7, thereby obtaining the perovskite light-emitting diode based on nano particles and/or crypt ether doping.
Example 1:
sequentially placing a glass substrate 1 with an ITO conductive film 2 (the thickness is 100nm) in deionized water, acetone and isopropanol, respectively carrying out ultrasonic cleaning for 20 minutes, and then drying;
preparing a PVK chlorobenzene solution with the concentration of 10mg/mL, and then spin-coating the solution on the surface of the ITO conductive film 2 at the spin-coating speed of 4000 revolutions per minute for 40 seconds; then annealing for 30 minutes at 120 ℃, and finally cooling to room temperature; the thickness of the obtained PVK hole transport layer 3 is 25 nm;
0.2mmol of PbBr20.16mmol of FABr, 0.08mmol of PEABr and 0.02mmol of CH3NH3Dissolving Cl in a mixture of 0.5mL of DMF and 0.5mL of DMSO, and stirring at room temperature for 2 hours; then spin-coating the obtained solution on the surface of the PVK hole transport layer 3, wherein the spin-coating rotation speed is 7000 revolutions per minute, the spin-coating time is 40 seconds, and 0.15mL of ethyl acetate is dripped on the rotating surface at the 12 th second from the start of spin-coating to serve as an anti-solvent; finally annealing for 20 minutes at 80 ℃ to obtain a perovskite luminescent layer 4 with the thickness of 50 nm;
at 3X 10-4And (3) under the vacuum condition of Pa, sequentially evaporating a TPBi electron transport layer 5 with the thickness of 50nm, a LiF modification layer 6 with the thickness of 1nm and an Al electrode 7 with the thickness of 100nm on the surface of the perovskite luminous layer 4, and finishing the preparation of the device. The EQE-current density characteristic curve test was performed on the device, and the EQE peak value of the undoped device was 16.2%.
Example 2:
sequentially placing a glass substrate 1 with an ITO conductive film 2 (the thickness is 100nm) in deionized water, acetone and isopropanol, respectively carrying out ultrasonic cleaning for 20 minutes, and then drying;
preparing a PVK chlorobenzene solution with the concentration of 10mg/mL, and then spin-coating the solution on the surface of the ITO conductive film 2 at the spin-coating speed of 4000 revolutions per minute for 40 seconds; then annealing for 30 minutes at 120 ℃, and finally cooling to room temperature; the thickness of the obtained PVK hole transport layer 3 is 25 nm;
ZrO of grain diameter of 20nm2The nano particles are dispersed in DMF to prepare ZrO with 0.4mg/mL2Carrying out ultrasonic dispersion on the nano particle DMF dispersion liquid for 5 hours; 0.2mmol of PbBr20.16mmol of FABr, 0.08mmol of PEABr and 0.02mmol of CH3NH3Dissolving Cl in a mixture of 0.5mL of the DMF dispersion solution of the nanoparticles and 0.5mL of DMSO, and stirring at room temperature for 2 hours; then spin-coating the obtained solution on the surface of the PVK hole transport layer 3, wherein the spin-coating rotation speed is 7000 revolutions per minute, the spin-coating time is 40 seconds, and 0.15mL of ethyl acetate is dripped on the rotating surface at the 12 th second from the start of spin-coating to serve as an anti-solvent; finally annealing for 20 minutes at 80 ℃ to obtain a perovskite luminescent layer 4 with the thickness of 50 nm;
at 3X 10-4And (3) under the vacuum condition of Pa, sequentially evaporating a TPBi electron transport layer 5 with the thickness of 50nm, a LiF modification layer 6 with the thickness of 1nm and an Al electrode 7 with the thickness of 100nm on the surface of the perovskite luminous layer 4, and finishing the preparation of the device. The EQE-current density characteristic curve test is carried out on the device, the EQE peak value of the device doped with the nano particles in the perovskite layer reaches 18.4%, and compared with an undoped device, the EQE peak value is improved to a certain extent.
Example 3:
sequentially placing a glass substrate 1 with an ITO conductive film 2 (the thickness is 100nm) in deionized water, acetone and isopropanol, respectively carrying out ultrasonic cleaning for 20 minutes, and then drying;
preparing a PVK chlorobenzene solution with the concentration of 10mg/mL, and then spin-coating the solution on the surface of the ITO conductive film 2 at the spin-coating speed of 4000 revolutions per minute for 40 seconds; then annealing for 30 minutes at 120 ℃, and finally cooling to room temperature; the thickness of the obtained PVK hole transport layer 3 is 25 nm;
0.2mmol of PbBr20.16mmol of FABr, 0.08mmol of PEABr and 0.02mmol of CH3NH3Cl was dissolved in a mixture of 0.5mL DMF and 0.5mL DMSO and 0.003 mmol cryptand 4,7,13,16,21, 24-hexaoxy-1, 10-diazabicyclo [8.8.8] was added]The hexacosane is stirred for 2 hours at room temperature; the obtained solution was then spin-coated on the surface of the PVK hole transport layer 3 at 7000 rpm for 40 seconds in the direction of 12 seconds from the start of the spin-coating0.15mL of ethyl acetate is dripped on the surface of the substrate as an anti-solvent; finally annealing for 20 minutes at 80 ℃ to obtain a perovskite luminescent layer 4 with the thickness of 50 nm;
at 3X 10-4And (3) under the vacuum condition of Pa, sequentially evaporating a TPBi electron transport layer 5 with the thickness of 50nm, a LiF modification layer 6 with the thickness of 1nm and an Al electrode 7 with the thickness of 100nm on the surface of the perovskite luminous layer 4, and finishing the preparation of the device. The EQE-current density characteristic curve test is carried out on the device, the EQE peak value of the device with the perovskite layer doped with the cave ether reaches 19.3%, and the device is improved to a certain extent compared with an undoped device.
Example 4:
sequentially placing a glass substrate 1 with an ITO conductive film 2 (the thickness is 100nm) in deionized water, acetone and isopropanol, respectively carrying out ultrasonic cleaning for 20 minutes, and then drying;
preparing a PVK chlorobenzene solution with the concentration of 10mg/mL, and then spin-coating the solution on the surface of the ITO conductive film 2 at the spin-coating speed of 4000 revolutions per minute for 40 seconds; then annealing for 30 minutes at 120 ℃, and finally cooling to room temperature; the thickness of the obtained PVK hole transport layer 3 is 25 nm;
ZrO of grain diameter of 20nm2The nano particles are dispersed in DMF to prepare ZrO with 0.4mg/mL2Carrying out ultrasonic dispersion on the nano particle DMF dispersion liquid for 5 hours; 0.2mmol of PbBr20.16mmol of FABr, 0.08mmol of PEABr and 0.02mmol of CH3NH3Cl was dissolved in 0.5mL of the mixture of the nanoparticle DMF dispersion and 0.5mL of DMSO, and 0.003mmol of cryptand 4,7,13,16,21, 24-hexaoxy-1, 10-diazabicyclo [8.8.8]]The hexacosane is stirred for 2 hours at room temperature; then spin-coating the obtained solution on the surface of the PVK hole transport layer 3, wherein the spin-coating rotation speed is 7000 revolutions per minute, the spin-coating time is 40 seconds, and 0.15mL of ethyl acetate is dripped on the rotating surface at the 12 th second from the start of spin-coating to serve as an anti-solvent; finally annealing for 20 minutes at 80 ℃ to obtain a perovskite luminescent layer 4 with the thickness of 50 nm;
at 3X 10-4And (3) under the vacuum condition of Pa, sequentially evaporating a TPBi electron transport layer 5 with the thickness of 50nm, a LiF modification layer 6 with the thickness of 1nm and an Al electrode 7 with the thickness of 100nm on the surface of the perovskite luminous layer 4, and finishing the preparation of the device. To the deviceAccording to an EQE-current density characteristic curve test, the EQE peak value of the device with the perovskite layer doped with the nano particles and the crypt ether simultaneously reaches 21.2%, and compared with the device with the nano particles or the crypt ether doped independently, the EQE peak value is further improved.
FIG. 2 is a normalized fluorescence spectrum curve of the perovskite luminescent layer prepared in embodiments 1-4 of the present invention, wherein: curve 1 represents the normalized fluorescence spectrum of the perovskite luminescent layer prepared in example 1, the perovskite layer being undoped with nanoparticles or cryptates; curve 2 represents the normalized fluorescence spectrum of the perovskite luminescent layer prepared in example 2, the perovskite layer being doped with nanoparticles and not with cryptates; curve 3 represents the normalized fluorescence spectrum of the perovskite luminescent layer prepared in example 3, the perovskite layer being undoped with nanoparticles and doped with cryptate; curve 4 represents the normalized fluorescence spectrum of the perovskite luminescent layer prepared in example 4, the perovskite layer being doped with both nanoparticles and cryptates;
as shown in the figure, compared with the perovskite layer which is not doped, the single doping of the nano particles or the cryptate can generate blue shift of the luminous peak of the film, and the half-peak width is reduced, namely the phenomenon that the order distribution in the quasi-two-dimensional perovskite film is narrowed; when the nano particles and the cryptate ether are doped at the same time, the peak value of the fluorescence spectrum continues to carry out blue shift, which shows that the action mechanisms of the nano particles and the cryptate ether can be mutually superposed, and the order distribution is further narrowed;
FIG. 3 is a comparison of fluorescence quantum yields of perovskite luminescent layers prepared in examples 1 to 4 of the present invention;
as shown, the fluorescence quantum yield of undoped perovskite layer in example 1 was 77.2%; the nano-particles are doped in the example 2, and the fluorescence quantum yield of the perovskite layer of the undoped cryptate is 84.5 percent; the fluorescence quantum yield of the perovskite layer doped with the cryptate is 86.2 percent when the nano particles are not doped in the embodiment 3; the fluorescence quantum yield of the perovskite layer doped with the nanoparticles and the cryptate in example 4 is 90.2%;
fig. 4 is an EQE-current density curve of the perovskite light emitting diode prepared in embodiments 1 to 4 of the present invention, wherein: curve 1 represents the EQE-current density curve for the perovskite light emitting diode prepared in example 1; curve 2 represents the EQE-current density curve for the perovskite light emitting diode prepared in example 2; curve 3 represents the EQE-current density curve for the perovskite light emitting diode prepared in example 3; curve 4 represents the EQE-current density curve for the perovskite light emitting diode prepared in example 4;
as shown in the figure, in the device in which the perovskite layer is not doped, the EQE curve is the lowest, and the peak value is 16.3%; after the nano particles or the cryptate ether are respectively doped, the EQE is improved, and the peak values respectively reach 18.4 percent and 19.3 percent; after the nano particles and the cryptate ether are doped at the same time, the EQE can be continuously improved, and the peak value reaches 21.2%.
It should be understood that the above examples are only for clarity of illustration and are not intended to limit the embodiments. Other variations and modifications will be apparent to persons skilled in the art in light of the above description. And are neither required nor exhaustive of all embodiments. And obvious variations or modifications therefrom are within the scope of the invention.

Claims (10)

1. A perovskite light emitting diode comprises the following components in sequence from bottom to top:
a glass substrate (1) having an ITO conductive film (2);
a hole transport layer (3);
a perovskite light-emitting layer (4);
an electron transport layer (5);
a decorative layer (6);
an electrode (7);
it is characterized in that the preparation method is characterized in that,
the perovskite luminous layer (4) is a quasi-two-dimensional perovskite thin film doped with nano particles and/or crypt ether.
2. The perovskite light emitting diode according to claim 1, wherein the perovskite light emitting layer (4) is a PEA2FAn-1PbnBr3n+1Wherein PEA is phenylethylamine, FA is formamidine, n is the order of the quasi-two-dimensional perovskite structure, and the value of n is 3-8; the doped nano particles have a grain diameter of 10-50nm ZrO2、TiO2、ZnO、SnO2NiO or SrTiO3(ii) a The cryptate is 4,7,13,16,21, 24-hexaoxy-1, 10-diazabicyclo [8.8.8]]Hexacosane or 4,7,13,16, 21-pentaoxy-1, 10-diazabicyclo [8.8.5]]And twenty three alkanes.
3. The perovskite light-emitting diode according to claim 1, characterized in that the hole transport layer (3) is PVK.
4. The perovskite light-emitting diode according to claim 1, characterized in that the electron transport layer (5) is TPBi.
5. The perovskite light-emitting diode according to claim 1, characterized in that the modification layer (6) is LiF.
6. The perovskite light-emitting diode according to claim 1, characterized in that the electrode (7) is Al.
7. The perovskite light-emitting diode according to claim 1, wherein the ITO conductive thin film (2) has a thickness of 80 to 150nm, the hole transport layer (3) has a thickness of 20 to 40nm, the perovskite light-emitting layer (4) has a thickness of 30 to 150nm, the electron transport layer (5) has a thickness of 30 to 60nm, the modification layer (6) has a thickness of 0.8 to 1.6nm, and the electrode (7) has a thickness of 80 to 120 nm.
8. A preparation method of a perovskite light emitting diode is characterized by comprising the following steps:
(1) cleaning a substrate
Sequentially placing the glass substrate (1) with the ITO conductive film (2) in deionized water, acetone and isopropanol, respectively ultrasonically cleaning for 15-30 minutes, and then drying;
(2) preparation of PVK hole transport layer (3) by spin coating method
Preparing a PVK chlorobenzene solution with the concentration of 5-15 mg/mL, and spin-coating the PVK chlorobenzene solution on the surface of the ITO conductive film (2) obtained in the step (1), wherein the spin-coating speed is 2000-4500 rpm, and the spin-coating time is 30-50 seconds; then annealing for 20-40 minutes at 100-150 ℃, and finally cooling to room temperature; obtaining a PVK hole transport layer (3) with the thickness of 20-40 nm;
(3) preparation of perovskite luminescent layer (4) doped with nano-particles and/or crypt ether by spin coating method
(3-1) firstly dispersing the nanoparticles in Dimethylformamide (DMF), preparing 0.2-1.0 mg/mL of DMF dispersion liquid of the nanoparticles, and ultrasonically dispersing for 4-8 hours; 0.1-0.6 mmol of PbBr20.08-0.48 mmol of FABr, 0.04-0.24 mmol of PEABr and 0.01-0.06 mmol of CH3NH3Dissolving Cl in a mixed solution of 0.5mL of the DMF dispersion solution of the nano particles and 0.5mL of dimethyl sulfoxide (DMSO); then spin-coating the solution on the surface of the PVK hole transport layer (3) obtained in the step (2), wherein the spin-coating rotation speed is 4000-8000 rpm, the spin-coating time is 30-50 seconds, and 0.1-0.5 mL of ethyl acetate, ether, toluene or chlorobenzene is dripped on the rotating surface in the 10 th-15 th seconds from the start of spin-coating to serve as an anti-solvent; finally, annealing for 10-30 minutes at 80-120 ℃ to obtain a perovskite luminescent layer (4) with the thickness of 30-150 nm;
or (3-2) adding 0.1-0.6 mmol of PbBr20.08-0.48 mmol of FABr, 0.04-0.24 mmol of PEABr and 0.01-0.06 mmol of CH3NH3Dissolving Cl in a mixed solution of 0.5mL of DMF dispersion liquid and 0.5mL of DMSO, adding 0.001-0.012 mmol of cryptand, and stirring at room temperature for 1-3 hours; then spin-coating the solution on the surface of the PVK hole transport layer (3) obtained in the step (2), wherein the spin-coating rotation speed is 4000-8000 rpm, the spin-coating time is 30-50 seconds, and 0.1-0.5 mL of ethyl acetate, ether, toluene or chlorobenzene is dripped on the rotating surface in the 10 th-15 th seconds from the start of spin-coating to serve as an anti-solvent; finally, annealing for 10-30 minutes at 80-120 ℃ to obtain a perovskite luminescent layer (4) with the thickness of 30-150 nm;
or (3-3) firstly dispersing the nanoparticles in Dimethylformamide (DMF), preparing 0.2-1.0 mg/mL of DMF dispersion liquid of the nanoparticles, and ultrasonically dispersing for 4-8 hours; 0.1-0.6 mmol of PbBr20.08-0.48 mmol of FABr, 0.04-0.24 mmol of PEABr and 0.01-0.06 mmol of CH3NH3Cl dissolved in 0.5mL of nanoAdding 0.001-0.012 mmol of cryptand ether into a mixed solution of the DMF dispersion liquid and 0.5mL of dimethyl sulfoxide, and stirring at room temperature for 1-3 hours; then spin-coating the solution on the surface of the PVK hole transport layer (3) obtained in the step (2), wherein the spin-coating rotation speed is 4000-8000 rpm, the spin-coating time is 30-50 seconds, and 0.1-0.5 mL of ethyl acetate, ether, toluene or chlorobenzene is dripped on the rotating surface in the 10 th-15 th seconds from the start of spin-coating to serve as an anti-solvent; finally, annealing for 10-30 minutes at 80-120 ℃ to obtain a perovskite luminescent layer (4) with the thickness of 30-150 nm;
(4) TPBi electron transport layer (5), LiF modification layer (6) and Al electrode (7) prepared by vacuum evaporation method
At 1X 10-4~5×10-4And (3) sequentially evaporating a TPBi electron transport layer (5) with the thickness of 30-60 nm, a LiF modification layer (6) with the thickness of 0.8-1.6 nm and an Al electrode (7) with the thickness of 80-120 nm on the surface of the perovskite luminescent layer (4) obtained in the step (3) under the vacuum condition of Pa, so that the perovskite luminescent diode is obtained.
9. The method for preparing a perovskite light-emitting diode according to claim 8, wherein the nanoparticles in the step (3) are ZrO having a grain diameter of 10 to 50nm2、TiO2、ZnO、SnO2NiO or SrTiO3
10. The method of producing a perovskite light emitting diode as claimed in claim 8 wherein the cryptate in step (3) is 4,7,13,16,21, 24-hexaoxy-1, 10-diazabicyclo [8.8.8] hexacosane or 4,7,13,16, 21-pentaoxy-1, 10-diazabicyclo [8.8.5] tricosane.
CN202110428625.8A 2021-04-21 2021-04-21 Perovskite light-emitting diode and preparation method thereof Active CN113161506B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110428625.8A CN113161506B (en) 2021-04-21 2021-04-21 Perovskite light-emitting diode and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110428625.8A CN113161506B (en) 2021-04-21 2021-04-21 Perovskite light-emitting diode and preparation method thereof

Publications (2)

Publication Number Publication Date
CN113161506A true CN113161506A (en) 2021-07-23
CN113161506B CN113161506B (en) 2022-11-01

Family

ID=76867489

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110428625.8A Active CN113161506B (en) 2021-04-21 2021-04-21 Perovskite light-emitting diode and preparation method thereof

Country Status (1)

Country Link
CN (1) CN113161506B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497431A (en) * 2022-01-21 2022-05-13 吉林大学 Quasi-two-dimensional film preparation method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006124670A2 (en) * 2005-05-12 2006-11-23 Georgia Tech Research Corporation Coated metal oxide nanoparticles and methods for producing same
WO2008060534A1 (en) * 2006-11-10 2008-05-22 Georgia Tech Research Corporation Printable thin-film transistors with high dielectric constant gate insulators and methods for producing same
US20170358759A1 (en) * 2014-11-06 2017-12-14 Postech Academy-Industry Foundation Light-emitting layer for perovskite light-emitting device, method for manufacturing same, and perovskite light-emitting device using same
CN207009483U (en) * 2017-08-01 2018-02-13 苏州协鑫纳米科技有限公司 Perovskite solar cell and component
CN108987596A (en) * 2018-07-17 2018-12-11 嘉兴纳鼎光电科技有限公司 Electron transfer layer, preparation method and semiconductor photoelectric device
CN109390476A (en) * 2017-08-02 2019-02-26 Tcl集团股份有限公司 A kind of QLED device and preparation method thereof with graphene oxide boundary layer
CN111171329A (en) * 2020-01-21 2020-05-19 翁秋梅 Plastic dilatancy polymer and method for realizing dilatancy thereof
CN111192971A (en) * 2020-01-10 2020-05-22 上海大学 Low roll-off quasi-two-dimensional perovskite light-emitting diode and preparation method thereof
CN111276623A (en) * 2020-01-19 2020-06-12 中国工程物理研究院流体物理研究所 Modified hole transport layer and blue-light perovskite light-emitting diode based on same
CN111952473A (en) * 2020-08-18 2020-11-17 福州大学 Preparation method of perovskite thin film doped with amphiphilic silicon dioxide ions and preparation method of light-emitting diode
CN111952475A (en) * 2020-08-18 2020-11-17 福州大学 Preparation method of perovskite light-emitting diode device containing silver nanoparticles

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006124670A2 (en) * 2005-05-12 2006-11-23 Georgia Tech Research Corporation Coated metal oxide nanoparticles and methods for producing same
WO2008060534A1 (en) * 2006-11-10 2008-05-22 Georgia Tech Research Corporation Printable thin-film transistors with high dielectric constant gate insulators and methods for producing same
US20170358759A1 (en) * 2014-11-06 2017-12-14 Postech Academy-Industry Foundation Light-emitting layer for perovskite light-emitting device, method for manufacturing same, and perovskite light-emitting device using same
CN207009483U (en) * 2017-08-01 2018-02-13 苏州协鑫纳米科技有限公司 Perovskite solar cell and component
CN109390476A (en) * 2017-08-02 2019-02-26 Tcl集团股份有限公司 A kind of QLED device and preparation method thereof with graphene oxide boundary layer
CN108987596A (en) * 2018-07-17 2018-12-11 嘉兴纳鼎光电科技有限公司 Electron transfer layer, preparation method and semiconductor photoelectric device
CN111192971A (en) * 2020-01-10 2020-05-22 上海大学 Low roll-off quasi-two-dimensional perovskite light-emitting diode and preparation method thereof
CN111276623A (en) * 2020-01-19 2020-06-12 中国工程物理研究院流体物理研究所 Modified hole transport layer and blue-light perovskite light-emitting diode based on same
CN111171329A (en) * 2020-01-21 2020-05-19 翁秋梅 Plastic dilatancy polymer and method for realizing dilatancy thereof
CN111952473A (en) * 2020-08-18 2020-11-17 福州大学 Preparation method of perovskite thin film doped with amphiphilic silicon dioxide ions and preparation method of light-emitting diode
CN111952475A (en) * 2020-08-18 2020-11-17 福州大学 Preparation method of perovskite light-emitting diode device containing silver nanoparticles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497431A (en) * 2022-01-21 2022-05-13 吉林大学 Quasi-two-dimensional film preparation method

Also Published As

Publication number Publication date
CN113161506B (en) 2022-11-01

Similar Documents

Publication Publication Date Title
Song et al. Organic–inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%
US11690240B2 (en) Electroluminescent device, manufacturing method thereof, and display apparatus
Mak et al. Recent progress in surface modification and interfacial engineering for high-performance perovskite light-emitting diodes
WO2017128987A1 (en) Perovskite optoelectronic device, preparation method therefor and perovskite material
WO2021103471A1 (en) Self-assembling multi-dimensional quantum well cspbx3 perovskite nanocrystalline light-emitting diode
CN108269940A (en) Perovskite light emitting diode of alkali halide doping and preparation method thereof
Chen et al. Nanostructure and device architecture engineering for high-performance quantum-dot light-emitting diodes
CN109411614B (en) Organic-inorganic composite perovskite light-emitting diode device and preparation method thereof
CN110205118A (en) The metal halide perovskite of surface defect passivation is nanocrystalline, it is prepared and application
KR20190028460A (en) Thin film of nickel oxide and its manufacturing method, functional material, manufacturing method of thin film structure and electroluminescent element
Lin et al. High-efficiency deep-red quantum-dot light-emitting diodes with type-II CdSe/CdTe core/shell quantum dots as emissive layers
CN111341942B (en) Electric injection yellow light-emitting diode (LED) based on lead-free copper-based iodide and preparation method thereof
Zhang et al. Room-temperature synthesized formamidinium lead halide perovskite quantum dots with bright luminescence and color-tunability for efficient light emitting
CN109546007A (en) A kind of light emitting diode and preparation method thereof based on two-dimentional lead halide perovskite material
CN112993178A (en) Light-emitting diode based on tin-doped cesium-lead-bromine quantum dots and preparation method thereof
CN113161506B (en) Perovskite light-emitting diode and preparation method thereof
Jin et al. Highly Bright and Stable Lead‐Free Double Perovskite White Light‐Emitting Diodes
Gao et al. 47-Fold EQE improvement in CsPbBr3 perovskite light-emitting diodes via double-additives assistance
CN109449313B (en) Method for preparing hole injection layer in organic light-emitting diode based on sol-gel method and constructed organic light-emitting diode
CN113122258A (en) Quantum dot, preparation method thereof and quantum dot light-emitting diode
CN114665051A (en) Preparation method of perovskite light-emitting diode with regulated light-emitting layer
CN114864835A (en) Blue light perovskite quantum dot film, electroluminescent diode and preparation
Basha et al. Preparation and characterization of ruthenium based organic composites for optoelectronic device application
CN114672314A (en) Core-shell structure quantum dot, preparation method thereof, quantum dot light-emitting film and diode
CN114891498B (en) Nanocrystalline film of cation coated one-dimensional perovskite and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant