CN113158532A - 一种用于冷冻靶温度场预测的定向红外光-热耦合模拟方法 - Google Patents

一种用于冷冻靶温度场预测的定向红外光-热耦合模拟方法 Download PDF

Info

Publication number
CN113158532A
CN113158532A CN202110384782.3A CN202110384782A CN113158532A CN 113158532 A CN113158532 A CN 113158532A CN 202110384782 A CN202110384782 A CN 202110384782A CN 113158532 A CN113158532 A CN 113158532A
Authority
CN
China
Prior art keywords
light source
source particles
wall surface
particles
temperature field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110384782.3A
Other languages
English (en)
Other versions
CN113158532B (zh
Inventor
厉彦忠
郭富城
李翠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202110384782.3A priority Critical patent/CN113158532B/zh
Publication of CN113158532A publication Critical patent/CN113158532A/zh
Application granted granted Critical
Publication of CN113158532B publication Critical patent/CN113158532B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/25Design optimisation, verification or simulation using particle-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • G06F17/13Differential equations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Operations Research (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种用于冷冻靶温度场预测的定向红外光‑热耦合模拟方法,通过蒙特卡洛方法对冷冻靶系统外置定向红外光场进行求解,将红外热贡献与温度场控制方程相耦合,并引入策略来保证计算的可靠性和收敛速度,本发明考虑了红外光场和温度场之间的强烈耦合作用,提高了计算结果的准确性。

