CN113158471B - A Remaining Lifetime Prediction Method for Degraded Equipment Considering Measurement Uncertainty - Google Patents
A Remaining Lifetime Prediction Method for Degraded Equipment Considering Measurement Uncertainty Download PDFInfo
- Publication number
- CN113158471B CN113158471B CN202110455012.3A CN202110455012A CN113158471B CN 113158471 B CN113158471 B CN 113158471B CN 202110455012 A CN202110455012 A CN 202110455012A CN 113158471 B CN113158471 B CN 113158471B
- Authority
- CN
- China
- Prior art keywords
- degraded
- degradation
- equipment
- time
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 108
- 238000000034 method Methods 0.000 title claims abstract description 67
- 238000006731 degradation reaction Methods 0.000 claims abstract description 146
- 230000015556 catabolic process Effects 0.000 claims abstract description 135
- 230000008569 process Effects 0.000 claims abstract description 16
- 238000012544 monitoring process Methods 0.000 claims description 40
- 230000003044 adaptive effect Effects 0.000 claims description 35
- 238000009792 diffusion process Methods 0.000 claims description 19
- 238000007476 Maximum Likelihood Methods 0.000 claims description 17
- 238000004364 calculation method Methods 0.000 claims description 10
- 238000004422 calculation algorithm Methods 0.000 claims description 7
- 230000001131 transforming effect Effects 0.000 claims description 3
- 238000004458 analytical method Methods 0.000 abstract description 3
- 238000000605 extraction Methods 0.000 abstract description 3
- 230000005653 Brownian motion process Effects 0.000 description 23
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 6
- 229910052744 lithium Inorganic materials 0.000 description 6
- 238000012423 maintenance Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000005537 brownian motion Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005309 stochastic process Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/04—Ageing analysis or optimisation against ageing
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种考虑测量不确定性的退化设备剩余寿命预测方法,包括以下步骤:S1:采集退化设备的离散测量时间点和退化量集合,并建立性能退化模型;S2:根据性能退化模型,对性能退化模型进行参数估计;S3:基于性能退化模型和参数估计结果,进行剩余寿命预测。本发明给出了一种考虑测量不确定性的自适应退化设备剩余寿命预测方法,针对实际设备退化过程中退化的随机性,充分考虑了设备在退化过程中特征提取的误差情况,不仅可以对此类设备的剩余寿命进行准确预测分析,还可以作为寿命周期中一种有效分析工具。
The invention discloses a method for predicting the remaining life of degraded equipment considering measurement uncertainty, comprising the following steps: S1: collecting discrete measurement time points and degradation quantity sets of degraded equipment, and establishing a performance degradation model; S2: according to the performance degradation model , to estimate the parameters of the performance degradation model; S3: based on the performance degradation model and parameter estimation results, perform remaining life prediction. The present invention provides a method for predicting the remaining life of self-adaptive degraded equipment considering measurement uncertainty, aiming at the randomness of degraded equipment in the degraded process of actual equipment, fully considering the error of feature extraction in the degraded process of equipment, not only can be used for The remaining life of such equipment can be accurately predicted and analyzed, and it can also be used as an effective analysis tool in the life cycle.
Description
技术领域technical field
本发明属于可靠性工程技术领域,具体涉及一种考虑测量不确定性的退化设备剩余寿命预测方法。The invention belongs to the technical field of reliability engineering, and in particular relates to a method for predicting the remaining life of degraded equipment considering measurement uncertainty.
背景技术Background technique
随着生产技术的不断发展,现代工业设备正朝着大型化、复杂化和智能化的方向发展。然而,大型复杂的工业设备在长期运行过程中会受到各种环境因素的影响,设备的性能也会发生相应的变化。经过一段时间的积累,达到一定的阈值,设备发生损坏,表现为设备输出参数的变化,如部件性能的恶化、机械部件的磨损和绝缘材料的老化。积累到一定程度,设备最终会失效。一旦因这种故障而发生事故,人员和财产损失甚至环境损害往往是不可估量的。如果能够在性能退化的早期阶段监测和评估设备的寿命,以确定设备维护的最佳时间并制定相应的维护计划,这可以提高设备的可靠性,降低设备运行的风险,降低运行成本。因此,通过设备退化的测量数据,建立退化规律的演化模型,进而实现设备的剩余使用寿命(RUL)预测,是预测与健康管理(PHM)的基础和核心内容。寿命预测结果为维修决策和备件更换提供了科学依据。With the continuous development of production technology, modern industrial equipment is developing in the direction of large-scale, complex and intelligent. However, large and complex industrial equipment will be affected by various environmental factors during long-term operation, and the performance of the equipment will also change accordingly. After a period of accumulation, when a certain threshold is reached, the equipment will be damaged, manifested as a change in the output parameters of the equipment, such as deterioration of component performance, wear of mechanical components, and aging of insulating materials. Accumulated to a certain extent, the equipment will eventually fail. Once an accident occurs due to such a failure, the loss of personnel and property and even the damage to the environment are often immeasurable. If the life of equipment can be monitored and evaluated in the early stages of performance degradation to determine the best time for equipment maintenance and formulate corresponding maintenance plans, this can improve equipment reliability, reduce equipment operation risks, and reduce operating costs. Therefore, it is the basis and core content of prediction and health management (PHM) to establish the evolution model of degradation law through the measurement data of equipment degradation, and then realize the prediction of remaining useful life (RUL) of equipment. The life prediction results provide a scientific basis for maintenance decisions and spare parts replacement.
在工程实践中,准确测量设备的隐藏退化状态往往是不现实的或昂贵的。此外,通过传感器状态监测获得的与设备的隐含退化状态相关的测量数据不可避免地受到诸如噪声、干扰和不合理的测量仪器等因素的影响。在这种情况下,获得的测量数据是不合理的,只能部分反映设备的退化状态。为了描述测量不确定性的影响,准确描述设备退化情况,需要建立起潜在退化状态和不确定测量数据之间的关系。In engineering practice, it is often impractical or expensive to accurately measure the hidden degradation state of equipment. Furthermore, the measurement data related to the implied degraded state of equipment obtained through sensor condition monitoring is inevitably affected by factors such as noise, interference, and unreasonable measuring instruments. In this case, the measured data obtained are unreasonable and can only partially reflect the degradation state of the equipment. In order to describe the influence of measurement uncertainty and accurately describe the degradation of equipment, it is necessary to establish the relationship between the potential degradation state and uncertain measurement data.
实际上,基于自适应Wiener过程框架,建立一种考虑不确定性测量的退化模型。进一步基于对数变换和逆高斯特性,从理论上推导出了靠虑不确定测量自适应Wiener过程的设备寿命分布的解析形式,推导出剩余寿命的解析解。从而得到考虑不确定测量自适应Wiener过程的随机退化设备的剩余寿命预测,以提高剩余寿命预测的准确性。In fact, based on the adaptive Wiener process framework, a degradation model considering the uncertainty measurement is established. Further, based on the logarithmic transformation and the inverse Gaussian characteristic, the analytical form of the equipment life distribution by considering the uncertain measurement adaptive Wiener process is deduced theoretically, and the analytical solution of the remaining life is deduced. Therefore, the remaining life prediction of stochastic degraded equipment considering the adaptive Wiener process of uncertain measurement is obtained, so as to improve the accuracy of remaining life prediction.
发明内容Contents of the invention
本发明的目的是为了解决剩余寿命预测的问题,提出了一种考虑测量不确定性的退化设备剩余寿命预测方法。The object of the present invention is to solve the problem of remaining life prediction, and propose a method for predicting the remaining life of degraded equipment considering measurement uncertainty.
本发明的技术方案是:一种考虑测量不确定性的退化设备剩余寿命预测方法包括以下步骤:The technical solution of the present invention is: a method for predicting the remaining life of degraded equipment considering measurement uncertainty includes the following steps:
S1:采集退化设备的离散测量时间点和退化量集合,并建立性能退化模型;S1: Collect discrete measurement time points and degradation quantity sets of degraded equipment, and establish a performance degradation model;
S2:根据性能退化模型,对性能退化模型进行参数估计;S2: Estimate the parameters of the performance degradation model according to the performance degradation model;
S3:基于性能退化模型和参数估计结果,进行剩余寿命预测。S3: Based on the performance degradation model and parameter estimation results, perform remaining life prediction.
进一步地,步骤S1包括以下子步骤:Further, step S1 includes the following sub-steps:
S11:采集退化设备的离散测量时间点0=t0<t1<…<ti和退化量集合Y1:i={y1,y2,…,yi},得到对应的退化状态集合X1:i={x1,x2,…,xi},其中,y1,y2,…,yi表示t1,…,ti时刻退化设备的退化量,x1,x2,…,xi表示t1,…,ti时刻退化设备的退化状态;S11: Collect the discrete
S12:建立退化状态集合X1:i={x1,x2,…,xi}和退化量集合Y1:i={y1,y2,…,yi}之间的性能退化方程yi=xi+εi,作为性能退化模型,其中,εi表示ti时刻的随机测量误差。S12: Establish a performance degradation equation between the degradation state set X 1:i ={x 1 ,x 2 ,…, xi } and the degradation amount set Y 1:i ={y 1 ,y 2 ,…,y i } y i = xi +ε i , as a performance degradation model, where ε i represents the random measurement error at time t i .
进一步地,步骤S2包括以下子步骤:Further, step S2 includes the following sub-steps:
S21:根据性能退化模型,对未知参数θ=(k2,σ2,γ2,v,α)建立退化设备的似然函数l(θ|Y),其中,k2表示自适应漂移项扩散系数的平方,σ2表示自适应Wiener的扩散系数的平方,γ2表示测量误差的方差,v表示漂移系数,α表示非线性退化的时间指数幂,Y表示考虑测量不确定性的监测数据;S21: According to the performance degradation model, establish the likelihood function l(θ|Y) of the degraded equipment for the unknown parameters θ=(k 2 ,σ 2 ,γ 2 ,v,α), where k 2 represents the diffusion of the adaptive drift term The square of the coefficient, σ2 represents the square of the diffusion coefficient of the adaptive Wiener, γ2 represents the variance of the measurement error, v represents the drift coefficient, α represents the time exponential power of the nonlinear degradation, and Y represents the monitoring data considering the measurement uncertainty;
S22:根据退化设备的似然函数l(θ|Y),依次得到k2、σ2、γ2和α的剖面似然函数l(k,σ,γ,α|Y,v)与v的极大似然函数,其中,Y表示未知参数θ对应的退化设备的测量数据,k表示自适应漂移项扩散系数,σ表示自适应Wiener的扩散系数,γ表示测量误差;S22: According to the likelihood function l(θ|Y) of the degraded equipment, the profile likelihood function l(k,σ,γ,α|Y,v) of k 2 , σ 2 , γ 2 and α and v’s Maximum likelihood function, where Y represents the measurement data of the degraded equipment corresponding to the unknown parameter θ, k represents the diffusion coefficient of the adaptive drift term, σ represents the diffusion coefficient of the adaptive Wiener, and γ represents the measurement error;
S23:利用多维搜索法,根据k2、σ2、γ2和α的剖面似然函数l(k,σ,γ,α|Y,v)与v的极大似然函数,依次得到k2,σ2,γ2,α和v的极大似然估计值,完成参数估计。S23: Using the multi-dimensional search method, according to the profile likelihood function l(k,σ,γ,α|Y,v) of k 2 , σ 2 , γ 2 and α and the maximum likelihood function of v, k 2 is sequentially obtained , σ 2 , γ 2 , the maximum likelihood estimates of α and v to complete the parameter estimation.
进一步地,所述步骤S21中,退化设备的似然函数l(θ|Y)的表达式为:Further, in the step S21, the expression of the likelihood function l(θ|Y) of the degraded equipment is:
其中,θ表示未知参数,Y表示考虑测量不确定性的监测数据,N表示退化设备的个数,M表示一个退化设备的监测点个数,Yi表示某个设备的监测数据,Σ表示Yi的方差,v表示漂移系数,Si表示两个监测点时间间隔;Among them, θ represents unknown parameters, Y represents monitoring data considering measurement uncertainty, N represents the number of degraded equipment, M represents the number of monitoring points of a degraded device, Y i represents the monitoring data of a certain device, Σ represents Y The variance of i , v represents the drift coefficient, S i represents the time interval between two monitoring points;
步骤S22中,漂移系数v的极大似然函数的表达式为:In step S22, the expression of the maximum likelihood function of the drift coefficient v is:
步骤S22中,k2、σ2、γ2和α的剖面似然函数l(k,σ,γ,α|Y,v)的表达式为:In step S22, the expression of the profile likelihood function l(k,σ,γ,α|Y,v) of k 2 , σ 2 , γ 2 and α is:
其中,k表示自适应漂移项扩散系数,σ表示自适应Wiener的扩散系数,γ2表示测量误差的方差,Yi表示某个设备的监测数据,Σi表示Yi的方差,Ωi表示不考虑自适应Wiener时Yi的方差。Among them, k represents the diffusion coefficient of the adaptive drift item, σ represents the diffusion coefficient of the adaptive Wiener, γ 2 represents the variance of the measurement error, Y i represents the monitoring data of a certain device, Σ i represents the variance of Y i , and Ω i represents the variance of The variance of Y i when considering the adaptive Wiener.
进一步地,步骤S3包括以下子步骤:Further, step S3 includes the following sub-steps:
S31:在离散测量时间点0=t0<t1<…<ti内,根据性能退化方程yi=xi+εi、退化状态集合X1:i={x1,x2,…,xi}和参数估计结果,对性能退化模型进行变换;S31: At the discrete
S32:利用Kalman滤波算法,根据变换后的性能退化模型进行退化状态估计,完成寿命预测。S32: Utilize the Kalman filter algorithm to estimate the degradation state according to the transformed performance degradation model, and complete the life prediction.
进一步地,步骤S31中,对性能退化模型进行变换的计算公式为:Further, in step S31, the calculation formula for transforming the performance degradation model is:
其中,xi表示离散测量时间ti退化设备的退化状态,xi-1表示离散测量时间ti-1退化设备的退化状态,v表示漂移系数,ΔSi表示非线性退化时间间隔,η表示退化过程时变不确定性造成的噪声项,yi表示考虑测量误差时的监测数据,εi表示测量误差。Among them, x i represents the degradation state of the degraded equipment at the discrete measurement time t i , x i-1 represents the degradation state of the degraded device at the discrete measurement time t i-1 , v represents the drift coefficient, ΔS i represents the nonlinear degradation time interval, and η represents The noise term caused by the time-varying uncertainty of the degradation process, y i represents the monitoring data when the measurement error is considered, and ε i represents the measurement error.
进一步地,步骤S32中,利用Kalman滤波算法,进行退化状态估计,并在退化状态估计过程中进行更新,退化状态估计的计算公式为:Further, in step S32, the Kalman filter algorithm is used to estimate the degraded state and update it during the degraded state estimation process. The calculation formula of the degraded state estimation is:
其中,表示通过退化量集合Y1:i对退化状态xi估计的期望,Pi|i表示通过退化量集合Y1:i对退化状态xi估计的方差,表示上一步通过退化量集合Y1:i对退化状态xi估计的期望,Pi|i-1表示上一步通过退化量集合Y1:i对退化状态xi估计的方差,K(i)表示滤波增益,表示在ti-1时刻监测数据估计值的均值,v表示漂移系数,ΔSi表示非线性退化时间间隔,y(i)表示考虑测量误差时的监测数据,γ2表示测量误差的方差,Pi-1|i-1表示在ti-1时刻监测数据估计值的方差,πi表示噪声项η的方差;in, Indicates the expectation of the degraded state x i estimated by the set of degenerate quantities Y 1:i , P i|i represents the variance estimated by the set of degenerated quantities Y 1:i for the degraded state x i , Indicates the expectation of the degradation state x i estimated by the degradation quantity set Y 1 :i in the previous step, P i|i-1 represents the variance of the degradation state x i estimated by the degradation quantity set Y 1:i in the previous step, K(i) Indicates the filter gain, Indicates the mean value of the estimated value of the monitoring data at time t i-1 , v indicates the drift coefficient, ΔS i indicates the nonlinear degradation time interval, y(i) indicates the monitoring data when the measurement error is considered, γ 2 indicates the variance of the measurement error, P i-1|i-1 represents the variance of the estimated value of the monitoring data at time t i-1 , and π i represents the variance of the noise term η;
进行更新的计算公式为:The calculation formula for updating is:
Pi|i=(1-K(i))Pi|i-1。P i|i = (1-K(i))P i|i-1 .
进一步地,步骤S32中,进行剩余寿命预测的具体方法为:将退化状态估计结果第一次达到预定故障阈值的时间作为退化设备的剩余寿命起始时间。Further, in step S32, the specific method for predicting the remaining life is: taking the time when the degradation state estimation result reaches the predetermined failure threshold for the first time as the starting time of the remaining life of the degraded equipment.
本发明的有益效果是:本发明给出了一种考虑测量不确定性的自适应退化设备剩余寿命预测方法,针对实际设备退化过程中退化的随机性,充分考虑了设备在退化过程中特征提取的误差情况,不仅可以对此类设备的剩余寿命进行准确预测分析,还可以作为寿命周期中一种有效分析工具,为设备备件订购等维修管理决策提供有力的理论依据,从而可实现高效合理的装备管理,避免浪费,因此该方法具有很好的工程应用价值。The beneficial effects of the present invention are: the present invention provides a method for predicting the remaining life of self-adaptive degraded equipment considering measurement uncertainty, and fully considers the feature extraction of equipment during the degraded process in view of the randomness of degraded equipment in the actual degraded process It can not only accurately predict and analyze the remaining life of such equipment, but also can be used as an effective analysis tool in the life cycle to provide a strong theoretical basis for maintenance management decisions such as equipment spare parts ordering, so as to achieve efficient and reasonable Equipment management, avoiding waste, so this method has good engineering application value.
附图说明Description of drawings
图1为剩余寿命预测方法的流程图;Fig. 1 is the flowchart of remaining life prediction method;
图2为四组锂电池容量退化过程图;Figure 2 is a diagram of the capacity degradation process of four groups of lithium batteries;
图3为两种方法下锂电池退化拟合效果图;Figure 3 is the fitting effect diagram of lithium battery degradation under the two methods;
图4为两种方法下锂电池剩余寿命概率密度分布图;Figure 4 is a probability density distribution diagram of the remaining life of the lithium battery under the two methods;
图5为两种方法剩余寿命预测绝对误差图;Fig. 5 is the absolute error diagram of remaining life prediction of two methods;
图6为两种方法剩余寿命预测相对误差图;Fig. 6 is the relative error graph of remaining life prediction of two methods;
图7为两种方法剩余寿命预测均方误差图。Figure 7 is a graph of the mean square error of remaining life prediction for the two methods.
具体实施方式Detailed ways
下面结合附图对本发明的实施例作进一步的说明。Embodiments of the present invention will be further described below in conjunction with the accompanying drawings.
在描述本发明的具体实施例之前,为使本发明的方案更加清楚完整,首先对本发明中出现的缩略语和关键术语定义进行说明:Before describing the specific embodiments of the present invention, in order to make the scheme of the present invention more clear and complete, at first the abbreviations and key term definitions that appear in the present invention are explained:
Wiener过程:自适应维纳过程。Wiener process: Adaptive Wiener process.
如图1所示,本发明提供了一种考虑测量不确定性的退化设备剩余寿命预测方法,包括以下步骤:As shown in Figure 1, the present invention provides a method for predicting the remaining life of degraded equipment considering measurement uncertainty, comprising the following steps:
S1:采集退化设备的离散测量时间点和退化量集合,并建立性能退化模型;S1: Collect discrete measurement time points and degradation quantity sets of degraded equipment, and establish a performance degradation model;
S2:根据性能退化模型,对性能退化模型进行参数估计;S2: Estimate the parameters of the performance degradation model according to the performance degradation model;
S3:基于性能退化模型和参数估计结果,进行剩余寿命预测。S3: Based on the performance degradation model and parameter estimation results, perform remaining life prediction.
在本发明实施例中,步骤S1包括以下子步骤:In the embodiment of the present invention, step S1 includes the following sub-steps:
S11:采集退化设备的离散测量时间点0=t0<t1<…<ti和退化量集合Y1:i={y1,y2,…,yi},得到对应的退化状态集合X1:i={x1,x2,…,xi},其中,y1,y2,…,yi表示t1,…,ti时刻退化设备的退化量,x1,x2,…,xi表示t1,…,ti时刻退化设备的退化状态;S11: Collect the discrete
S12:建立退化状态集合X1:i={x1,x2,…,xi}和退化量集合Y1:i={y1,y2,…,yi}之间的性能退化方程yi=xi+εi,作为性能退化模型,其中,εi表示ti时刻的随机测量误差。S12: Establish a performance degradation equation between the degradation state set X 1:i ={x 1 ,x 2 ,…, xi } and the degradation amount set Y 1:i ={y 1 ,y 2 ,…,y i } y i = xi +ε i , as a performance degradation model, where ε i represents the random measurement error at time t i .
在本发明实施例中,步骤S2包括以下子步骤:In the embodiment of the present invention, step S2 includes the following sub-steps:
S21:根据性能退化模型,对未知参数θ=(k2,σ2,γ2,v,α)建立退化设备的似然函数l(θ|Y),其中,k2表示自适应漂移项扩散系数的平方,σ2表示自适应Wiener的扩散系数的平方,γ2表示测量误差的方差,v表示漂移系数,α表示非线性退化的时间指数幂,Y表示考虑测量不确定性的监测数据;S21: According to the performance degradation model, establish the likelihood function l(θ|Y) of the degraded equipment for the unknown parameters θ=(k 2 ,σ 2 ,γ 2 ,v,α), where k 2 represents the diffusion of the adaptive drift term The square of the coefficient, σ2 represents the square of the diffusion coefficient of the adaptive Wiener, γ2 represents the variance of the measurement error, v represents the drift coefficient, α represents the time exponential power of the nonlinear degradation, and Y represents the monitoring data considering the measurement uncertainty;
S22:根据退化设备的似然函数l(θ|Y),依次得到k2、σ2、γ2和α的剖面似然函数l(k,σ,γ,α|Y,v)与v的极大似然函数,其中,Y表示未知参数θ对应的退化设备的测量数据,k表示自适应漂移项扩散系数,σ表示自适应Wiener的扩散系数,γ表示测量误差;S22: According to the likelihood function l(θ|Y) of the degraded equipment, the profile likelihood function l(k,σ,γ,α|Y,v) of k 2 , σ 2 , γ 2 and α and v’s Maximum likelihood function, where Y represents the measurement data of the degraded equipment corresponding to the unknown parameter θ, k represents the diffusion coefficient of the adaptive drift term, σ represents the diffusion coefficient of the adaptive Wiener, and γ represents the measurement error;
S23:利用多维搜索法,根据k2、σ2、γ2和α的剖面似然函数l(k,σ,γ,α|Y,v)与v的极大似然函数,依次得到k2,σ2,γ2,α和v的极大似然估计值,完成参数估计。S23: Using the multi-dimensional search method, according to the profile likelihood function l(k,σ,γ,α|Y,v) of k 2 , σ 2 , γ 2 and α and the maximum likelihood function of v, k 2 is sequentially obtained , σ 2 , γ 2 , the maximum likelihood estimates of α and v to complete the parameter estimation.
在本发明实施例中,所述步骤S21中,退化设备的似然函数l(θ|Y)的表达式为:In the embodiment of the present invention, in the step S21, the expression of the likelihood function l(θ|Y) of the degraded equipment is:
其中,θ表示未知参数,Y表示考虑测量不确定性的监测数据,N表示退化设备的个数,M表示一个退化设备的监测点个数,Yi表示某个设备的监测数据,Σ表示Yi的方差,v表示漂移系数,Si表示两个监测点时间间隔;Among them, θ represents unknown parameters, Y represents monitoring data considering measurement uncertainty, N represents the number of degraded equipment, M represents the number of monitoring points of a degraded device, Y i represents the monitoring data of a certain device, Σ represents Y The variance of i , v represents the drift coefficient, S i represents the time interval between two monitoring points;
步骤S22中,漂移系数v的极大似然函数的表达式为:In step S22, the expression of the maximum likelihood function of the drift coefficient v is:
步骤S22中,k2、σ2、γ2和α的剖面似然函数l(k,σ,γ,α|Y,v)的表达式为:In step S22, the expression of the profile likelihood function l(k,σ,γ,α|Y,v) of k 2 , σ 2 , γ 2 and α is:
其中,k表示自适应漂移项扩散系数,σ表示自适应Wiener的扩散系数,γ2表示测量误差的方差,Yi表示某个设备的监测数据,Σi表示Yi的方差,Ωi表示不考虑自适应Wiener时Yi的方差。Among them, k represents the diffusion coefficient of the adaptive drift item, σ represents the diffusion coefficient of the adaptive Wiener, γ 2 represents the variance of the measurement error, Y i represents the monitoring data of a certain device, Σ i represents the variance of Y i , and Ω i represents the variance of The variance of Y i when considering the adaptive Wiener.
在本发明实施例中,步骤S3包括以下子步骤:In the embodiment of the present invention, step S3 includes the following sub-steps:
S31:在离散测量时间点0=t0<t1<…<ti内,根据性能退化方程yi=xi+εi、退化状态集合X1:i={x1,x2,…,xi}和参数估计结果,对性能退化模型进行变换;S31: At the discrete
S32:利用Kalman滤波算法,根据变换后的性能退化模型进行退化状态估计,完成寿命预测。S32: Utilize the Kalman filter algorithm to estimate the degradation state according to the transformed performance degradation model, and complete the life prediction.
在本发明实施例中,步骤S31中,对性能退化模型进行变换的计算公式式为:In the embodiment of the present invention, in step S31, the calculation formula for transforming the performance degradation model is:
其中,xi表示离散测量时间ti退化设备的退化状态,xi-1表示离散测量时间ti-1退化设备的退化状态,v表示漂移系数,ΔSi表示非线性退化时间间隔,η表示退化过程时变不确定性造成的噪声项,yi表示考虑测量误差时的监测数据,εi表示测量误差。Among them, x i represents the degradation state of the degraded equipment at the discrete measurement time t i , x i-1 represents the degradation state of the degraded device at the discrete measurement time t i-1 , v represents the drift coefficient, ΔS i represents the nonlinear degradation time interval, and η represents The noise term caused by the time-varying uncertainty of the degradation process, y i represents the monitoring data when the measurement error is considered, and ε i represents the measurement error.
在本发明实施例中,步骤S32中,利用Kalman滤波算法,进行退化状态估计,并在退化状态估计过程中进行更新,退化状态估计的计算公式为:In the embodiment of the present invention, in step S32, the Kalman filter algorithm is used to estimate the degraded state and update it during the degraded state estimation process. The calculation formula of the degraded state estimation is:
K(i)=Pi|i-1(Pi|i-1+γ2)-1 K(i)=P i|i-1 (P i|i-1 +γ 2 ) -1
Pi|i-1=Pi-1|i-1+πi P i|i-1 =P i-1|i-1 +π i
其中,表示通过退化量集合Y1:i对退化状态xi估计的期望,Pi|i表示通过退化量集合Y1:i对退化状态xi估计的方差,表示上一步通过退化量集合Y1:i对退化状态xi估计的期望,Pi|i-1表示上一步通过退化量集合Y1:i对退化状态xi估计的方差,K(i)表示滤波增益,表示在ti-1时刻监测数据估计值的均值,v表示漂移系数,ΔSi表示非线性退化时间间隔,y(i)表示考虑测量误差时的监测数据,γ2表示测量误差的方差,Pi-1|i-1表示在ti-1时刻监测数据估计值的方差,πi表示噪声项η的方差;in, Indicates the expectation of the degraded state x i estimated by the set of degenerate quantities Y 1:i , P i|i represents the variance estimated by the set of degenerated quantities Y 1:i for the degraded state x i , Indicates the expectation of the degradation state x i estimated by the degradation quantity set Y 1 :i in the previous step, P i|i-1 represents the variance of the degradation state x i estimated by the degradation quantity set Y 1:i in the previous step, K(i) Indicates the filter gain, Indicates the mean value of the estimated value of the monitoring data at time t i-1 , v indicates the drift coefficient, ΔS i indicates the nonlinear degradation time interval, y(i) indicates the monitoring data when the measurement error is considered, γ 2 indicates the variance of the measurement error, P i-1|i-1 represents the variance of the estimated value of the monitoring data at time t i-1 , and π i represents the variance of the noise term η;
进行更新的计算公式为:The calculation formula for updating is:
Pi|i=(1-K(i))Pi|i-1。P i|i = (1-K(i))P i|i-1 .
在本发明实施例中,步骤S32中,进行剩余寿命预测的具体方法为:将退化状态估计结果第一次达到预定故障阈值的时间作为退化设备的剩余寿命起始时间。In the embodiment of the present invention, in step S32, the specific method for predicting the remaining life is: taking the time when the degradation state estimation result reaches the predetermined failure threshold for the first time as the starting time of the remaining life of the degraded equipment.
具体实施方式Detailed ways
下面对存在测量不确定性的锂电池容量退化数据对本发明的方法进行验证。该组数据集是通过室温条件下充放电实验获得的,记录了电池状态信息(包括容量)随充放电循环的变化。由于复杂的老化机制,锂电池的容量会随着充放电循环而降低。图2给出了美国航天局的四组电池组#5、#6、#7和#18的退化情况,从图中可以看出每个电池的容量随时间周期成下降趋势。由于测量不确定性的影响,监测退化数据Y1:i的值可能会在实际失效时间前超过失效阈值。Next, the method of the present invention is verified on the lithium battery capacity degradation data with measurement uncertainty. This set of data sets was obtained through charge and discharge experiments at room temperature, and recorded changes in battery state information (including capacity) with charge and discharge cycles. Due to complex aging mechanisms, the capacity of lithium batteries decreases with charge and discharge cycles. Figure 2 shows the degradation of the four sets of batteries #5, #6, #7 and #18 of NASA. It can be seen from the figure that the capacity of each battery has a downward trend over time. Due to the influence of measurement uncertainty, the value of the monitored degradation data Y 1:i may exceed the failure threshold before the actual failure time.
A、建立能够描述设备考虑测量不确定性的自适应Wiener过程的性能退化模型A. Establish a performance degradation model that can describe the adaptive Wiener process of the equipment considering the measurement uncertainty
在工程实践中,准确测量设备的隐藏退化状态往往是不现实的或昂贵的。此外,通过传感器状态监测获得的与设备的隐含退化状态相关的测量数据不可避免地受到诸如噪声、干扰和不合理的测量仪器等因素的影响。在这种情况下,获得的测量数据是不合理的,只能部分反映设备的退化状态。为了描述测量不确定性的影响,可以考虑建立潜在退化状态和不确定测量数据之间的关系。In engineering practice, it is often impractical or expensive to accurately measure the hidden degradation state of equipment. Furthermore, the measurement data related to the implied degraded state of equipment obtained through sensor condition monitoring is inevitably affected by factors such as noise, interference, and unreasonable measuring instruments. In this case, the measured data obtained are unreasonable and can only partially reflect the degradation state of the equipment. To describe the effect of measurement uncertainty, the relationship between potential degradation states and uncertain measurement data can be considered.
1)考虑测量不确定性的随机退化过程建模1) Stochastic degradation process modeling considering measurement uncertainty
基于自适应Wiener过程的退化模型是一类典型的描述设备随机退化的非线性随机模型,并且此类模型已在机械磨损、腐蚀等退化建模中得到广泛应用。一般地,基于Wiener过程的退化模型{X(t),t≥0}可以描述为:The degradation model based on the adaptive Wiener process is a typical nonlinear stochastic model describing the random degradation of equipment, and this type of model has been widely used in the degradation modeling of mechanical wear and corrosion. Generally, the degradation model {X(t),t≥0} based on the Wiener process can be described as:
其中,v(t)是遵循Wiener过程的随时间变化的漂移率,v0>0是初始漂移率,k是自适应漂移的扩散系数,W(t)是独立于B(t)的标准Brownian运动。S(t;α)是一个带有参数α且随时间单调递增的函数。本文针对退化过程中存在测量不确定性的情况,基于式(45)和退化过程中的监测数据,建立潜在退化状态和不确定测量数据之间的退化模型。具体地,可表示为:where v(t) is the time-varying drift rate following the Wiener process, v 0 >0 is the initial drift rate, k is the diffusion coefficient for adaptive drift, and W(t) is the standard Brownian independent of B(t) sports. S(t; α) is a function with a parameter α that increases monotonically with time. In this paper, aiming at the situation where measurement uncertainty exists in the degradation process, based on Equation (45) and the monitoring data during the degradation process, a degradation model between the potential degradation state and the uncertain measurement data is established. Specifically, it can be expressed as:
Y(t)=X(t)+ε,(2)Y(t)=X(t)+ε, (2)
其中,ε是随机测量误差,且假设在任意时刻t,ε是独立同分布的高斯分布,且有ε~N(0,γ2)。进一步假设ε和B(t)是相互独立,以上假设在退化建模领域和寿命估计领域广泛使用。Wherein, ε is a random measurement error, and it is assumed that at any time t, ε is an independent and identically distributed Gaussian distribution, and ε~N(0,γ 2 ). It is further assumed that ε and B(t) are independent of each other. The above assumptions are widely used in the field of degradation modeling and life estimation.
2)剩余寿命的定义2) Definition of remaining life
为了实现剩余寿命估计,设备的寿命由随机退化过程的首次到达时间的概念来定义。换句话说,一旦随机退化过程第一次达到预定的故障阈值,就认为设备无效,需要维护才能再次使用。根据首次到达时间的概念,设备的寿命可定义为:To enable remaining lifetime estimation, the lifetime of a device is defined by the notion of time-to-first-arrival of stochastic degradation processes. In other words, once the stochastic degradation process reaches a predetermined failure threshold for the first time, the device is considered invalid and requires maintenance before it can be used again. Based on the concept of time-to-first-arrival, the lifetime of a device can be defined as:
T=inf{t:X(t)≥w|X(0)<w},(3)T=inf{t:X(t)≥w|X(0)<w}, (3)
其中,w是预设的故障阈值,通常由一些行业标准确定,如振幅和陀螺仪漂移。where w is a preset fault threshold, usually determined by some industry standards, such as amplitude and gyro drift.
基于此,在以上的框架下,本发明的主要目标是基于实时监测退化数据实现对服役设备剩余寿命的预测,并在获取新的退化监测数据后可以实现剩余寿命分布的更新。假设获取退化测量数据的离散监测时间点为0=t0<t1<…<ti,令yi=Y(ti)表示ti时刻的退化量。因此,到时刻ti的所有退化测量数据的集合可以表示为Y1:i={y1,y2,…,yi},对应的退化状态的集合为X1:i={x1,x2,…,xi},其中xi=X(ti)。由式(2)进一步可以将ti时刻的测量方程描述为yi=xi+εi,其中εi是ε的独立同分布实现。Based on this, under the above framework, the main goal of the present invention is to realize the prediction of the remaining life of service equipment based on real-time monitoring degradation data, and to update the remaining life distribution after acquiring new degradation monitoring data. Assuming that the discrete monitoring time point for obtaining degradation measurement data is 0=t 0 <t 1 <...<t i , let y i =Y(t i ) represent the degradation amount at time t i . Therefore, the set of all degradation measurement data up to time t i can be expressed as Y 1:i ={y 1 ,y 2 ,…,y i }, and the set of corresponding degradation states is X 1:i ={x 1 , x 2 ,..., xi }, where x i =X(t i ). From formula (2), the measurement equation at time t i can be further described as y i = xi +ε i , where ε i is the realization of independent and identical distribution of ε.
Li=inf{li>0:X(li+ti)≥w},(4)L i =inf{l i >0:X(l i +t i )≥w}, (4)
对应剩余寿命Li的概率密度函数和累积分布函数分别为和 The probability density function and cumulative distribution function corresponding to the remaining life L i are respectively and
B、参数估计B. Parameter estimation
为了实现退化模型未知参数θ=(k2,σ2,γ2,v,α)的估计,采用极大似然估计的方法,假设有N个测量设备,且第i个设备的测量时间为t1,t2,…tM,且对应的测量数据为{Yi(tj)=yi,j,i=1,2,…N,j=1,2,…M}。由式(2)可知,第i个设备在tj时刻的测量可以表示为In order to realize the estimation of the unknown parameters of the degradation model θ=(k 2 ,σ 2 ,γ 2 ,v,α), the method of maximum likelihood estimation is adopted, assuming that there are N measuring devices, and the measurement time of the i-th device is t 1 ,t 2 ,...t M , and the corresponding measurement data is {Y i (t j )=y i,j ,i=1,2,...N,j=1,2,...M}. From formula (2), it can be seen that the measurement of the i-th device at time t j can be expressed as
其中,εi,j是测量误差,且有εi,j~N(0,γ2)。Wherein, ε i,j is the measurement error, and ε i,j ~N(0,γ 2 ).
为了方便起见,以第i个设备的测量数据为例,研究测量数据对应的似然函数。令t=(t1,t2,…,tM)',yi=yi,j,j=1,2,…,M,根据独立性假设和标准Brownian运动的独立增量性质,可知yi是多变量正态分布的,其均值和方差特征如下:For convenience, take the measurement data of the i-th device as an example to study the likelihood function corresponding to the measurement data. Let t=(t 1 ,t 2 ,…,t M )’, y i =y i,j ,j=1,2,…,M, according to the independence assumption and the independent increment property of the standard Brownian motion, we know that y i is a multivariate normal distribution with mean and variance characteristics as follows:
其中D和Q都为一个M×M的矩阵,IM为一个Mth阶单位矩阵,具体如下:Wherein D and Q are all a matrix of M * M, and I M is a M th order identity matrix, specifically as follows:
因此对于第i个设备的测量数据,有Therefore, for the measurement data of the i-th device, we have
yi~N(u,k2D+σ2Q+γ2IM),(8)y i ~N(u,k 2 D+σ 2 Q+γ 2 I M ), (8)
关于θ对应的所有测量数据Y的似然函数为The likelihood function of all measurement data Y corresponding to θ is
进一步,对式(9)求得关于v的一阶偏导数,有Further, the first-order partial derivative with respect to v is obtained from formula (9), we have
k2,σ2,γ2和α关于v的极大似然估计值的剖面似然函数为The profile likelihood function of k 2 , σ 2 , γ 2 and α with respect to the maximum likelihood estimate of v is
基于此,k2,σ2,γ2和α的极大似然估计值可以利用多维搜索的方法,通过极大化剖面函数式(11)得到。然后,将k2,σ2,γ2和α的极大似然估计值回代到式(10),就可以得到v的极大似然估计值,如表1所示。Based on this, the maximum likelihood estimates of k 2 , σ 2 , γ 2 and α can be obtained by maximizing the profile function (11) by using the multidimensional search method. Then, by substituting the maximum likelihood estimates of k 2 , σ 2 , γ 2 and α back into formula (10), the maximum likelihood estimates of v can be obtained, as shown in Table 1.
表1Table 1
C、考虑测量不确定性影响的剩余寿命预测C. Remaining life prediction considering the influence of measurement uncertainty
首先仅考虑潜在的退化过程{X(t),t≥0}。为了融入当前的退化状态和随后的剩余寿命预测的更新机制,假设系统在ti时刻仍正常运行的情况下,潜在的退化状态为X(ti)=xi(xi<w)。因此,对于l≥ti,给定xi,根据Wiener过程的马尔可夫性,从ti时刻开始的退化过程随时间变化的轨迹为First, only the potential degenerate process {X(t),t≥0} is considered. In order to incorporate the current degradation state and the subsequent update mechanism of remaining life prediction, assuming that the system is still operating normally at time t i , the potential degradation state is X(t i )= xi ( xi <w). Therefore, for l≥t i , given x i , according to the Markov property of the Wiener process, the trajectory of the degradation process from time t i changes with time is
在这种情况下,如果l为随机过程{X(l),l≥ti}的首达时间,那么根据剩余寿命的公式(4),l-ti就对应着ti时刻设备的剩余寿命。因此,对式(12)采用变换t=l-ti,其中t>0,那么退化过程{X(t),t≥0}变为:In this case, if l is the first arrival time of the stochastic process {X(l),l≥t i }, then according to the formula (4) of the remaining life, lt i corresponds to the remaining life of the equipment at time t i . Therefore, the transformation t=lt i is adopted for formula (12), where t>0, then the degeneration process {X(t),t≥0} becomes:
因此,ti时刻的剩余寿命就等于随机过程首次穿过阈值wi=w-xi的时间,其中且也就是说,在ti时刻,Therefore, the remaining lifetime at time t i is equal to the random process The time when the threshold w i =wx i is crossed for the first time, where and That is to say, at time t i ,
其中噪声部分能近似为一个标准Brownian运动B0(ψ(t)),具体如下in The noise part can be approximated as a standard Brownian motion B 0 (ψ(t)), as follows
为了推导就需要首先得到而为了推出就需要证明随机过程仍然是一个标准Brownian运动过程,这一结论由以下引理保证。in order to derive need to first get And in order to launch It is necessary to prove that the random process is still a standard Brownian motion process, and this conclusion is guaranteed by the following lemma.
引理1:给定ti,随机过程{D(t),t≥0}(其中对任意t≥0,D(t)=B(t+ti)-B(ti))仍然是一个标准Brownian运动过程,其中{B(t),t≥0}为标准Brownian运动。Lemma 1: Given t i , the random process {D(t),t≥0} (where D(t)=B(t+t i )-B(t i ) for any t≥0) is still A standard Brownian motion process, where {B(t),t≥0} is the standard Brownian motion.
根据随机过程的相关理论可知,Wiener过程首次达到某一固定阈值的时间服从逆高斯分布。由前面的推导可以证明仍为Wiener过程。因此,在给定当前退化状态xi(xi≤w)的前提下,条件剩余寿命分布可以通过以下结论得到。According to the relevant theory of stochastic process, the time when the Wiener process reaches a certain fixed threshold for the first time obeys the inverse Gaussian distribution. From the previous derivation, it can be proved that Still a Wiener process. Therefore, given the current degradation state x i ( xi ≤ w), the conditional remaining life distribution It can be obtained through the following conclusions.
定理1:对于退化模型(11)和(14)定义的剩余寿命,给定当前时刻ti的退化状态xi(xi≤w),关于ti时刻的条件剩余寿命分布由以下结论:Theorem 1: For the remaining life defined by the degradation models (11) and (14), given the degradation state x i ( xi ≤ w) at the current time t i , the conditional remaining life distribution at time t i can be concluded as follows:
以上的结论仅考虑潜在退化过程而且预测的剩余寿命仅依赖当前的退化状态xi。为了实现在不确定测量状态下剩余寿命预测,需要先基于Y1:i估计设备的退化状态xi及其分布,以刻画测量不确定性对状态估计的影响。The above conclusions only consider the potential degradation process Furthermore, the predicted remaining lifetime depends only on the current degradation state x i . In order to realize the remaining life prediction under the uncertain measurement state, it is necessary to estimate the degradation state xi and its distribution of the equipment based on Y 1:i first, so as to describe the influence of measurement uncertainty on state estimation.
为了估计设备的退化状态,将退化状态方程和测量方程在监测时刻转换为离散时间方程。然后在离散时间点ti,i=1,2,…上可以得到变换后的退化模型:In order to estimate the degradation state of the equipment, the degradation state equation and the measurement equation are transformed into discrete time equations at the monitoring moment. Then the transformed degradation model can be obtained at discrete time points t i , i=1, 2,...:
其中其方差εi是ε在ti时刻的实现,因而进一步有η~N(0,πi)和εi~N(0,γ2)。in its variance ε i is the realization of ε at time t i , so there are further η~N(0,π i ) and ε i ~N(0,γ 2 ).
根据建立的模型(17),可以利用Kalman滤波技术实现潜在退化状态的估计。首先,定义和pi|i=var(xi|Y1:i)分别为通过测量Y1:i对退化状态xi估计的期望和方差。此外,定义和pi|i-1=var(xi|Y1:i-1)分别为一步预测的期望和方差。因此,在ti时刻,基于Kalman滤波的潜在退化状态估计和更新过程如下:According to the established model (17), the estimation of potential degraded state can be realized by using Kalman filtering technique. First, define and p i|i = var(x i |Y 1:i ) are the expectation and variance of the estimated degradation state x i by measuring Y 1: i, respectively. Additionally, define and p i|i-1 = var( xi |Y 1:i-1 ) are the expectation and variance of one-step prediction respectively. Therefore, at time t i , the estimation and update process of potential degraded state based on Kalman filter is as follows:
状态估计:State estimation:
方差更新:Variance update:
Pi|i=(1-K(i))Pi|i-1,(19)P i|i = (1-K(i))P i|i-1 , (19)
应用以上Kalman滤波算法,基于Y1:i的隐含退化状态xi的后验估计服从高斯分布,且可以表示为在这种情况下,由于测量不确定性,对退化状态的估计也具有不确定性,由其后验分布xi|v,Y1:i描述。为了在剩余寿命预测中融入以上退化估计的不确定性,因而有Applying the above Kalman filtering algorithm, the posterior estimation of the implicit degraded state x i based on Y 1:i obeys the Gaussian distribution, and can be expressed as In this case, due to the measurement uncertainty, the estimate of the degraded state also has uncertainty, described by its posterior distribution x i |v,Y 1:i . In order to incorporate the uncertainty of the above degradation estimates in the remaining life prediction, there is
进一步,给出以下结论以计算式(20)中的积分。Further, the following conclusions are given to calculate the integral in equation (20).
引理2:给定当前的退化状态xi和所有测量Y1:i有Lemma 2: Given the current degenerate state x i and all measurements Y 1:i have
基于定理1和引理2,利用全概率公式,可以解析的计算式(20)中涉及的积分问题,并得到以下不确定测量下的剩余寿命预测结果。Based on
定理2:对于退化模型(11)和(14)中定义的剩余寿命,给定到当前时刻ti的所有不确定测量Y1:i时,关于ti时刻的剩余寿命预测有以下结论成立:Theorem 2: For the remaining life defined in the degradation models (11) and (14), given all uncertain measurements Y 1:i up to the current time t i , the following conclusions hold about the remaining life prediction at time t i :
其中, in,
根据估计出的参数值,可得到考虑不确定测量的自适应Wiener过程的设备剩余寿命分布。According to the estimated parameter values, the remaining life distribution of the equipment can be obtained by the adaptive Wiener process considering the uncertain measurement.
为了验证所提方法预测剩余寿命结果的有效性,这里将未考虑测量不确定性的自适应Wiener过程方法定义为方法1,同时,将本文提出的考虑测量不确定性的自适应Wiener过程方法定义为方法2,并利于5号锂电池监测数据进行预测验证与比较。In order to verify the effectiveness of the proposed method in predicting the results of remaining life, the adaptive Wiener process method without considering the measurement uncertainty is defined as
(1)考虑测量不确定性自适应Wiener过程的剩余寿命预测结果比较(1) Comparison of remaining life prediction results of adaptive Wiener process considering measurement uncertainty
两种方法依据测试数据得到的退化预测拟合效果和剩余寿命预测结果如图3和图4所示。从图3中,可以看到方法2的拟合效果和方法1相比效果更好。图4表明,方法2预测的剩余寿命的概率密度函数能够很好的覆盖剩余寿命的真实值,且预测均值在各监测点均接近实际剩余寿命,结果明显优于方法1的预测结果。The degradation prediction fitting effect and remaining life prediction results obtained by the two methods based on the test data are shown in Fig. 3 and Fig. 4 . From Figure 3, it can be seen that the fitting effect of
(2)两种方法的相对误差比较(2) Relative error comparison of the two methods
为了验证本文方法能够提高RUL预测的精度,给出了两种模型预测的RUL绝对误差、相对误差和各监测点对应的均方误差。从图5、图6和图7可以看出,方法2的绝对误差、均方误差和相对误差相对小于方法1。由于退化数据的波动,方法1的均方误差将经历一些大的波动。相比之下,本文提出的方法2考虑了退化数据的测量不确定性的影响,有效地避免了RUL预测的均方误差的较大波动,并表现出较好的稳定性。In order to verify that the method in this paper can improve the accuracy of RUL prediction, the absolute error, relative error and mean square error corresponding to each monitoring point of RUL predicted by the two models are given. It can be seen from Figure 5, Figure 6 and Figure 7 that the absolute error, mean square error and relative error of
本发明的工作原理及过程为:本发明属于可靠性工程技术领域,涉及一种考虑测量不确定性的自适应退化设备剩余寿命预测方法。该方法包括以下步骤:建立能够描述设备考虑测量不确定性的自适应Wiener过程的性能退化模型;估计模型参数和剩余寿命分布参数;预测考虑测量不确定性的自适应Wiener过程的随机退化设备的剩余寿命。The working principle and process of the present invention are as follows: the present invention belongs to the technical field of reliability engineering, and relates to a method for predicting the remaining life of self-adaptive degraded equipment considering measurement uncertainty. The method comprises the following steps: establishing a performance degradation model capable of describing the adaptive Wiener process of the equipment considering the measurement uncertainty; estimating model parameters and remaining life distribution parameters; predicting the random degradation of the equipment considering the adaptive Wiener process of the measurement uncertainty remaining life.
本发明的有益效果为:本发明给出了一种考虑测量不确定性的自适应退化设备剩余寿命预测方法,针对实际设备退化过程中退化的随机性,充分考虑了设备在退化过程中特征提取的误差情况,不仅可以对此类设备的剩余寿命进行准确预测分析,还可以作为寿命周期中一种有效分析工具,为设备备件订购等维修管理决策提供有力的理论依据,从而可实现高效合理的装备管理,避免浪费,因此该方法具有很好的工程应用价值。The beneficial effects of the present invention are: the present invention provides a method for predicting the remaining life of adaptive degraded equipment considering measurement uncertainty, and fully considers the feature extraction of equipment in the degraded process in view of the randomness of degradation in the actual equipment degraded process It can not only accurately predict and analyze the remaining life of such equipment, but also can be used as an effective analysis tool in the life cycle to provide a strong theoretical basis for maintenance management decisions such as equipment spare parts ordering, so as to achieve efficient and reasonable Equipment management, avoiding waste, so this method has good engineering application value.
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。Those skilled in the art will appreciate that the embodiments described here are to help readers understand the principles of the present invention, and it should be understood that the protection scope of the present invention is not limited to such specific statements and embodiments. Those skilled in the art can make various other specific modifications and combinations based on the technical revelations disclosed in the present invention without departing from the essence of the present invention, and these modifications and combinations are still within the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110455012.3A CN113158471B (en) | 2021-04-26 | 2021-04-26 | A Remaining Lifetime Prediction Method for Degraded Equipment Considering Measurement Uncertainty |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110455012.3A CN113158471B (en) | 2021-04-26 | 2021-04-26 | A Remaining Lifetime Prediction Method for Degraded Equipment Considering Measurement Uncertainty |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113158471A CN113158471A (en) | 2021-07-23 |
CN113158471B true CN113158471B (en) | 2023-01-24 |
Family
ID=76871009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110455012.3A Active CN113158471B (en) | 2021-04-26 | 2021-04-26 | A Remaining Lifetime Prediction Method for Degraded Equipment Considering Measurement Uncertainty |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113158471B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114398775B (en) * | 2022-01-04 | 2022-08-16 | 交通运输部公路科学研究所 | Concrete beam service life prediction method considering cracking damage step stiffness |
CN114565161A (en) * | 2022-03-01 | 2022-05-31 | 北京九天翱翔科技有限公司 | Storage stage fault prediction and service life prolonging method based on multi-time-space dimension data fusion |
CN115034058B (en) * | 2022-06-06 | 2024-05-28 | 北京航空航天大学 | A method for analyzing key factors of degradation of measurement characteristics of flight test parameter test system |
CN115619106B (en) * | 2022-12-19 | 2023-05-16 | 中国人民解放军火箭军工程大学 | Method and system for determining number of spare parts of laser gyroscope in consideration of performance degradation |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101145858B1 (en) * | 2009-09-30 | 2012-05-21 | 한국수력원자력 주식회사 | System for prognosticating cavitation damage of fluid component cavitation through real-time monitoring |
CN103488881B (en) * | 2013-09-06 | 2017-05-17 | 中国人民解放军第二炮兵工程大学 | Equipment residual service life prediction method under the condition of uncertain degradation measured data |
CN107145645B (en) * | 2017-04-19 | 2020-11-24 | 浙江大学 | Remaining life prediction method for non-stationary degradation process with uncertain shock |
CN107688687A (en) * | 2017-07-10 | 2018-02-13 | 山东科技大学 | One kind considers time-length interrelation and the probabilistic life-span prediction method of part |
CN108304685A (en) * | 2018-04-13 | 2018-07-20 | 中国人民解放军火箭军工程大学 | A kind of non-linear degradation equipment method for predicting residual useful life and system |
CN109829137B (en) * | 2019-01-22 | 2022-09-30 | 中国人民解放军火箭军工程大学 | Method and system for predicting service life of nonlinear degradation equipment under periodic stress |
WO2020216530A1 (en) * | 2019-04-23 | 2020-10-29 | Volkswagen Aktiengesellschaft | Method for determining remaining useful life cycles, remaining useful life cycle determination circuit, and remaining useful life cycle determination apparatus |
-
2021
- 2021-04-26 CN CN202110455012.3A patent/CN113158471B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113158471A (en) | 2021-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113158471B (en) | A Remaining Lifetime Prediction Method for Degraded Equipment Considering Measurement Uncertainty | |
CN107145645B (en) | Remaining life prediction method for non-stationary degradation process with uncertain shock | |
CN103793752B (en) | A kind of equipment failure number Forecasting Methodology based on modeling of degenerating | |
CN103399281B (en) | Based on the ND-AR model of cycle life deterioration stage parameter and the cycle life of lithium ion battery Forecasting Methodology of EKF method | |
CN107480440A (en) | A kind of method for predicting residual useful life for modeling of being degenerated at random based on two benches | |
CN106873571B (en) | early warning method based on data and model fusion | |
CN111368403A (en) | An Adaptive Nonlinear Degradation Remaining Life Prediction Method | |
CN111523251A (en) | A Rapid Evaluation Method of Product Life under Random Environmental Stress | |
CN112949060B (en) | Lithium battery health state estimation and residual life prediction method under time-varying temperature | |
CN101894221A (en) | Life Prediction Method of Accelerated Degradation Test Products Based on Non-stationary Time Series Analysis of Degradation Quantity Distribution | |
CN111638707B (en) | Intermittent process fault monitoring method based on SOM clustering and MPCA | |
CN113033015A (en) | Degraded equipment residual life prediction method considering two-stage self-adaptive Wiener process | |
CN108304685A (en) | A kind of non-linear degradation equipment method for predicting residual useful life and system | |
CN114896861B (en) | Rolling bearing residual life prediction method based on square root volume Kalman filtering | |
CN106529018A (en) | Fatigue crack growth prognostics method based on Gaussian weight-hybrid particle filtering | |
Wei et al. | Remaining useful life estimation based on gamma process considered with measurement error | |
CN108549908A (en) | Chemical process fault detection method based on more sampled probability core principle component models | |
CN108256700A (en) | A kind of maintenance of equipment method for predicting residual useful life and system | |
CN105718733B (en) | Fault prediction method based on fuzzy nearness and particle filter | |
CN118731751A (en) | Lithium battery SOH estimation method integrating attention mechanism and deep convolution | |
CN112100577A (en) | Long-range correlation-based equipment operation stability online monitoring method and system | |
CN117977536A (en) | Smart power grid load identification method | |
CN115640542A (en) | Intelligent electric energy meter state evaluation method and evaluation device based on Bayesian theory | |
CN107633271A (en) | The non-precision method for calculating probability of power system mesomeric state availability | |
CN110866325A (en) | Equipment residual life imperfect maintenance prediction method based on indirect monitoring data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |