CN114814707A - A method, device, terminal and readable medium for analyzing stress error of smart meter - Google Patents
A method, device, terminal and readable medium for analyzing stress error of smart meter Download PDFInfo
- Publication number
- CN114814707A CN114814707A CN202111142609.9A CN202111142609A CN114814707A CN 114814707 A CN114814707 A CN 114814707A CN 202111142609 A CN202111142609 A CN 202111142609A CN 114814707 A CN114814707 A CN 114814707A
- Authority
- CN
- China
- Prior art keywords
- error
- data
- stress
- neural network
- smart meter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000013528 artificial neural network Methods 0.000 claims abstract description 40
- 238000004458 analytical method Methods 0.000 claims abstract description 26
- 238000012549 training Methods 0.000 claims description 19
- 239000013598 vector Substances 0.000 claims description 19
- 230000002159 abnormal effect Effects 0.000 claims description 9
- 238000004590 computer program Methods 0.000 claims description 7
- 238000010606 normalization Methods 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 6
- 238000013480 data collection Methods 0.000 claims description 4
- 230000005856 abnormality Effects 0.000 claims description 3
- 238000005457 optimization Methods 0.000 claims description 3
- 230000001131 transforming effect Effects 0.000 claims description 2
- 238000012937 correction Methods 0.000 abstract description 9
- 238000004364 calculation method Methods 0.000 abstract description 6
- 238000004422 calculation algorithm Methods 0.000 abstract description 2
- 239000011159 matrix material Substances 0.000 description 19
- 230000006870 function Effects 0.000 description 12
- 230000008859 change Effects 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000513 principal component analysis Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000003062 neural network model Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000802 evaporation-induced self-assembly Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R35/00—Testing or calibrating of apparatus covered by the other groups of this subclass
- G01R35/04—Testing or calibrating of apparatus covered by the other groups of this subclass of instruments for measuring time integral of power or current
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及电网智能输电领域,特别涉及一种智能电表应力误差分析方法、设备及可读介质。The invention relates to the field of intelligent power transmission in power grids, in particular to a method, device and readable medium for analyzing stress error of a smart meter.
背景技术Background technique
在智能电网中,智能电表承担着电能数据采集、计量和传输的任务,开拓出双向多种费率计量功能、用户端控制功能、多种数据传输模式的双向数据通信功能、防窃电功能等智能化服务,极大地促进着信息分析、集成与优化和信息展现。智能电能表功能的完善符合智能电网和新能源发展的趋势,同时它的发展也促进着现代电力系统物理层与信息层的融合化发展。In the smart grid, smart meters undertake the tasks of energy data collection, measurement and transmission, and develop two-way multi-rate metering functions, user-side control functions, two-way data communication functions with multiple data transmission modes, and anti-theft functions, etc. Intelligent services greatly promote information analysis, integration and optimization, and information presentation. The improvement of the function of smart energy meters is in line with the trend of smart grid and new energy development, and its development also promotes the integration of the physical layer and the information layer of the modern power system.
智能电能表结构模块的差异性、各功能模块内部的复杂性已及模块间拓扑关系的多样性使智能电能表在工作时误差情况更加复杂,使现有的误差分析方法如多项式回归、神经网络法、最小二乘法等难以较为客观精确地描述智能电能表的误差情况。现有的误差检验方法存在以下两方面问题:一方面检定时只是验证其在参比条件下的误差是否达到其准确度等级的要求,然后估计其测得值的置信区间,从而评价电能表合格与否,造成了有用信息的浪费;另一方面,实验在实验室的环境条件下进行,未能充分考虑实际工况下使用环境多样,存在多种应力的情况。The difference of the structural modules of the smart energy meter, the internal complexity of each functional module, and the diversity of the topological relationship between the modules make the error situation of the smart energy meter more complicated during operation, which makes the existing error analysis methods such as polynomial regression, neural network. It is difficult to describe the error situation of smart energy meters objectively and accurately by using method, least squares method, etc. The existing error inspection methods have the following two problems: on the one hand, the inspection only verifies whether the error under the reference condition meets the requirements of its accuracy level, and then estimates the confidence interval of the measured value, so as to evaluate the qualified electric energy meter. Whether it is or not results in a waste of useful information; on the other hand, the experiment is carried out under the environmental conditions of the laboratory, which fails to fully consider the diverse use environments and the existence of various stresses in the actual working conditions.
发明内容SUMMARY OF THE INVENTION
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种智能电表应力误差分析方法,能够利用经过LM(Levenberg-Marquardt)优化的BP(Back-propagation误差反向传播)神经网络从数据的层面上揭示了多种应力因素与电能表误差的内在联系。The present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention proposes a stress error analysis method for a smart meter, which can reveal a variety of stress factors and relationships from the data level by using the BP (Back-propagation error back-propagation) neural network optimized by LM (Levenberg-Marquardt). Intrinsic connection of energy meter errors.
本发明还提出一种具有上述智能电表应力误差分析方法的设备及存储介质。The present invention also provides a device and a storage medium having the above-mentioned method for analyzing the stress error of a smart meter.
根据本发明的第一方面实施例的智能电表应力误差分析方法,其特征在于,包括以下步骤:The method for analyzing the stress error of a smart meter according to the embodiment of the first aspect of the present invention is characterized in that it includes the following steps:
获取智能电表的应力数据及其误差数据;Obtain stress data and error data of smart meters;
确定所述智能电表的应力数据中的典型应力数据;determining typical stress data in the stress data of the smart meter;
将所述典型应力数据及其误差数据送入神经网络进行训练,得到经过训练的神经网络;Sending the typical stress data and its error data into a neural network for training to obtain a trained neural network;
利用经过训练的神经网络,建立不同应力条件下的误差数据关系。Using the trained neural network, the error data relationship under different stress conditions is established.
根据本发明实施例的智能电表应力误差分析方法,至少具有如下有益效果:利用智能电表采集的数据,然后送入经过LM优化的BP神经网路中进行训练,从而得到经过训练的神经网络,用于预测不同应力条件下误差的变化关系。The method for analyzing the stress error of a smart meter according to the embodiment of the present invention has at least the following beneficial effects: using the data collected by the smart meter, and then sending it into the BP neural network optimized by LM for training, so as to obtain the trained neural network, using It is used to predict the change relationship of the error under different stress conditions.
根据本发明的一些实施例,所述确定所述智能电表的应力数据中的典型应力的步骤,包括:According to some embodiments of the present invention, the step of determining the typical stress in the stress data of the smart meter includes:
对数据进行标准化处理;standardize the data;
利用所述经过标准化处理的数据,计算每种应力的贡献率;Using the normalized data, calculate the contribution rate of each stress;
选出贡献率占比较大的若干个应力,作为典型应力。Several stresses with a large contribution rate are selected as typical stresses.
根据本发明的一些实施例,所述典型应力,包括:温度、湿度、气压、地区电压情况。According to some embodiments of the present invention, the typical stress includes: temperature, humidity, air pressure, and regional voltage.
根据本发明的一些实施例,所述典型应力的贡献率和超过95%。According to some embodiments of the present invention, the contribution rate of the typical stress exceeds 95%.
根据本发明的一些实施例,所述确定所述智能电表的应力数据中的典型应力步骤后,还包括步骤:According to some embodiments of the present invention, after the step of determining the typical stress in the stress data of the smart meter, the step further includes:
对所述典型应力数据及其误差数据进行处理,去掉异常数据,得到经过处理的数据。The typical stress data and its error data are processed to remove abnormal data to obtain processed data.
根据本发明的一些实施例,所述对所述典型应力数据及其误差数据进行处理,去掉异常数据,得到经过处理的数据的步骤,包括:According to some embodiments of the present invention, the steps of processing the typical stress data and its error data, removing abnormal data, and obtaining processed data include:
将智能电表中误差数据按照采集时序排列得到x(t),求平均值μ和标准差σ;Arrange the error data in the smart meter according to the acquisition sequence to obtain x(t), and calculate the average μ and standard deviation σ;
剔除所述误差数据中的异常数据;Eliminate abnormal data in the error data;
利用平均值插值进行顺序异常修正;Sequential anomaly correction using mean interpolation;
使用正规化方法对应力的样本序列进行变换,得到经过处理的数据。The processed data is obtained by transforming the stress sample series using a normalization method.
根据本发明的一些实施例,所述智能电表应力误差分析方法使用的神经网络,是基于LM优化的BP神经网络。According to some embodiments of the present invention, the neural network used in the smart meter stress error analysis method is a BP neural network optimized based on LM.
根据本发明的一些实施例,所述将所述经过处理的数据送入神经网络进行训练,得到经过训练的神经网络的步骤,包括:According to some embodiments of the present invention, the step of sending the processed data into a neural network for training to obtain a trained neural network includes:
将应力参数设置为输入向量;Set the stress parameter to the input vector;
将智能电表误差设置为输出向量;Set the smart meter error as the output vector;
将实际误差设置为预期输出向量。Set the actual error to the expected output vector.
根据本发明的一些实施例,所述方法还包括:According to some embodiments of the present invention, the method further comprises:
利用训练过的神经网络预测出估计误差;Use the trained neural network to predict the estimation error;
将估计误差加上所述智能电表的基准误差,作为所述智能电表的误差偏移量。The estimated error is added to the reference error of the smart meter as an error offset of the smart meter.
根据本发明的第二方面实施例的智能电表应力误差分析装置,其特征在于,包括:The device for analyzing the stress error of a smart meter according to the embodiment of the second aspect of the present invention is characterized in that, it includes:
数据收集模块,能够获取智能电表的应力数据及其误差数据;The data collection module can obtain the stress data and the error data of the smart meter;
典型应力分析模块,能够确定所述智能电表的应力数据中的典型应力数据;a typical stress analysis module, capable of determining typical stress data in the stress data of the smart meter;
模型训练模块,能够将所述典型应力数据及其误差数据送入神经网络进行训练,得到经过训练的神经网络;A model training module, capable of sending the typical stress data and its error data into a neural network for training to obtain a trained neural network;
关系分析模块,能够利用经过训练的神经网络,建立不同应力条件下的误差数据关系。The relationship analysis module can use the trained neural network to establish the error data relationship under different stress conditions.
根据本发明第三方面实施例的终端,包括:存储器、处理器及存储在该存储器上并可在该处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序以实现上述智能电表应力误差分析方法。A terminal according to an embodiment of the third aspect of the present invention includes: a memory, a processor, and a computer program stored on the memory and executable on the processor, wherein the processor executes the computer program to achieve The above-mentioned smart meter stress error analysis method.
根据本发明第四方面实施例的计算机可读介质,其特征在于,所述计算机介质内存储有计算机软件,所述软件在运行时,能实现上述智能电表应力误差分析方法。The computer-readable medium according to the embodiment of the fourth aspect of the present invention is characterized in that, the computer medium stores computer software, and the software can implement the above-mentioned method for analyzing the stress error of a smart meter when running.
本发明的智能电表应力误差分析方法,使用经过LM优化的BP神经网络算法分析各种应力和误差的关联性。误差建模时引入一个附加误差,从而实现智能电能表的误差模型修正。本发明所述方法无需以往误差分析时的过多项的误差计算和误差拟合。采用PCA思想,不易出现过拟合以及欠拟合的现象,即提升误差分析效率,也能保证较高的可靠性。因此,本发明的方法可在一定条件下使智能电能表的误差预测值具有较高的置信区间,并为之后智能电能表的误差校正工作打下基础。The stress error analysis method of the smart meter of the present invention uses the BP neural network algorithm optimized by LM to analyze the correlation between various stresses and errors. An additional error is introduced in the error modeling, so as to realize the error model correction of the smart energy meter. The method of the present invention does not need the error calculation and error fitting of the previous error analysis. Using the PCA idea, it is not easy to appear over-fitting and under-fitting, that is, to improve the efficiency of error analysis, and to ensure high reliability. Therefore, the method of the present invention can make the error prediction value of the smart electric energy meter have a higher confidence interval under certain conditions, and lay a foundation for the error correction work of the smart electric energy meter in the future.
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the present invention will be set forth, in part, from the following description, and in part will be apparent from the following description, or may be learned by practice of the invention.
附图说明Description of drawings
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and readily understood from the following description of embodiments taken in conjunction with the accompanying drawings, wherein:
图1为本发明实施例所用的智能电表的计量原理图;Fig. 1 is the metering principle diagram of the smart meter used in the embodiment of the present invention;
图2为本发明实施例一的智能电表应力误差分析方法的步骤示意图;2 is a schematic diagram of steps of a method for analyzing stress error of a smart meter according to
图3为本发明实施例二中温度对电表误差影响曲线图;3 is a graph showing the influence of temperature on the error of the electric meter in the second embodiment of the present invention;
图4为本发明实施例二中湿度对电表误差影响曲线图;FIG. 4 is a graph showing the influence of humidity on the error of the electric meter in the second embodiment of the present invention;
图5为本发明实施例二中气压对电表误差影响曲线图;5 is a graph showing the influence of air pressure on the error of the electric meter in the second embodiment of the present invention;
图6为本发明实施例二中不同地区电压对电表误差的影响;其中,图6-a代表福建地区电压对电表误差的影响,图6-b代表黑龙江地区电压对电表误差的影响,图6-c代表西藏地区电压对电表误差的影响,图6-d代表新疆地区电压对电表误差的影响。Fig. 6 is the influence of the voltage in different regions on the error of the electric meter in the second embodiment of the present invention; wherein, Fig. 6-a represents the influence of the voltage in the Fujian region on the error of the electric meter, Fig. 6-b represents the influence of the voltage in the Heilongjiang region on the error of the electric meter, Fig. 6 -c represents the effect of voltage on the meter error in Tibet, and Figure 6-d represents the effect of voltage on the meter error in Xinjiang.
具体实施方式Detailed ways
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。The following describes in detail the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary, only used to explain the present invention, and should not be construed as a limitation of the present invention.
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be understood that the azimuth description, such as the azimuth or position relationship indicated by up, down, front, rear, left, right, etc., is based on the azimuth or position relationship shown in the drawings, only In order to facilitate the description of the present invention and simplify the description, it is not indicated or implied that the indicated device or element must have a particular orientation, be constructed and operated in a particular orientation, and therefore should not be construed as limiting the present invention.
在本发明的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。In the description of the present invention, the meaning of several is one or more, the meaning of multiple is two or more, greater than, less than, exceeding, etc. are understood as not including this number, above, below, within, etc. are understood as including this number. If it is described that the first and the second are only for the purpose of distinguishing technical features, it cannot be understood as indicating or implying relative importance, or indicating the number of the indicated technical features or the order of the indicated technical features. relation.
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。In the description of the present invention, unless otherwise clearly defined, words such as setting, installation, connection should be understood in a broad sense, and those skilled in the art can reasonably determine the specific meanings of the above words in the present invention in combination with the specific content of the technical solution.
如图1所示,图1展示了智能电表的计量原理,在智能电表中,误差的变化在多种因素的影响下是很复杂的,目前难以设计出一种能够通过理论计算的方式确定电表误差的方法。而目前大多数电能表误差分析方法未能考虑实际工作环境及工作条件对误差的影响,故存在局限性。As shown in Figure 1, Figure 1 shows the metering principle of a smart meter. In a smart meter, the change of error is very complicated under the influence of various factors. At present, it is difficult to design a meter that can determine the meter by theoretical calculation. error method. However, most of the current energy meter error analysis methods fail to consider the influence of the actual working environment and working conditions on the error, so there are limitations.
在本发明的分析方法中,将多种影响误差的数据,抽象为多种应力,用人工智能的方法分析误差与应力间的联系,可提升误差分析的精确度,为之后的电能表误差补偿和修正工作打下基础。具体如下。In the analysis method of the present invention, various data affecting the error are abstracted into various stresses, and the relationship between the error and the stress is analyzed by the artificial intelligence method, which can improve the accuracy of the error analysis and compensate the error of the electric energy meter later. and lay the groundwork for corrections. details as follows.
实施例一、
参照图2,本申请的实施例提供了一种智能电表应力误差分析方法,该方法包括以下步骤:Referring to FIG. 2 , an embodiment of the present application provides a method for analyzing stress error of a smart meter, which includes the following steps:
步骤S100、获取智能电表的应力数据及其误差数据。Step S100, acquiring stress data and error data of the smart meter.
获取智能电表的数据的时候,需要在较长一段时间内持续进行采集,得到尽可能多的数据,这样能够增加模型的训练集数量,从而增加结果的准确率。When acquiring data from smart meters, it is necessary to continuously collect data for a long period of time to obtain as much data as possible, which can increase the number of training sets of the model and thus increase the accuracy of the results.
优选的,电表本身能够记录用电数据、应力数据以及误差数据。在某一时刻进行取样的时候,取出对应所有的应力条件数据Xi,i时刻的应力数据可表示为:Preferably, the electricity meter itself can record electricity consumption data, stress data and error data. When sampling at a certain time, take out all the stress condition data X i , and the stress data at time i can be expressed as:
Xi=[X1,X2,…,Xm] (1) Xi = [X 1 , X 2 , . . . , X m ] (1)
其中,m为应力的个数。i时刻的误差数据为Yi。where m is the number of stresses. The error data at time i is Y i .
在足够长的时间内进行采集,获取到了n组数据,则这n组数据可以表示成应力数据矩阵,如下:After collecting for a long enough time and obtaining n groups of data, these n groups of data can be expressed as a stress data matrix, as follows:
n组数据的中对应的误差向量可以表示为:The corresponding error vector in n sets of data can be expressed as:
Y=[Y1,Y2,…,Yn]T (3)Y=[Y 1 , Y 2 , ..., Y n ] T (3)
步骤S200、确定智能电表应力数据中的典型应力。Step S200, determining the typical stress in the smart meter stress data.
步骤S100中采集到的应力数据通常数量较多,且有一些数据本身影响非常小,如果把这些考虑进去,不仅会影响后续训练模型的速度,而且还会因为这些低影响的数据造成误差,分散注意力。只需要将其中占比较大的应力挑选出来进行研究即可。The amount of stress data collected in step S100 is usually large, and some of the data itself has very little impact. If these are taken into account, it will not only affect the speed of subsequent training of the model, but also cause errors and dispersion due to these low-impact data. attention. It is only necessary to select the larger proportion of the stress for study.
为找到和电能表误差关联最密切的若干个应力,采用改进的主成分分析(PCA)思想,通过寻找样本空间的一组正交向量,用这组正交向量表出整体情况,从而实现用少数主成分来描述原来的高维数据,并最大限度地保留原始数据的信息。In order to find several stresses that are most closely related to the error of the electric energy meter, an improved principal component analysis (PCA) idea is used to find a set of orthogonal vectors in the sample space, and use this set of orthogonal vectors to express the overall situation, so as to realize the use of A few principal components are used to describe the original high-dimensional data and preserve the information of the original data to the greatest extent.
在实验所得的n个有效数据样本中,每个样本有m个采样数据,即可得到样本数据矩阵为Xn×m,其每个行向量为1个观测数据样本xi,其中0<i≤n;每个列向量为对应观测样本的特征量xj,其中0<j≤m。Among the n valid data samples obtained from the experiment, each sample has m sampling data, the sample data matrix can be obtained as X n×m , and each row vector of which is an observation data sample xi , where 0<i ≤n; each column vector is the feature quantity xj of the corresponding observation sample, where 0<j≤m.
步骤S201、对数据进行标准化处理。Step S201, standardize the data.
标准化处理所使用的公式如下:The formula used for normalization is as follows:
式中,为标准化后的特征量,为特征量均值,s(xj)为特征量标准差。In the formula, is the standardized feature quantity, is the feature quantity mean, and s(x j ) is the feature quantity standard deviation.
步骤S202、利用经过标准化处理的数据,计算出每种应力的贡献率。Step S202 , using the standardized data, calculate the contribution rate of each stress.
设经标准化处理后的矩阵为得到协方差矩阵为P,即:Let the normalized matrix be The covariance matrix is obtained as P, that is:
然后计算协方差矩阵P的特征值λi及其特征向量ei。通过矩阵的相似对角化,求出与P的相似对角矩阵D,D中的对角线上的元素按特征值大小降序排列,即D=diag(λ1,λ2,…,λn),则P=EDET,其中E为特征值λi对应特征向量ei的集合,且E为标准正交矩阵,即E=diag(e1,e2,…,en),通过式(6)的线性变化得到各主成分向量m1,m2,…,mn。Then the eigenvalue λ i of the covariance matrix P and its eigenvector ei are calculated. Through the similar diagonalization of the matrix, the similar diagonal matrix D with P is obtained, and the elements on the diagonal in D are arranged in descending order of eigenvalues, that is, D=diag(λ 1 , λ 2 ,...,λ n ), then P=EDE T , where E is the set of eigenvalues λ i corresponding to the eigenvectors ei, and E is a standard orthogonal matrix, that is, E=diag(e 1 , e 2 ,..., en ), through the formula ( 6) to obtain each principal component vector m 1 , m 2 , ..., m n .
其中,第k个主成分对应的贡献率为表示为:Among them, the contribution rate corresponding to the kth principal component is expressed as:
λk代表第k个主成分的特征值,λi对应特征向量ei。λ k represents the eigenvalue of the kth principal component, and λ i corresponds to the eigenvector ei .
步骤S203、选出贡献率占比较大的若干个应力,作为典型应力。Step S203 , selecting several stresses with a larger contribution ratio as typical stresses.
将贡献率按照从高到低进行排序,选择排序靠前的若干个主成分,作为典型应力。The contribution rate is sorted from high to low, and several principal components are selected as the typical stress.
根据大量实验,前三或者前四个主成分累计的贡献率能达到95%以上,所以在取典型应力的时候只需要选择三或四种应力,就能分析出主要的影响因素。这些应力包括:温度、湿度、气压、地区电压。According to a large number of experiments, the cumulative contribution rate of the first three or the first four principal components can reach more than 95%, so when taking the typical stress, only three or four kinds of stress need to be selected, and the main influencing factors can be analyzed. These stresses include: temperature, humidity, air pressure, regional voltage.
步骤S300、对典型应力数据及误差数据进行处理,去掉异常数据,得到经过处理的数据。能够增加后续过程中训练数据的准确性,排除在取样时明显不合常理的数据。Step S300: Process the typical stress data and error data, remove abnormal data, and obtain processed data. It can increase the accuracy of training data in the subsequent process, and exclude data that is obviously unreasonable during sampling.
根据本申请一些较优的实施例,该步骤具体包括:According to some preferred embodiments of the present application, this step specifically includes:
步骤S301、将智能电表中误差数据按照采集时序排列得到x(t),计算平均值μ和标准差σ;Step S301, arranging the error data in the smart meter according to the collection sequence to obtain x(t), and calculating the average value μ and the standard deviation σ;
步骤S302、剔除所述误差数据中的异常数据。Step S302, removing abnormal data in the error data.
利用统计学中常用的“3σ准则”,将数据段中不在[μ-3σ,μ+3σ]范围内的数据点判定为异常值,将其剔除。Using the "3σ criterion" commonly used in statistics, the data points in the data segment that are not in the range of [μ-3σ, μ+3σ] are determined as outliers and eliminated.
步骤S303、利用平均值插值进行顺序异常修正。Step S303 , performing sequence abnormality correction using mean value interpolation.
被剔除的数据会空出一个位置,将这位置前后各一个数据求均值,填补到原本的位置。公式如下:The excluded data will vacate a position, average the data before and after this position, and fill it to the original position. The formula is as follows:
步骤S304、使用正规化方法对应力的样本序列进行变换。Step S304 , transform the stress sample sequence using a normalization method.
使用z-score法(正规化方法),对应力的样本序列x1,x2,......,xn进行变换,公式如下:Using the z-score method (normalization method), transform the sample sequence x 1 , x 2 , ..., x n of stress, the formula is as follows:
变换后的序列为y1,y2,......,yn,序列均值为0,方差为1,无量纲。得到经过处理的数据。The transformed sequence is y 1 , y 2 , ..., y n , the mean of the sequence is 0, the variance is 1, and it is dimensionless. Get processed data.
步骤S400、将所述经过处理的数据送入神经网络进行训练。Step S400, sending the processed data into a neural network for training.
在三层神经网络结构下,设置经过预处理后的典型应力y=[y1,y2,…,yn]为输入向量,智能电能表误差z=[z1,z2,…,zm]为输出向量,实际误差t为预期输出向量,w为神经网络的连接权值,在中间层和输出层使用sigmoid函数作为激活函数。Under the three-layer neural network structure, set the preprocessed typical stress y=[y 1 , y 2 ,..., y n ] as the input vector, and the smart energy meter error z=[z 1 , z 2 ,..., z m ] is the output vector, the actual error t is the expected output vector, w is the connection weight of the neural network, and the sigmoid function is used as the activation function in the intermediate layer and the output layer.
在网络输出结果即智能电能表误差z不满足设置要求时,网络的数据处理进入反向传播环节,此时误差信号从后向前对各层单元的权重值和阈值进行修改,本文根据梯度下降法的原理完成反向传播的过程。输出层的误差函数设为E,其表达式为:When the output result of the network, that is, the error z of the smart energy meter does not meet the setting requirements, the data processing of the network enters the back-propagation link. At this time, the error signal modifies the weights and thresholds of each layer unit from the back to the front. In this paper, the gradient descent is used. The principle of the method completes the process of back propagation. The error function of the output layer is set to E, and its expression is:
其中,w为所有的权值,tk为第k次迭代时智能电能表误差的实际值,zk为第k次迭代后智能电能表误差的估计值,t为智能电能表误差的实际值,z为智能电能表的估计误差。Among them, w is all weights, tk is the actual value of the smart energy meter error at the kth iteration, zk is the estimated value of the smart energy meter error after the kth iteration, t is the actual value of the smart energy meter error, z is the estimation error of the smart energy meter.
根据本申请一些较优的实施例,所谓智能电表误差的实际值t为大量实验数据得到的精准误差,可以认为是该应力条件下对应的实际智能电表误差。According to some preferred embodiments of the present application, the so-called actual value t of the smart meter error is an accurate error obtained from a large amount of experimental data, which can be considered as the actual smart meter error corresponding to the stress condition.
模型初始阶段,权值的初始值设置为一定范围内的随机值。将Hessian矩阵分解为Jacobians矩阵的乘积,然后求其逆矩阵,从而降低计算的复杂程度,更快地更新权值,其计算公式为:In the initial stage of the model, the initial value of the weight is set to a random value within a certain range. The Hessian matrix is decomposed into the product of the Jacobians matrix, and then its inverse matrix is obtained, thereby reducing the complexity of the calculation and updating the weights faster. The calculation formula is:
式中,ΔW为网络权值的变化量;h为迭代次数;Jh为第h次迭代误差函数Jacobians矩阵;μh为大于零的常数;E为单位矩阵;eh为第h次返传误差。In the formula, ΔW is the variation of the network weight; h is the number of iterations; J h is the Jacobians matrix of the error function of the h-th iteration; μ h is a constant greater than zero; E is the identity matrix; e h is the h-th return pass error.
模型训练的过程是通过多次的迭代来减小误差值,权值向量在第i次迭代时被更新为:The process of model training is to reduce the error value through multiple iterations, and the weight vector is updated at the ith iteration as:
w(i+1)=w(i)+Δw(i) (12)w (i+1) = w (i) + Δw (i) (12)
当输出误差函数值满足下式:When the output error function value satisfies the following formula:
E(h)≤em (13)E(h)≤e m (13)
其中,em为事先设定好的终止判据,可根据精度要求设定,当满足式(13)时,说明达到结束条件时,迭代计算停止,神经网络模型训练完成。Among them, em is the pre-set termination criterion, which can be set according to the accuracy requirements. When Equation (13) is satisfied, it means that when the end condition is reached, the iterative calculation stops and the training of the neural network model is completed.
也就是说,当模型训练出来的估计误差k,与实际智能电表误差t的差距足够小的时候,说明该模型训练的时候具有相当高的精确度。That is to say, when the difference between the estimated error k trained by the model and the actual smart meter error t is small enough, it means that the model has a fairly high accuracy during training.
训练好的模型就可以挖掘作用于电能表的应力特征值与误差值之间的非线性关系,并在一定条件下能较为精准地预测误差。The trained model can mine the nonlinear relationship between the stress characteristic value acting on the electric energy meter and the error value, and can predict the error more accurately under certain conditions.
根据本申请一些较优的实施例,本申请能够依靠上述模型预测出不同应力条件下的误差情况,然后依据上述误差对电表进行误差修正,具体可以描述为:According to some preferred embodiments of the present application, the present application can rely on the above model to predict the error conditions under different stress conditions, and then correct the error of the electric meter according to the above error, which can be specifically described as:
步骤S500、根据智能电能表所处环境以及工作情况估计其误差偏移量。Step S500, estimating the error offset of the smart energy meter according to the environment and working conditions of the smart energy meter.
本发明所述方法在分析智能电能表的误差时,充分考虑了实际使用时各种应力对误差的影响,考虑了各种应力带来的附加误差,从而实现智能电能表的误差的修正。When analyzing the error of the smart electric energy meter, the method of the invention fully considers the influence of various stresses on the error in actual use, and considers the additional errors caused by various stresses, thereby realizing the correction of the error of the smart electric energy meter.
具体包括:Specifically include:
步骤S501、利用训练好的神经网络预测出估计误差。Step S501, using the trained neural network to predict the estimation error.
通过模型预测出智能电表在当前运行状态下的应力误差产生的估计误差z。应力误差产生的估计误差z是上述模型经多次参数迭代优化、满足终止判据后的最终输出。The estimated error z caused by the stress error of the smart meter in the current operating state is predicted by the model. The estimated error z generated by the stress error is the final output of the above model after iterative optimization of parameters for several times and satisfying the termination criterion.
步骤S502、将估计误差加上所述智能电表的基准误差,作为所述电表的误差偏移量。Step S502 , adding the estimated error to the reference error of the smart meter as an error offset of the meter.
将步骤S501得到的估计误差z,以及标准条件下电能表的基准误差Δe0加和,得到电能表的误差偏移量Δe。公式可以表示为:The estimated error z obtained in step S501 and the reference error Δe 0 of the electric energy meter under standard conditions are added to obtain the error offset Δe of the electric energy meter. The formula can be expressed as:
Δe=z+Δe0 (14)Δe=z+Δe 0 (14)
电能表的基准误差Δe0是理想条件下的统计误差,基准误差Δe0也是随机误差,是在标准情况下某款电能表的额定误差,实质是一种精度水平。因不同的电能表在相同的工作条件下误差不一定相同,故要考虑电能表的随机误差。The reference error Δe 0 of the electric energy meter is a statistical error under ideal conditions, and the reference error Δe 0 is also a random error, which is the rated error of a certain electric energy meter under standard conditions, which is essentially a level of accuracy. Because the errors of different electric energy meters are not necessarily the same under the same working conditions, the random errors of electric energy meters should be considered.
实际条件下应力误差产生的估计误差z则是因工作环境应力条件与理想条件不一致造成的,根据本方案中的模型,把待测电能表所处的应力条件作为输入变量,可以得到该环境下估计误差z,并依据上述公式14计算得到电能表的误差偏移量Δe。The estimated error z caused by the stress error under the actual conditions is caused by the inconsistency between the stress conditions of the working environment and the ideal conditions. According to the model in this scheme, the stress condition of the electric energy meter to be measured is taken as the input variable, and the Estimate the error z, and calculate the error offset Δe of the electric energy meter according to the above formula 14.
步骤S600、利用经过训练的神经网络,建立不同应力条件下的误差偏移量的关系。Step S600, using the trained neural network to establish the relationship between the error offsets under different stress conditions.
训练好的神经网络模型能够建立误差偏移量Δe与应力条件的关系,通过画图来表现出来,能够直观的看出变化趋势。The trained neural network model can establish the relationship between the error offset Δe and the stress condition, which can be shown by drawing, and the change trend can be seen intuitively.
实施例二、Embodiment two,
为了验证上述实施例的有效性,在实施例一的基础上,带入数据进行说明:In order to verify the validity of the above-mentioned embodiment, on the basis of the first embodiment, the data is brought into the description:
步骤A100、获取智能电表的应力数据及其误差数据。Step A100: Acquire stress data and error data of the smart meter.
与实施例一中描述的方法一致,此处省略。It is consistent with the method described in
步骤A200、确定智能电表应力数据中的典型应力。Step A200, determining the typical stress in the smart meter stress data.
在某次实验中,取得了60725个有效数据样本中,每个样本有8个采样数据,即可得到样本数据矩阵为X60725×8,其每个行向量为1个观测数据样本xi,其中0<i≤60725;每个列向量为对应观测样本的特征量xj,其中0<j≤8。In a certain experiment, among 60725 valid data samples, each sample has 8 sample data, the sample data matrix is X 60725×8 , and each row vector is 1 observation data sample x i , where 0<i≤60725; each column vector is the feature quantity xj of the corresponding observation sample, where 0<j≤8.
步骤A201、对数据进行标准化处理。Step A201, standardize the data.
公式如下:The formula is as follows:
式中,为标准化后的特征量,为特征量均值,s(xj)为特征量标准差。In the formula, is the standardized feature quantity, is the feature quantity mean, and s(x j ) is the feature quantity standard deviation.
步骤A202、利用经过标准化处理的数据,计算出每种应力的贡献率。Step A202: Calculate the contribution rate of each stress by using the standardized data.
设经标准化处理后的矩阵为得到协方差矩阵为P,即:Let the normalized matrix be The covariance matrix is obtained as P, that is:
计算协方差矩阵P的特征值λi及其特征向量ei,即P=EDET其中,D为按特征值大小降序排列的对角阵,D=diag(λ1,λ2,…,λ60725),E为特征值λi对应特征向量ei的集合,且E为标准正交矩阵,E=diag(e1,e2,…,e60725),通过式(17)的线性变化得到各主成分向量m1,m2,…,m60725。Calculate the eigenvalue λ i of the covariance matrix P and its eigenvector ei , namely P=EDE T where D is a diagonal matrix arranged in descending order of eigenvalues, D=diag(λ 1 , λ 2 ,...,λ 60725 ), E is the set of eigenvalues λ i corresponding to the eigenvectors e i , and E is a standard orthogonal matrix, E=diag(e 1 , e 2 , ..., e 60725 ), obtained by the linear change of formula (17) Each principal component vector m 1 , m 2 , ..., m 60725 .
第k个主成分对应的贡献率为:The contribution rate corresponding to the kth principal component is:
步骤A203、选出贡献率占比最大若干个应力,作为典型应力。Step A203: Select several stresses with the largest contribution ratio as typical stresses.
将贡献率按照从高到低进行排序,选择排序靠前的若干个主成分,作为典型应力。The contribution rate is sorted from high to low, and several principal components are selected as the typical stress.
实验得出,前4个主成分的累计贡献率达到了95%,这4个主成分别是温度、湿度、气压和电压应力,作为下文模型输入变量。Experiments show that the cumulative contribution rate of the first four principal components has reached 95%. These four principal components are temperature, humidity, air pressure and voltage stress, which are used as the input variables of the following model.
步骤A300、对典型应力数据及误差数据进行处理,去掉异常数据,得到经过处理的数据。Step A300: Process typical stress data and error data, remove abnormal data, and obtain processed data.
步骤A301、将智能电表中误差数据按照采集时序排列得到x(t),计算平均值μ和标准差σ;Step A301: Arrange the error data in the smart meter according to the collection sequence to obtain x(t), and calculate the average value μ and the standard deviation σ;
步骤A302、设定剔除阈值。Step A302, setting a rejection threshold.
利用统计学中常用的“3σ准则”,将数据段中不在[μ-3σ,μ+3σ]范围内的数据点判定为异常值,将其剔除。Using the "3σ criterion" commonly used in statistics, the data points in the data segment that are not in the range of [μ-3σ, μ+3σ] are determined as outliers and eliminated.
步骤A303、利用平均值插值进行顺序异常修正。Step A303 , performing order abnormality correction using mean value interpolation.
被剔除的数据会空出一个位置,将这位置前后各一个数据求均值,填补到原本的位置。公式如下:The excluded data will vacate a position, average the data before and after this position, and fill it to the original position. The formula is as follows:
步骤A304、使用正规化方法对样本序列进行变换Step A304, use the normalization method to transform the sample sequence
使用z-score法(正规化方法),对样本序列x1,x2,......,xn进行变换,公式如下:Using the z-score method (normalization method), transform the sample sequence x 1 , x 2 , ..., x n , the formula is as follows:
变换后的序列为y1,y2,......,yn,序列均值为0,方差为1,无量纲。The transformed sequence is y 1 , y 2 , ..., y n , the mean of the sequence is 0, the variance is 1, and it is dimensionless.
得到经过处理的数据。Get processed data.
步骤A400、将所述经过处理的数据送入神经网络进行训练。Step A400: Send the processed data to a neural network for training.
与实施例一中的步骤相同,此处略过。The steps are the same as those in
步骤A500、根据智能电能表所处环境以及工作情况计算其误差偏移量。Step A500: Calculate the error offset of the smart energy meter according to the environment and working conditions of the smart energy meter.
与实施例一中的步骤相同,此处略过。The steps are the same as those in
步骤A600、利用经过训练的神经网络,建立不同应力条件下的误差偏移量的关系。Step A600 , using the trained neural network to establish the relationship between the error offsets under different stress conditions.
本发明以一次实验得到的应力误差曲线为例,分别是温度对电表误差影响曲线(如图3所示);湿度对电表误差影响曲线(如图4所示);气压对电表误差影响曲线(如图5所示)和不同地区电压对电表误差的影响(如图6所示)。The present invention takes the stress error curve obtained by one experiment as an example, which are the influence curve of temperature on the error of the electric meter (as shown in Figure 3); the influence curve of humidity on the error of the electric meter (as shown in Figure 4); the influence curve of air pressure on the error of the electric meter ( As shown in Figure 5) and the influence of voltage in different regions on the meter error (as shown in Figure 6).
上述方法利用训练好的神经网络建立了典型应力与误差之间的关系,并以图像的方式展示了出来,能够很直观的分析出不同应力造成的误差。The above method uses the trained neural network to establish the relationship between typical stress and error, and displays it in the form of images, which can intuitively analyze the errors caused by different stresses.
本发明第二方面的实施例提供了一种智能电表应力误差分析设备,包括:An embodiment of the second aspect of the present invention provides a smart meter stress error analysis device, including:
数据收集系统,能够获取智能电表的应力数据及其误差数据;The data collection system can obtain the stress data and the error data of the smart meter;
典型应力分析系统,能够确定所述智能电表的应力数据中的典型应力;a typical stress analysis system capable of determining the typical stress in the stress data of the smart meter;
模型训练模块,能够将所述经过处理的数据送入神经网络进行训练,得到经过训练的神经网络;a model training module, capable of sending the processed data into a neural network for training to obtain a trained neural network;
关系分析模块,能够利用经过训练的神经网络,建立不同应力条件下的误差数据关系。The relationship analysis module can use the trained neural network to establish the error data relationship under different stress conditions.
本申请的该实施例将实施例一中描述的智能电表应力误差分析方法以计算机设备的形式进行呈现,能够利用LM优化过的BP神经网络对智能电表中应力以及误差的对应关系做出分析,绘制出变化曲线,从而依靠上述方法,实现对应力与误差之间对应关系的建立,达到智能电表误差分析的效果。In this embodiment of the present application, the stress error analysis method of a smart meter described in the first embodiment is presented in the form of a computer device, and the BP neural network optimized by LM can be used to analyze the corresponding relationship between the stress and error in the smart meter, The change curve is drawn, so as to realize the establishment of the corresponding relationship between the stress and the error by means of the above method, and achieve the effect of the error analysis of the smart meter.
本申请又一实施例提供了一种终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,该处理器执行计算机程序时以实现上述智能电表应力误差分析方法。Yet another embodiment of the present application provides a terminal, including: a memory, a processor, and a computer program stored in the memory and running on the processor, when the processor executes the computer program, the above-mentioned method for analyzing stress error of a smart meter is implemented .
具体地,处理器可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等。Specifically, the processor may be a CPU, a general-purpose processor, a DSP, an ASIC, an FPGA or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure. The processor can also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
具体地,处理器通过总线与存储器连接,总线可包括一通路,以用于传送信息。总线可以是PCI总线或EISA总线等。总线可以分为地址总线、数据总线、控制总线等。Specifically, the processor is connected to the memory through a bus, and the bus may include a path for transferring information. The bus can be a PCI bus or an EISA bus or the like. The bus can be divided into address bus, data bus, control bus and so on.
存储器可以是ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是EEPROM、CD-ROM或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。The memory can be ROM or other types of static storage devices that can store static information and instructions, RAM or other types of dynamic storage devices that can store information and instructions, or EEPROM, CD-ROM or other optical disk storage, optical disk storage ( including compact discs, laser discs, compact discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being stored by a computer any other medium taken, but not limited to this.
可选的,存储器用于存储执行本申请方案的计算机程序的代码,并由处理器来控制执行。Optionally, the memory is used to store the code of the computer program for executing the solution of the present application, and the execution is controlled by the processor.
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所述技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。The embodiments of the present invention have been described in detail above in conjunction with the accompanying drawings, but the present invention is not limited to the above-mentioned embodiments. Within the scope of knowledge possessed by those of ordinary skill in the technical field, various modifications can be made without departing from the purpose of the present invention. kind of change.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111142609.9A CN114814707A (en) | 2021-09-28 | 2021-09-28 | A method, device, terminal and readable medium for analyzing stress error of smart meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111142609.9A CN114814707A (en) | 2021-09-28 | 2021-09-28 | A method, device, terminal and readable medium for analyzing stress error of smart meter |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114814707A true CN114814707A (en) | 2022-07-29 |
Family
ID=82525336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111142609.9A Pending CN114814707A (en) | 2021-09-28 | 2021-09-28 | A method, device, terminal and readable medium for analyzing stress error of smart meter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114814707A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115685048A (en) * | 2022-12-01 | 2023-02-03 | 浙江万胜智能科技股份有限公司 | Online calibration method and system for communication module of intelligent electric meter |
CN116106816A (en) * | 2023-01-13 | 2023-05-12 | 北京市腾河智慧能源科技有限公司 | Electric energy meter error calibration method, system, equipment and medium based on 5G module |
CN118940146A (en) * | 2024-07-18 | 2024-11-12 | 青岛高科通信股份有限公司 | A smart meter error correction method, medium and electronic device based on temperature sensing |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105158725A (en) * | 2015-08-24 | 2015-12-16 | 中国电力科学研究院 | Multi-dimensional influence quantity-based electric energy meter metering accuracy evaluation method |
CN110095744A (en) * | 2019-04-04 | 2019-08-06 | 国网江苏省电力有限公司电力科学研究院 | A kind of electronic mutual inductor error prediction method |
CN113139605A (en) * | 2021-04-27 | 2021-07-20 | 武汉理工大学 | Power load prediction method based on principal component analysis and LSTM neural network |
-
2021
- 2021-09-28 CN CN202111142609.9A patent/CN114814707A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105158725A (en) * | 2015-08-24 | 2015-12-16 | 中国电力科学研究院 | Multi-dimensional influence quantity-based electric energy meter metering accuracy evaluation method |
CN110095744A (en) * | 2019-04-04 | 2019-08-06 | 国网江苏省电力有限公司电力科学研究院 | A kind of electronic mutual inductor error prediction method |
CN113139605A (en) * | 2021-04-27 | 2021-07-20 | 武汉理工大学 | Power load prediction method based on principal component analysis and LSTM neural network |
Non-Patent Citations (2)
Title |
---|
张梅: "基于 PCA-LM-BP 的短期电力负荷预测研究", 《信息技术》, 31 December 2019 (2019-12-31) * |
李鹏: "基于主成分分析法的电子式电能表计量性能影响研究", 《西安理工大学学报》, 31 December 2020 (2020-12-31), pages 263 - 267 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115685048A (en) * | 2022-12-01 | 2023-02-03 | 浙江万胜智能科技股份有限公司 | Online calibration method and system for communication module of intelligent electric meter |
CN116106816A (en) * | 2023-01-13 | 2023-05-12 | 北京市腾河智慧能源科技有限公司 | Electric energy meter error calibration method, system, equipment and medium based on 5G module |
CN116106816B (en) * | 2023-01-13 | 2024-04-26 | 北京市腾河智慧能源科技有限公司 | Electric energy meter error calibration method, system, equipment and medium based on 5G module |
CN118940146A (en) * | 2024-07-18 | 2024-11-12 | 青岛高科通信股份有限公司 | A smart meter error correction method, medium and electronic device based on temperature sensing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112785091B (en) | Method for carrying out fault prediction and health management on oil field electric submersible pump | |
CN114814707A (en) | A method, device, terminal and readable medium for analyzing stress error of smart meter | |
CN109214708B (en) | Electric power system risk assessment method based on cross entropy theory optimization support vector machine | |
CN113805064A (en) | A method for predicting the state of health of lithium-ion battery packs based on deep learning | |
CN109145516B (en) | A fault identification method for analog circuits based on an improved extreme learning machine | |
CN111638707B (en) | Intermittent process fault monitoring method based on SOM clustering and MPCA | |
CN109472097B (en) | Fault diagnosis method for online monitoring equipment of power transmission line | |
CN104834994A (en) | Estimation Method of Reliability Parameters of Small Sample Relay Protection Based on SVM | |
CN112116198A (en) | Data-driven process industrial state perception network key node screening method | |
CN111122811A (en) | A fault monitoring method for sewage treatment process based on OICA and RNN fusion model | |
CN116738868B (en) | Rolling bearing residual life prediction method | |
CN109298633A (en) | Fault monitoring method in chemical production process based on adaptive block non-negative matrix decomposition | |
CN114936504A (en) | Equipment residual life prediction method and system based on Bayesian multi-source data fusion | |
CN113962145B (en) | A quantitative modeling method for parameter uncertainty under interval data sample conditions | |
CN118962455B (en) | Battery analysis method | |
CN116736133A (en) | Early prediction method for capacity degradation track of lithium ion battery in full life cycle | |
CN119696190A (en) | A method and system for intelligent sensor network monitoring for high and low voltage switch cabinets | |
CN115952895A (en) | A wind power device power prediction method, system and storage medium | |
CN114021465A (en) | Robust state estimation method and system for power system based on deep learning | |
CN118798037B (en) | Power system simulation method and system based on Bayesian network | |
CN114564487A (en) | Meteorological raster data update method combined with forecast and forecast | |
CN117688496B (en) | Abnormality diagnosis method, system and equipment for satellite telemetry multidimensional time sequence data | |
CN112488295A (en) | Method for optimizing storage life prediction of LSTM network relay by cross validation algorithm | |
CN116663728A (en) | Method and device for predicting error state of electric energy metering device | |
CN115310529A (en) | Wastewater treatment fault monitoring method based on manifold learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Xiong Suqin Inventor after: Chen Hao Inventor after: Zhang Wei Inventor after: Wang Xiaodong Inventor after: Li Yang Inventor after: Yang Wei Inventor after: Duan Xiaomeng Inventor after: Zhao Yue Inventor after: Guo Jianning Inventor after: Li Longtao Inventor after: Wang Yatao Inventor after: Cheng Da Inventor after: Qin Chenglin Inventor after: Peng Chuning Inventor after: Zhao Bing Inventor after: Li Ning Inventor after: Ge Dehui Inventor after: Zou Heping Inventor after: Li Qiuyang Inventor after: Zhang Baoliang Inventor before: Xiong Suqin Inventor before: Chen Hao Inventor before: Zhang Wei Inventor before: Wang Xiaodong Inventor before: Li Yang Inventor before: Yang Wei Inventor before: Duan Xiaomeng Inventor before: Zhao Yue Inventor before: Guo Jianning Inventor before: Li Longtao Inventor before: Wang Yatao Inventor before: Cheng Da Inventor before: Qin Chenglin Inventor before: Peng Chuning Inventor before: Zhao Bing Inventor before: Li Ning Inventor before: Ge Dehui Inventor before: Zou Heping Inventor before: Li Qiuyang Inventor before: Zhang Baoliang |