Description

一种用于冷冻靶温度场预测的定向红外光-热耦合模拟方法
技术领域
本发明属于冷冻靶系统温度场技术领域,具体涉及一种用于冷冻靶温度场预测的定向红外光-热耦合模拟方法。
背景技术
惯性约束核聚变是通过激光均匀地辐照在冷冻靶丸的表面,从而达到高温高密度的点火条件从而实现聚变反应。为实现点火要求,避免瑞利-泰勒不稳定性,靶丸内氘-氘燃料冰层厚度均匀性需大于99%,燃料冰层内表面均方根粗糙度需小于1μm。燃料冰层的低模粗糙度主要受靶丸周围的温度场所决定,因此冷冻靶温度场控制的重要性尤为突出。
为了使靶丸内氘-氘燃料冰层质量满足点火要求,需要通过添加外界激励的方式使得燃料冰层更为均匀。现有一种被认为可行的方案是通过向靶丸表面投射定向红外,辐照靶丸表面低温区域,从而改善冰层质量。受冷冻靶装置尺寸限制,靶丸及其周围温度场无法通过传感器测量,因此需要通过数值计算的方法对实验进行预测及指导。
目前冷冻靶系统的结构(文献Point design targets,specifications,andrequirementsfor the 2010ignition campaign on the NationalIgnitionFacility)定向红外条件下温度场数值模拟的主要思路为光-热解耦,即红外光场与温度场的计算分开进行(文献ComputationalDesign of InfraredEnhancedLayeringofICFCapsules),忽略了红外光场和温度场之间的强烈耦合作用,仅仅考虑了红外光场对靶丸温度场的热贡献,忽略了温度场自身的红外效应,使得计算结果失真,无法为实验提供可靠的理论指导。
发明内容
为了克服上述现有技术的缺点,本发明目的在于提高了一种用于冷冻靶温度场预测的定向红外光-热耦合模拟方法,考虑了红外光场和温度场之间的强烈耦合作用,提高了计算结果的准确性。
为了达到上述目的,本发明采取的技术方案为:
一种用于冷冻靶温度场预测的定向红外光-热耦合模拟方法,通过蒙特卡洛方法对冷冻靶系统外置定向红外光场进行求解,将红外热贡献与温度场控制方程相耦合,并引入策略来保证计算的可靠性和收敛速度,包括以下步骤:
1)确定光源粒子的初始位置及能量相关参数;
2)确定光源粒子的下一个碰撞距离l及粒子的新位置:
3)判断光源粒子是否逸出计算域,若是,停止光源粒子追踪;若否,继续进行下一步;
4)判断光源粒子是否与壁面发生碰撞,若是,执行步骤5);若否,执行步骤6);
5)根据壁面发射率判断光源粒子是否被壁面吸收,若是,计入热贡献,停止光源粒子追踪;若否,根据壁面漫射系数确定光源粒子反射方向;
6)根据单次反照度判断光源粒子是否被氦气中的杂质吸收,若是,计入热贡献,停止光源粒子追踪;若否,根据相位函数确定光源粒子的散射方向;
7)执行步骤2),直至光源粒子追踪停止;
8)将计入的光源粒子热贡献带入导热微分方程,并结合动量方程、连续性方程计算出冷冻靶温度场分布。
所述的步骤1)中光源粒子的初始位置和能量相关参数要根据相应的热物理边界来确定。
所述的步骤2)中光源粒子在一次传播过程中的碰撞距离l通过下式进行计算:
Figure BDA0003014350740000031
其中r1为[0,1]区间内均匀分布的随机数,μa和μs分别为氦气的吸收系数和散射系数。
所述的步骤5)中光源粒子的新位置坐标为:
xn+1=xn+lUn+1
yn+1=yn+lVn+1
zn+1=zn+lWn+1
其中,x,y,z表示光源粒子在笛卡尔坐标系下的坐标值;下标n表示上一个状态,下表n+1表示新状态;U,V,W表示粒子前进方向;
光源粒子接触到壁面后,一部分会被壁面所吸收,取[0,1]区间上的均匀分布随机数r4,记壁面吸收率为ε,若r4≤ε,则光源粒子被壁面吸收,每个被吸收的光源粒子对壁面热量的贡献为q;剩余的光源粒子会在壁面处发生反射,反射分为镜面反射和漫反射,记壁面的漫反射系数为df,取[0,1]区间上的均匀分布随机数r5,若r5≤df,光源粒子发生漫反射,反之发生镜面反射;对于漫反射而言,分别取两个[0,1]区间内均匀分布的随机数r6,r7,记壁面的单位法向向量a=(xn,yn,zn),随机向量b=(sin(2πr6)sin(2πr7),sin(2πr6)cos(2πr7),cos(2πr6)),若
Figure BDA0003014350740000041
则有
Un+1=sin(2πr6)sin(2πr7)
Vn+1=sin(2πr6)cos(2πr7)
Wn1=cos(2πr6)
反之重新取一组r6,r7直至满足上述条件;
对于镜面反射,有
Figure BDA0003014350740000042
Figure BDA0003014350740000043
Figure BDA0003014350740000044
对于灰体模型,壁面发射率等同于壁面吸收率,壁面漫射系数反映了光源粒子与壁面碰撞后发生漫反射的份额占比。
所述的步骤6)中假定杂质粒子为球形粒子,发生碰撞后,光源粒子在垂直传输方向的平面内各个方向散射概率相同,因此在该平面内方位角
Figure BDA0003014350740000046
的取值是任意的;光源粒子同杂质粒子碰撞后,碰撞后的速度矢量同碰撞前的速度矢量之间的夹角θ称为散射角,根据Henyey-Greenstein相位函数计算求出,其中g为不对称因子,
Figure BDA0003014350740000045
光源粒子的前进方向为:
Figure BDA0003014350740000051
Figure BDA0003014350740000052
Figure BDA0003014350740000053
步骤6)中对于纯净的氦气,其吸收系数和散射系数均为0,此时不考虑光源粒子在氦气中的吸收及散射效应。
本发明的有益效果:本发明针对冷冻靶系统中面临的多组分,多结构的实际问题,创造性地提出红外光-热耦合的模拟方法,传统方法在计算光场时无法计算温度场,计算温度场时无法求解考虑光场的热效应,本发明考虑了红外光场和温度场之间的强烈耦合作用,从而提高了计算结果的准确性。
附图说明
图1是本发明实施例的冷冻靶结构示意图。
图2是本发明的流程图。
图3是本发明实施例的计算结果。
具体实施方式
下面对结合附图和实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本实施例采用的点火靶结构,包括圆柱形的黑腔1和置于黑腔1中心的靶丸,黑腔1与靶丸之间为氦气腔2;黑腔1两端分别开设北极激光入射口6和南极激光入射口7;黑腔1的壁面上开有小孔用来插入光纤3;靶丸具有多层结构,最外侧为CH靶壳4,CH靶壳4内壁附着有固体燃料冰层5,固体燃料冰层5内部为空腔。
黑腔1的高度为10mm,内径5.44mm,黑腔1壁厚0.5mm;CH靶壳4外径1.1mm,内径0.91mm,固体燃料冰层5厚度60μm;光纤3内径0.3mm,入射口与黑腔1壁面的夹角为45°,入射口距黑腔1的中平面2.72mm。
参照图2,一种用于冷冻靶温度场预测的定向红外光-热耦合模拟方法,包括以下步骤:
1)根据相应的热物理边界来确定,确定光源粒子的初始位置及能量等相关参数;
2)确定光源粒子的下一个碰撞距离l及光源粒子的新位置;
光源粒子在一次传播过程中的碰撞距离l通过下式进行计算:
Figure BDA0003014350740000061
其中r1为[0,1]区间内均匀分布的随机数,μa和μs分别为氦气的吸收系数和散射系数;对于无吸收和散射的理想气体而言,光源粒子沿原方向矢量持续传播;
3)判断光源粒子是否通过北极激光入射口6和南极激光入射口7逸出计算域,若是,停止光源粒子追踪;若否,继续进行下一步;
4)判断光源粒子是否与壁面发生碰撞,若是,执行步骤5);若否,执行步骤6);
5)根据壁面发射率判断光源粒子是否被壁面吸收,若是,计入热贡献,停止光源粒子追踪;若否,根据壁面漫射系数确定粒子反射方向;
光源粒子的新位置坐标为:
xn+1=xn+lUn+1
yn+1=yn+lVn+1
zn+1=zn+lWn+1
其中,x,y,z表示光源粒子在笛卡尔坐标系下的坐标值;下标n表示上一个状态,下表n+1表示新状态;U,V,W表示粒子前进方向;
光源粒子接触到壁面后,一部分会被壁面所吸收,取[0,1]区间上的均匀分布随机数r4,记壁面吸收率为ε,若r4≤ε,则光源粒子被壁面吸收,每个被吸收的光源粒子对壁面热量的贡献为q;剩余的光源粒子会在壁面处发生反射,反射分为镜面反射和漫反射,记壁面的漫反射系数为df,取[0,1]区间上的均匀分布随机数r5,若r5≤df,光源粒子发生漫反射,反之发生镜面反射;对于漫反射而言,分别取两个[0,1]区间内均匀分布的随机数r6,r7,记壁面的单位法向向量a=(xn,yn,zn),随机向量b=(sin(2πr6)sin(2πr7),sin(2πr6)cos(2πr7),cos(2πr6)),若
Figure BDA0003014350740000071
则有
Un+1=sin(2πr6)sin(2πr7)
Vn+1=sin(2πr6)cos(2πr7)
Wn1=cos(2πr6)
反之重新取一组r6,r7直至满足上述条件;
对于镜面反射,有
Figure BDA0003014350740000081
Figure BDA0003014350740000082
Figure BDA0003014350740000083
对于灰体模型,壁面发射率等同于壁面吸收率,壁面漫射系数反映了光源粒子与壁面碰撞后发生漫反射的份额占比;
6)根据单次反照度判断光源粒子是否被氦气中的杂质吸收,若是,计入热贡献,停止光源粒子追踪;若否,根据相位函数确定光源粒子的散射方向;
假定杂质粒子为球形粒子,发生碰撞后,光源粒子在垂直传输方向的平面内各个方向散射概率相同,因此在该平面内方位角
Figure BDA0003014350740000088
的取值是任意的;光源粒子同杂质粒子碰撞后,碰撞后的速度矢量同碰撞前的速度矢量之间的夹角θ称为散射角,根据Henyey-Greenstein相位函数计算求出,其中g为不对称因子,
Figure BDA0003014350740000084
光源粒子的前进方向为:
Figure BDA0003014350740000085
Figure BDA0003014350740000086
Figure BDA0003014350740000087
步骤6)中对于纯净的氦气,其吸收系数和散射系数均为0,此时不考虑光源粒子在氦气中的吸收及散射效应;
7)执行步骤2),直至光源粒子追踪停止;
8)将计入的光源粒子热贡献带入导热微分方程,并结合动量方程、连续性方程计算出冷冻靶温度场分布。
本实施例最终求得的靶丸外表面温度分布云图如图3所示,在靶丸正对光斑处温度会出现明显的抬升。

Claims (7)

1.一种用于冷冻靶温度场预测的定向红外光-热耦合模拟方法,其特征在于,通过蒙特卡洛方法对冷冻靶系统外置定向红外光场进行求解,将红外热贡献与温度场控制方程相耦合,并引入策略来保证计算的可靠性和收敛速度,包括以下步骤:
1)确定光源粒子的初始位置及能量相关参数;
2)确定光源粒子的下一个碰撞距离l及粒子的新位置:
3)判断光源粒子是否逸出计算域,若是,停止光源粒子追踪;若否,继续进行下一步;
4)判断光源粒子是否与壁面发生碰撞,若是,执行步骤5);若否,执行步骤6);
5)根据壁面发射率判断光源粒子是否被壁面吸收,若是,计入热贡献,停止光源粒子追踪;若否,根据壁面漫射系数确定光源粒子反射方向;
6)根据单次反照度判断光源粒子是否被氦气中的杂质吸收,若是,计入热贡献,停止光源粒子追踪;若否,根据相位函数确定光源粒子的散射方向;
7)执行步骤2),直至光源粒子追踪停止;
8)将计入的光源粒子热贡献带入导热微分方程,并结合动量方程、连续性方程计算出冷冻靶温度场分布。
2.根据权利要求1所述的一种用于冷冻靶温度场预测的定向红外光-热耦合模拟方法,其特征在于:所述的步骤1)中光源粒子的初始位置和能量相关参数要根据相应的热物理边界来确定。
3.根据权利要求1所述的一种用于冷冻靶温度场预测的定向红外光-热耦合模拟方法,其特征在于:所述的步骤2)中光源粒子在一次传播过程中的碰撞距离l通过下式进行计算:
Figure FDA0003014350730000021
其中r1为[0,1]区间内均匀分布的随机数,μa和μs分别为氦气的吸收系数和散射系数。
4.根据权利要求3所述的一种用于冷冻靶温度场预测的定向红外光-热耦合模拟方法,其特征在于:所述的步骤5)中光源粒子的新位置坐标为:
xn+1=xn+lUn+1
yn+1=yn+lVn+1
zn+1=zn+lWn+1
其中,x,y,z表示光源粒子在笛卡尔坐标系下的坐标值;下标n表示上一个状态,下表n+1表示新状态;U,V,W表示粒子前进方向;
光源粒子接触到壁面后,一部分会被壁面所吸收,取[0,1]区间上的均匀分布随机数r4,记壁面吸收率为ε,若r4≤ε,则光源粒子被壁面吸收,每个被吸收的光源粒子对壁面热量的贡献为q;剩余的光源粒子会在壁面处发生反射,反射分为镜面反射和漫反射,记壁面的漫反射系数为df,取[0,1]区间上的均匀分布随机数r5,若r5≤df,光源粒子发生漫反射,反之发生镜面反射;对于漫反射而言,分别取两个[0,1]区间内均匀分布的随机数r6,r7,记壁面的单位法向向量a=(xn,yn,zn),随机向量b=(sin(2πr6)sin(2πr7),sin(2πr6)cos(2πr7),cos(2πr6)),若
Figure FDA0003014350730000031
则有
Un+1=sin(2πr6)sin(2πr7)
Vn+1=sin(2πr6)cos(2πr7)
Wn1=cos(2πr6)
反之重新取一组r6,r7直至满足上述条件;
对于镜面反射,有
Figure FDA0003014350730000032
5.根据权利要求4所述的一种用于冷冻靶温度场预测的定向红外光-热耦合模拟方法,其特征在于:对于灰体模型,壁面发射率等同于壁面吸收率,壁面漫射系数反映了光源粒子与壁面碰撞后发生漫反射的份额占比。
6.根据权利要求4所述的一种用于冷冻靶温度场预测的定向红外光-热耦合模拟方法,其特征在于:所述的步骤6)中假定杂质粒子为球形粒子,发生碰撞后,光源粒子在垂直传输方向的平面内各个方向散射概率相同,因此在该平面内方位角φ的取值是任意的;光源粒子同杂质粒子碰撞后,碰撞后的速度矢量同碰撞前的速度矢量之间的夹角θ称为散射角,根据Henyey-Greenstein相位函数计算求出,其中g为不对称因子,
Figure FDA0003014350730000041
光源粒子的前进方向为:
Figure FDA0003014350730000042
7.根据权利要求6所述的一种用于冷冻靶温度场预测的定向红外光-热耦合模拟方法,其特征在于:步骤6)中对于纯净的氦气,其吸收系数和散射系数均为0,此时不考虑光源粒子在氦气中的吸收及散射效应。
CN202110384782.3A 2021-04-09 2021-04-09 一种用于冷冻靶温度场预测的定向红外光-热耦合模拟方法 Active CN113158532B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110384782.3A CN113158532B (zh) 2021-04-09 2021-04-09 一种用于冷冻靶温度场预测的定向红外光-热耦合模拟方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110384782.3A CN113158532B (zh) 2021-04-09 2021-04-09 一种用于冷冻靶温度场预测的定向红外光-热耦合模拟方法

Publications (2)

Publication Number Publication Date
CN113158532A true CN113158532A (zh) 2021-07-23
CN113158532B CN113158532B (zh) 2022-12-09

Family

ID=76889745

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110384782.3A Active CN113158532B (zh) 2021-04-09 2021-04-09 一种用于冷冻靶温度场预测的定向红外光-热耦合模拟方法

Country Status (1)

Country Link
CN (1) CN113158532B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108398782A (zh) * 2018-03-29 2018-08-14 上海大学 水下激光主动成像系统的蒙特卡洛模拟及优化设计方法
CN108918352A (zh) * 2018-05-16 2018-11-30 中国民航大学 一种内混合气溶胶光散射特性的计算方法
CN110717979A (zh) * 2019-08-19 2020-01-21 北京航空航天大学 一种基于光子追踪的大气与三维地表耦合辐射模拟方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108398782A (zh) * 2018-03-29 2018-08-14 上海大学 水下激光主动成像系统的蒙特卡洛模拟及优化设计方法
CN108918352A (zh) * 2018-05-16 2018-11-30 中国民航大学 一种内混合气溶胶光散射特性的计算方法
CN110717979A (zh) * 2019-08-19 2020-01-21 北京航空航天大学 一种基于光子追踪的大气与三维地表耦合辐射模拟方法

Also Published As

Publication number Publication date
CN113158532B (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
Samareh et al. Assessment of CFD modeling via flow visualization in cold spray process
Chen et al. Integrated analysis on the volumetric absorption characteristics and optical performance for a porous media receiver
JP2014500487A (ja) 核融合型電力のための間接駆動型ターゲット
CN113158532B (zh) 一种用于冷冻靶温度场预测的定向红外光-热耦合模拟方法
CN105889843B (zh) 复合光目标模拟器
Li et al. Design optimization and optical performance analysis on multi-sectioned compound parabolic concentrator with plane absorber
Ding et al. Recent developments in the aero-optical effects of high-speed optical apertures: From transonic to high-supersonic flows
Deng et al. Preliminary investigation on photo-thermal performance of a novel embedded building integrated solar evacuated tube collector with compound parabolic concentrator
Li et al. Performance analysis on a volumetric solar receiver with an annular inner window
CN110596879B (zh) 一种适用于环形太阳望远镜的热光阑
CN105183997B (zh) 一种基于双层嵌套不确定性传播的热传导模型校准方法
Gao et al. Flame trajectory of a non-vertical turbulent buoyant jet flame
CN208845235U (zh) 一种具有复合异型槽气膜冷却结构的涡轮叶片
CN110705077A (zh) 一种塔式太阳能吸热器聚焦光斑能流密度分布的计算方法
CN106596152A (zh) 一种空间环境下可调光阑
Tokugawa et al. Transition within leeward plane of axisymmetric bodies at incidence in supersonic flow
CN113158520B (zh) 一种用于冷冻靶系统中的燃料冰层界面追踪模拟方法
CN113178266B (zh) 一种包含定向红外辅助加热的icf冷冻靶装置
CN207585110U (zh) 一种适用于太阳能碟式聚光的光斑能量测量装置
Aleksandrova et al. Survivability of fuel layers with a different structure under conditions of the environmental effects: Physical concept and modeling results
Yang et al. Prediction of erosion characteristics of polyimide with different defect shape pairs based on Monte Carlo method
CN106932809B (zh) 一种w字形多板变角组合结构的主动水冷量热靶结构
CN111443376A (zh) 一种空间分辨辐射流探测技术的数据提取方法
Guo et al. Numerical analysis on the thermal distribution of directional infrared deuterium capsule in ICF
Yuan et al. Schattering Power of Laser in Aerosol Medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant