CN113156365B - Joint Estimation Method of Velocity, Angle and Distance Based on Conjugate ZC Sequence Pairs - Google Patents
Joint Estimation Method of Velocity, Angle and Distance Based on Conjugate ZC Sequence Pairs Download PDFInfo
- Publication number
- CN113156365B CN113156365B CN202110272610.7A CN202110272610A CN113156365B CN 113156365 B CN113156365 B CN 113156365B CN 202110272610 A CN202110272610 A CN 202110272610A CN 113156365 B CN113156365 B CN 113156365B
- Authority
- CN
- China
- Prior art keywords
- sequence
- estimation
- frequency offset
- time delay
- angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 48
- 230000005540 biological transmission Effects 0.000 claims abstract description 9
- 238000007476 Maximum Likelihood Methods 0.000 claims abstract description 7
- 230000001934 delay Effects 0.000 claims abstract description 3
- 239000011159 matrix material Substances 0.000 claims description 16
- 238000007493 shaping process Methods 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 11
- 238000005070 sampling Methods 0.000 claims description 9
- 238000012549 training Methods 0.000 claims description 5
- 230000004044 response Effects 0.000 claims description 4
- 230000021615 conjugation Effects 0.000 claims description 3
- 230000000737 periodic effect Effects 0.000 claims description 2
- 241000764238 Isis Species 0.000 claims 1
- 238000005457 optimization Methods 0.000 claims 1
- 238000004088 simulation Methods 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 7
- 235000002020 sage Nutrition 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0205—Details
- G01S5/0215—Interference
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/15—Correlation function computation including computation of convolution operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Computational Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Databases & Information Systems (AREA)
- Computing Systems (AREA)
- Algebra (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本发明属于无线定位技术领域,具体为一种基于共轭ZC序列对的速度、角度、距离联合估计方法。本发明包括:在发送端,设计一对共轭的ZC序列作为发送序列;在接收端,收到含有不同传输时延、多普勒频偏、角度的多径信号,利用最大似然法进行参数估计;使用交替投影法将高维参数估计问题转化为多个低维参数估计问题;对于单径的参数估计,基于ZC序列的性质,将时延和频偏的二维估计转化为两个一维估计,然后结合牛顿迭代进行精确估计。本发明可以在低带宽的情况下实现高精度的传输时延、多普勒频偏和角度估计。仿真表明,本发明可在20MHz带宽的情况下实现1cm的距离估计精度,1m/s的速度估计精度以及0.01°的角度估计精度。
The invention belongs to the technical field of wireless positioning, in particular to a method for joint estimation of velocity, angle and distance based on conjugate ZC sequence pairs. The invention includes: at the transmitting end, designing a pair of conjugated ZC sequences as the transmitting sequence; at the receiving end, receiving multi-path signals with different transmission delays, Doppler frequency offsets and angles, and using the maximum likelihood method to carry out Parameter estimation; using the alternate projection method to transform the high-dimensional parameter estimation problem into multiple low-dimensional parameter estimation problems; for single-path parameter estimation, based on the properties of the ZC sequence, the two-dimensional estimation of time delay and frequency offset is converted into two One-dimensional estimation, then combined with Newton iteration for precise estimation. The invention can realize high-precision transmission delay, Doppler frequency offset and angle estimation under the condition of low bandwidth. Simulation shows that the present invention can realize the distance estimation accuracy of 1cm, the speed estimation accuracy of 1m/s and the angle estimation accuracy of 0.01° in the case of 20MHz bandwidth.
Description
技术领域technical field
本发明属于无线定位技术领域,具体涉及一种基于共轭ZC序列对的速度、角度、距离联合估计方法。The invention belongs to the technical field of wireless positioning, and in particular relates to a method for joint estimation of velocity, angle and distance based on conjugate ZC sequence pairs.
背景技术Background technique
无线测距定位算法在生活中有着切实的应用,在室内定位、车联网、自动驾驶等领域有着广阔的应用。随着5G和物联网技术的发展,与定位有关的技术越来越吸引人的注意。市场调研公司Markets and Markets在2020年出版的分析报告中预测全球的室内定位的市场规模将从2017年的71.1亿美元上涨到为2022年409.9亿美元[1]。然而在一些全球定位系统(Global Positioning System,GPS)无法覆盖或者未来5G自动驾驶的场景里,亟需能够实现高分辨率定位的技术,甚至要求厘米级的定位精度。Wireless ranging and positioning algorithms have practical applications in life, and have broad applications in indoor positioning, Internet of Vehicles, automatic driving and other fields. With the development of 5G and IoT technologies, technologies related to positioning are attracting more and more attention. Market research firm Markets and Markets predicted in an analysis report published in 2020 that the global indoor positioning market size will rise from $7.11 billion in 2017 to $40.99 billion in 2022 [1]. However, in some scenarios where the Global Positioning System (GPS) cannot cover or in the future 5G autonomous driving, technologies that can achieve high-resolution positioning are urgently needed, and even centimeter-level positioning accuracy is required.
目前已有的研究工作大多只考虑时延和角度的联合估计,或者不能很好的区分多径密集的信号,亦或者没有考虑非整数倍奈奎斯特采样时延。然而实际中由于收发端存在相对运动,因此会存在多普勒频偏,通过估计多普勒频偏即速度可以进行更好地定位;目前在测距精度上,超宽带(Ultra Wide Band,UWB)技术可以达到厘米级的精度,但是这种技术需要大带宽、对硬件要求高,那么在带宽有限的情况下,进行非整数倍奈奎斯特采样时延的估计可以提高测距的精度,并且降低硬件的成本;考虑各径的时延、多普勒频偏、角度,综合这些信息有利于环境感知、定位等。因此如何在多径环境下实现时延、多普勒频偏、角度的超分辨率估计是一个亟待解决的问题。Most of the existing research work only considers the joint estimation of delay and angle, or cannot distinguish multipath dense signals well, or does not consider the non-integer Nyquist sampling delay. However, in practice, due to the relative motion of the transceiver, there will be a Doppler frequency offset. By estimating the Doppler frequency offset, that is, the speed, a better positioning can be performed. At present, in terms of ranging accuracy, Ultra Wide Band (UWB) ) technology can achieve centimeter-level accuracy, but this technology requires large bandwidth and high hardware requirements. In the case of limited bandwidth, the estimation of non-integer Nyquist sampling delay can improve the accuracy of ranging. And reduce the cost of hardware; considering the time delay, Doppler frequency offset, and angle of each path, synthesizing these information is beneficial to environmental perception and positioning. Therefore, how to realize the super-resolution estimation of time delay, Doppler frequency offset and angle in multipath environment is an urgent problem to be solved.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种运算复杂度低,硬件实现复杂度低的无线多径环境下的距离(传输时延)、角度以及速度(多普勒频偏)联合估计方法。The purpose of the present invention is to provide a method for joint estimation of distance (transmission delay), angle and velocity (Doppler frequency offset) in a wireless multipath environment with low computational complexity and low hardware implementation complexity.
本发明提供的无线多径环境下的距离、角度以及速度联合估计方法,在发送端,设计一对共轭的Zadoff-Chu序列(ZC序列),作为发送序列;在接收端,收到含有不同传输时延、多普勒频偏、角度的多径信号,利用最大似然法进行参数的估计,然后使用交替投影的方法将原本的高维参数估计问题(多径)转化为多个低维参数估计问题(单径),避免了高维搜索;对于单径的参数估计,基于ZC序列的性质,将关于时延和频偏的二维估计转化为两个一维估计,进一步降低了运算复杂度,然后结合牛顿迭代进行精确值的估计。In the method for joint estimation of distance, angle and velocity in wireless multipath environment provided by the present invention, a pair of conjugated Zadoff-Chu sequences (ZC sequences) are designed at the transmitting end as the transmitting sequence; Transmission delay, Doppler frequency offset, angle multipath signal, use maximum likelihood method to estimate parameters, and then use alternate projection method to convert the original high-dimensional parameter estimation problem (multipath) into multiple low-dimensional parameters Parameter estimation problem (single-path), avoiding high-dimensional search; for single-path parameter estimation, based on the properties of ZC sequences, the two-dimensional estimates of delay and frequency offset are converted into two one-dimensional estimates, which further reduces the computational cost complexity, and then combined with Newton iteration to estimate the exact value.
具体步骤如下Specific steps are as follows
第一步,设计一对共轭ZC序列,作为发送序列;The first step is to design a pair of conjugated ZC sequences as the transmission sequence;
第二步,基于共轭ZC序列对的性质,同时获取时延、角度、多普勒频偏的初始解;In the second step, based on the properties of the conjugated ZC sequence pair, the initial solutions of time delay, angle, and Doppler frequency offset are simultaneously obtained;
第三步,基于时延、角度、多普勒频偏的初始解,通过牛顿迭代,进一步获得三维参数的精确值。In the third step, based on the initial solutions of time delay, angle, and Doppler frequency offset, the precise values of the three-dimensional parameters are further obtained through Newton iteration.
其中,假设接收端存在一个有M天线数的均匀线性阵列,信号关于θ角度射向阵列的阵列响应可以表示为:Among them, assuming that there is a uniform linear array with M antennas at the receiving end, the array response of the signal to the array with respect to the angle θ can be expressed as:
其中,d表示天线阵列的间距,λ表示波长,j表示虚数,(·)T表示转置操作。Among them, d represents the spacing of the antenna array, λ represents the wavelength, j represents the imaginary number, and (·) T represents the transposition operation.
考虑多径环境,接收端接收到的多径信号包含1个直射径和U-1条反射径,各径存在不同的时延、角度、多普勒频偏,所述多径信号模型如下:Considering the multipath environment, the multipath signal received by the receiving end includes a direct path and U-1 reflection paths, and each path has different delays, angles, and Doppler frequency offsets. The multipath signal model is as follows:
其中,βu,θu,τu,ξu表示第u条径信号的信道增益,到达角,时延和多普勒频偏;y(t)表示接收信号,x(t)表示训练序列,z(t)表示服从复高斯分布的高斯噪声,U为多径信号数,表示实数域。Among them, β u , θ u , τ u , ξ u represent the channel gain, angle of arrival, time delay and Doppler frequency offset of the u-th path signal; y(t) represents the received signal, and x(t) represents the training sequence , z(t) represents Gaussian noise obeying complex Gaussian distribution, U is the number of multipath signals, represents the real number field.
第一步中,所述设计一对共轭Zadoff-Chu序列,具体过程如下:In the first step, a pair of conjugated Zadoff-Chu sequences are designed, and the specific process is as follows:
(1)对于一个长为的ZC序列[2]:(1) For a length of The ZC sequence [2]:
其中,为正整数,r是和互质的正整数参数。可以看出即ZC序列是周期的,因此我们可以改变ZC序列的索引范围:对于为偶数,索引范围改为而对于为奇数,索引范围为假设是偶数,那么对于一个整数时延τ则有:in, is a positive integer, and r is the sum Coprime positive integer argument. As can be seen That is, the ZC sequence is periodic, so we can change the index range of the ZC sequence: for is even, the index range is changed to And for is odd, the index range is Assumption is even, then for an integer delay τ there are:
这表明,对于一个ZC序列来说,一个整数时延τ对应的频偏;对于长度是奇数的情况,ZC序列的这种时延-频偏互相转换的性质依然成立。不失一般性,我们令r=1,因此后面可以省略r。This shows that for a ZC sequence, an integer delay τ corresponds to frequency offset; for When the length is an odd number, the time delay-frequency offset mutual conversion property of the ZC sequence still holds. Without loss of generality, we set r = 1, so r can be omitted later.
(2)公式(4)所述的ZC序列的时延-频偏互换性质仅适用于整数时延,为了进行超分辨率的时延估计,需要考虑收发端存在的成型滤波器的影响。假设收发端存在的成型滤波器为升余弦滤波器,升余弦滤波器脉冲响应可以表示为:(2) The time delay-frequency offset interchange property of the ZC sequence described in formula (4) is only applicable to integer time delay. In order to perform super-resolution time delay estimation, the influence of the shaping filter existing at the transceiver end needs to be considered. Assuming that the shaping filter at the transceiver end is a raised cosine filter, the impulse response of the raised cosine filter can be expressed as:
其中,α是滚降系数,Ts是奈奎斯特采样周期;离散的ZC序列s(n)经过成型滤波器后可以表示为连续时间信号x(t):where α is the roll-off coefficient, and T s is the Nyquist sampling period; the discrete ZC sequence s(n) can be expressed as a continuous-time signal x(t) after passing through the shaping filter:
由于成型滤波器的低通特性,ZC序列的高频部分会被压制。图1为一个的ZC序列经过升余弦滤波器后的模值,可以看到中间的低频部分几乎不受影响,两端的高频部分会受到明显压制。Due to the low-pass nature of the shaping filter, the high frequency part of the ZC sequence is suppressed. Figure 1 is a The modulus value of the ZC sequence after passing through the raised cosine filter, it can be seen that the low frequency part in the middle is hardly affected, and the high frequency part at both ends will be significantly suppressed.
进一步的,将论证连续时间信号x(t)中间的长为L的低频部分近似为一个啁啾信号,即:Further, the low-frequency part of length L in the middle of the demonstration continuous-time signal x(t) is approximated as a chirp signal, namely:
其中,L为正整数且从图1也可以看出,滚降系数α也会影响L的选取。图2展示了在α=0.3时,的波形,其中,|·|表示取模操作。可以看出对于L=250,公式(7)的近似是合适的。where L is a positive integer and It can also be seen from Figure 1 that the roll-off coefficient α also affects the selection of L. Figure 2 shows that when α=0.3, , where |·| represents the modulo operation. It can be seen that for L=250, the approximation of equation (7) is suitable.
因此,ZC序列的低频部分通过升余弦滤波器后的信号可以看作是一个啁啾信号,并且同样存在时延和频偏的互换关系,即:Therefore, the signal after the low frequency part of the ZC sequence passes through the raised cosine filter can be regarded as a chirp signal, and there is also an exchange relationship between time delay and frequency offset, namely:
其中,时延τ可以是任意的,不再局限于整数倍奈奎斯特采样周期倍。The time delay τ can be arbitrary, and is no longer limited to an integer multiple of the Nyquist sampling period.
(3)基于公式(7)的近似,考虑一对共轭ZC序列,分别记作s(n)和s*(n):(3) Based on the approximation of formula (7), consider a pair of conjugated ZC sequences, denoted as s(n) and s * (n), respectively:
其中,为偶数,(·)*表示取共轭操作。对于前一半ZC序列s(n),发送时为其加上一个长为的前缀和长为的后缀:in, is an even number, (·) * indicates the conjugation operation. For the first half of the ZC sequence s(n), add a length of The prefix and length of suffix:
其中,Q是正整数。同样的,对后一半ZC序列也加上相应的前缀和后缀。发送的训练序列的格式如图3所示。这种前缀和后缀的设计可以抵抗符号间干扰(ISI)以及频偏的影响。接收端在进行处理的时候,要从接收信号中去掉部分的前缀和后缀。以前一半训练序列为例,如图4所示,接收到的L+Q长的信号会在时间上受到长为R1的ISI干扰和频偏影响(等效长为R2的时间偏移),因此接收端在接收到信号后进行去前缀和后缀的操作,从区域S中选取截取序列的开头,从而保证截取的L长的序列可以不受ISI干扰和频偏影响。where Q is a positive integer. Similarly, the corresponding prefix and suffix are also added to the latter half of the ZC sequence. The format of the sent training sequence is shown in Figure 3. The prefix and suffix are designed to resist inter-symbol interference (ISI) and frequency offset effects. When the receiving end is processing, part of the prefix and suffix should be removed from the received signal. Taking the first half of the training sequence as an example, as shown in Figure 4, the received signal with a length of L+Q will be affected by ISI interference and frequency offset with a length of R 1 (equivalent to a time offset with a length of R 2 ) Therefore, after receiving the signal, the receiving end performs the operation of removing the prefix and suffix, and selects the beginning of the intercepted sequence from the area S, thereby ensuring that the intercepted L-length sequence is not affected by ISI interference and frequency offset.
第二步中,所述获取时延、角度、多普勒频偏的初始解,具体过程如下:In the second step, the initial solutions of the time delay, angle, and Doppler frequency offset are obtained, and the specific process is as follows:
(1)基于模型公式(2),先考虑前一半ZC序列,则接收信号的采样可以表示为:(1) Based on the model formula (2), considering the first half of the ZC sequence, the sampling of the received signal can be expressed as:
其中,是任意大于零的实数,Ts是奈奎斯特采样周期。不失一般性,令Ts=1,得到:in, is any real number greater than zero, and T s is the Nyquist sampling period. Without loss of generality, let T s =1, we get:
将(14)改写为下面形式:Rewrite (14) into the following form:
Y=A(θ)diag(β)X(τ,ξ)T+Z (15)Y=A(θ)diag(β)X(τ,ξ) T +Z (15)
其中,in,
X(τ,ξ)=[x(τ1)⊙d(ξ1),x(τ2)⊙d(ξ2),...,x(τU)⊙d(ξU)] (19)X(τ,ξ)=[x(τ 1 )⊙d(ξ 1 ), x(τ 2 )⊙d(ξ 2 ),...,x(τ U )⊙d(ξ U )] (19 )
其中,代表复数域,diag(·)表示向量对角化为矩阵,⊙表示哈达玛积。in, Represents the field of complex numbers, diag( ) represents the diagonalization of a vector into a matrix, and ⊙ represents the Hadamard product.
由于噪声服从复高斯分布,参数{β,τ,ξ,θ}的最大似然估计可以写成最小二乘的形式:Since the noise follows a complex Gaussian distribution, the maximum likelihood estimate of the parameters {β, τ, ξ, θ} can be written in the least squares form:
其中,τ=[τ1,τ2,...,τU]T,ξ=[ξ1,ξ2,...,ξU]T,θ=[θ1,θ2,...,θU]T,||·||F表示F范数。因为所以有:where τ=[τ 1 , τ 2 ,...,τ U ] T ,ξ=[ξ 1 ,ξ 2 ,...,ξ U ] T ,θ=[θ 1 ,θ 2 ,... , θ U ] T , || · || F denotes the F norm. because F:
其中,vec(·)表示矩阵列向量化,表示克罗内克积,Among them, vec( ) represents the matrix column vectorization, represents the Kronecker product,
所以(22)可以改写为:So (22) can be rewritten as:
其中,in,
则β的最大似然估计可以表示为:Then the maximum likelihood estimate of β can be expressed as:
其中,(·)H表示取转置共轭操作。将(28)代入(26),得到:where (·) H represents the transpose conjugation operation. Substituting (28) into (26), we get:
其中,in,
其中,表示投影矩阵。in, represents the projection matrix.
在估计出多普勒频偏和时延后,可以根据速度其中c是光速,fc是载频,从而估计出发送端相对接收端的速度,根据距离可以估计出距离。Doppler frequency offset is estimated and delay After that, according to the speed Where c is the speed of light, f c is the carrier frequency, so as to estimate the speed of the sender relative to the receiver, according to the distance Distance can be estimated.
(2)考虑共轭ZC序列对,则:(2) Considering the conjugated ZC sequence pair, then:
其中,in,
这里,x1(τu,ξu)和对应前一半ZC序列,x2(τu,ξu)和对应后一半ZC序列。Here, x 1 (τ u , ξ u ) and Corresponding to the first half of the ZC sequence, x 2 (τ u , ξ u ) and Corresponding to the latter half of the ZC sequence.
令:make:
且是将从中删去后得到的结果。利用投影矩阵的性质,得到:and will from The result obtained after removing the . Using the properties of the projection matrix, we get:
其中,表示矩阵的正交投影矩阵。in, representation matrix The orthographic projection matrix of .
将公式(37)代入公式(29)中,得到:Substituting equation (37) into equation (29), we get:
假设多径数U和已知,即给定则公式(38)可以化简为:Assume that the multipath numbers U and known, given Then formula (38) can be simplified as:
从而,利用交替投影的方法将多径问题转化为多个单径问题,避免了高维搜索。Therefore, the multi-path problem is transformed into multiple single-path problems by the method of alternate projection, avoiding high-dimensional search.
(3)对于第u条径问题的求解,首先进行时延、角度、频偏初始值的估计。第u条径的参数的初始值是利用以下近似来实现的:(3) For the solution of the u-th path problem, first estimate the initial values of time delay, angle and frequency offset. The initial values of the parameters of the u-th path are achieved using the following approximations:
其中, in,
由于则有:because Then there are:
其中,和分别是和按列重构的矩阵。将(41)(42)代入(40),得到:in, and respectively and Column-wise reconstructed matrix. Substituting (41)(42) into (40), we get:
将(32)、(33)代入(43)得到:Substitute (32), (33) into (43) to get:
令:make:
则可以将对τu,ξu,θu的估计转化为对ηu,ζu,θu的估计:Then the estimates of τ u , ξ u , θ u can be transformed into estimates of η u , ζ u , θ u :
先考虑前一半ZC序列,则可以获得关于ζu和θu的次优解:Considering the first half of the ZC sequence first, suboptimal solutions for ζ u and θ u can be obtained:
通过对做二维快速傅里叶变换,然后找出使模值最大的坐标,从而求出 through the pair Do a two-dimensional fast Fourier transform, and then find the coordinate that maximizes the modulus value, so as to find
这时再考虑后一半ZC序列,此时已知,则有:At this time, consider the second half of the ZC sequence, at this time known, there are:
此时对做一维快速傅里叶变换,找出使模值最大的坐标,从而得到 Right now Do a one-dimensional fast Fourier transform to find the coordinates that maximize the modulus value, and get
联合(47)(48)的估计结果,可以得到的初始值,进而可以得到时延和多普勒频偏的初始值:Combining the estimation results of (47) (48), we can get The initial value of , and then the initial value of delay and Doppler frequency offset can be obtained:
第三步中,所述通过牛顿迭代,进一步获得三维参数的精确值,具体过程如下:In the third step, the exact value of the three-dimensional parameter is further obtained through the Newton iteration, and the specific process is as follows:
基于得到的初始值本发明利用牛顿迭代[4]得到精确值。令Λ表示目标函数(39),即:Based on the obtained initial value The present invention utilizes Newton iteration [4] to obtain the exact value. Let Λ denote the objective function (39), namely:
其中,ψ=[τu,ξu,θu]T。牛顿迭代的迭代式为:where ψ=[τ u , ξ u , θ u ] T . The iterative formula of Newton iteration is:
ψ(i+1)=ψ(i)-sH-1g (51)ψ (i+1) = ψ (i) -sH -1 g (51)
其中,和分别表示关于目标函数Λ的黑塞矩阵和雅各比向量,s表示步长,并且由回溯直线法[4]优化得到。in, and respectively represent the Hessian matrix and Jacobian vector about the objective function Λ, s represents the step size, and is optimized by the backtracking line method [4].
所述交替投影法的算法流程为:The algorithm flow of the alternate projection method is as follows:
对于初始化交替投影过程的时候,假设接收信号是单径的,结合公式(29),此时可以利用以下公式可以求得三维参数:When initializing the alternate projection process, assuming that the received signal is single-path, combined with formula (29), the three-dimensional parameters can be obtained by using the following formula:
其中,是常数因此可以省略。从而估计出其中上标代表迭代次数,因此也就得到了令利用公式(39)估计出接着,令从而估计这个过程一直进行,到估计出 in, is a constant and can therefore be omitted. thus estimating where the superscript represents the number of iterations, so we get make Using Equation (39) to estimate Next, let thus estimating This process continues until estimated
在第2次迭代的时候,首先利用根据公式(39)估计出然后利用估计出以此类推到利用估计出重复上述过程直到迭代收敛。In the second iteration, first use According to formula (39), it is estimated that then use estimated And so on to use estimated The above process is repeated until the iterations converge.
本发明方法的优点:The advantages of the method of the present invention:
(1)本发明能够从多径信号中估计出各径的时延、多普勒频偏、角度,从而实现测距、测速、测向。(1) The present invention can estimate the time delay, Doppler frequency offset and angle of each path from the multipath signal, thereby realizing ranging, speed and direction finding.
(2)本发明考虑了现实硬件中的成型滤波器的影响,能够进行超分辨率的时延估计。(2) The present invention considers the influence of the shaping filter in real hardware, and can perform super-resolution time delay estimation.
(3)本发明通过交替迭代避免了高维搜索,硬件实现复杂度低。(3) The present invention avoids high-dimensional search through alternate iteration, and has low hardware implementation complexity.
(4)本发明设计了一种基于ZC序列的发送序列,该序列可以将关于时延和频偏的二维搜索转化为两个一维搜索,降低运算复杂度。(4) The present invention designs a transmission sequence based on the ZC sequence, which can convert the two-dimensional search on time delay and frequency offset into two one-dimensional searches, thereby reducing the computational complexity.
(5)本发明所用的方法在估计精度上优于现有的SAGE[3]的方法。(5) The method used in the present invention is superior to the existing SAGE [3] method in estimation accuracy.
本发明可以在低带宽的情况下实现高精度的传输时延、多普勒频偏和角度估计,以此估计出发送端的运动速度以及发送端到接收端的距离、角度,综合这些信息有利于进行高精度的定位。仿真表明,本发明可以在20MHz带宽的情况下实现1cm的距离估计精度,1m/的速度估计精度以及0.01°的角度估计精度。The present invention can realize high-precision transmission delay, Doppler frequency offset and angle estimation under the condition of low bandwidth, thereby estimating the moving speed of the sending end and the distance and angle from the sending end to the receiving end. High-precision positioning. Simulation shows that the present invention can achieve a distance estimation accuracy of 1cm, a speed estimation accuracy of 1m/ and an angle estimation accuracy of 0.01° in the case of a 20MHz bandwidth.
附图说明Description of drawings
图1是窄带远场环境中信号到达角关于线性均匀阵列的示意图。Figure 1 is a schematic diagram of the angle of arrival of a signal with respect to a linear uniform array in a narrowband far-field environment.
图2是经过成型滤波器后的ZC序列的模值图。Figure 2 is a modulus diagram of the ZC sequence after shaping the filter.
图3是表明公式(7)的近似是良好的(对于-125≤t<125,|x(t)-s(t)|<1.8×10-3)。Figure 3 is a graph showing that the approximation of formula (7) is good (|x(t)-s(t)|<1.8x10-3 for -125≤t<125).
图4是基于共轭ZC序列的发送训练序列的格式示意图。FIG. 4 is a schematic diagram of the format of the transmitted training sequence based on the conjugated ZC sequence.
图5是去前缀和后缀的示意图。Figure 5 is a schematic diagram of prefix and suffix removal.
图6是两径情况下速度(a)、角度(b)、距离(c)估计的RMSE性能图。Figure 6 is a graph of the estimated RMSE performance of velocity (a), angle (b), and distance (c) in the case of two diameters.
图7是两径情况下不同时延差和角度差下的直射径估计性能等高线图(前3张图:(a)、(b)、(c))以及相应的克拉美劳线(CRB)等高线图(后3张图:(d)、(e)、(f))。Figure 7 is the contour map of the direct diameter estimation performance under different delay and angle differences in the case of two diameters (the first three pictures: (a), (b), (c)) and the corresponding Cramerau line ( CRB) contour plots (last 3 plots: (d), (e), (f)).
图8是本发明方法同SAGE的方法的性能对比图(频偏)。FIG. 8 is a performance comparison diagram (frequency offset) between the method of the present invention and the method of SAGE.
图9是本发明方法同SAGE的方法的性能对比图(角度)。Figure 9 is a performance comparison diagram (angle) between the method of the present invention and the method of SAGE.
图10是本发明方法同SAGE的方法的性能对比图(时延)。FIG. 10 is a performance comparison diagram (time delay) between the method of the present invention and the method of SAGE.
具体实施方式Detailed ways
下面通过具体实施例子进一步介绍本发明。The present invention is further described below through specific embodiments.
作为实施例,本发明用计算机仿真了信号发送-成型滤波器-经过信道-接收信号-信号处理的完整过程。待发送的共轭ZC序列对L=250,每一个ZC序列各自都有一个长的前缀和长为的后缀。成型滤波器采用升余弦滤波器,滚降系数α=0.3。假设接收端有6个天线,天线间间距等于半波长即载波频率fc=2.4GHz,带宽B=20MHz,也即意味着Ts=50ns。每个仿真结果都进行了1000次蒙特卡洛。As an embodiment, the present invention simulates the complete process of signal transmission-shaping filter-passing channel-receiving signal-signal processing with a computer. The conjugated ZC sequence pair to be sent is L=250, Each ZC sequence has a long The prefix and length of suffix. The shaping filter adopts a raised cosine filter, and the roll-off coefficient α=0.3. Assuming that there are 6 antennas at the receiving end, the spacing between the antennas is equal to half a wavelength, i.e. The carrier frequency f c =2.4GHz, and the bandwidth B = 20MHz, which means T s =50ns. Each simulation result was performed 1000 times of Monte Carlo.
实施例1,考虑总共有两条径,频偏为ξ=[3×10-5,7×10-5]Ts,角度为θ=[5°,20°],时延为τ=[1.2,1.3]Ts,信道增益其中φ1和φ2是随机产生的随机数。两径的传输距离和速度分别对应ρ=[18,19.5]m和v=[75,175]m/s。图6为这两径信号的速度、角度、距离估计的根均方误差(RMSE)曲线以及它们的克拉美劳线(CRB)。仿真表明本发明可以有效估计出多径信号的速度、角度、距离,并且可以达到1m/s的测速精度,1cm的测距精度,0.01°的测角度精度。
实施例2,考虑相同信道增益的两径情况,探究估计结果随着两径间角度差和时延差的变化而变化的情况。两径的频偏ξ=[10-5,10-5]/Ts,角度为θ=[10°,10°+Δθ],时延为τ=[1.1,1.1+Δτ]Ts,信噪比为20dB。图7的前3张图画出了第一径信号的频偏、角度、时延的RMSE结果,后3张图画出了相应的CRB。仿真的等高线表明本发明即使在多径密集的严苛环境,也能够利用时间和空间上的不同来区分多径,并且仿真性能可以逼近CRB。In
实施例3,考虑相同信道增益的两径情况,将本发明中所用的交替投影方法与SAGE的方法在估计精度上进行对比。两径的频偏ξ=[10-5,10-4]/Ts,角度为θ=[10°,15°],时延为τ=[1.1,1.1+Δτ]Ts,信噪比为20dB。图8、图9、图10给出了第一径信号的频偏、角度、时延的RMSE结果随两径间时延差变化的情况。仿真表明本发明的方法优于SAGE的方法:以Δτ=0.25Ts为例,SAGE的方法的频偏、角度、时延精度为2×10-5/Ts(对应50m/s的速度误差)、1.1°、0.06Ts(对应90cm的距离误差);而本发明的方法的频偏、角度、时延精度为2.8×10-6/Ts(对应7m/s的速度误差)、0.08°、4×10-3Ts(对应6cm的距离误差)。
参考文献references
[1]Indoor Location Market by Component(Technology,Software Tools,andServices),Deployment Mode(Cloud,andOn-premises),Application,Vertical(Transportation,Hospitality,Entertainment,Retail,and Public Buildings),andRegion-Global Forecastto2022[R],MarketAndMarket,2020.[1]Indoor Location Market by Component(Technology,Software Tools,andServices),Deployment Mode(Cloud,andOn-premises),Application,Vertical(Transportation,Hospitality,Entertainment,Retail,and Public Buildings),andRegion-Global Forecastto2022[R ], MarketAndMarket, 2020.
[2]D.Chu,“Polyphase codes with good periodic correlation properties(corresp.),”IEEE Transactions on Information Theory,vol.18,no.4,pp.531–532,1972.[2] D. Chu, "Polyphase codes with good periodic correlation properties (corresp.)," IEEE Transactions on Information Theory, vol.18, no.4, pp.531–532, 1972.
[3]B.H.Fleury,M.Tschudin,R.Heddergott,D.Dahlhaus,and K.IngemanPedersen,“Channel parameter estimation in mobile radio environments using theSAGE algorithm,”IEEE Journal on Selected Areasin Communications,vol.17,no.3,pp.434–450,1999.[3] B.H.Fleury, M.Tschudin, R.Heddergott, D.Dahlhaus, and K.Ingeman Pedersen, "Channel parameter estimation in mobile radio environments using the SAGE algorithm," IEEE Journal on Selected Areasin Communications, vol.17, no.3 , pp.434–450, 1999.
[4]S.Boyd and L.Vandenberghe,Convex Optimization.2004。[4] S. Boyd and L. Vandenberghe, Convex Optimization. 2004.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110272610.7A CN113156365B (en) | 2021-03-12 | 2021-03-12 | Joint Estimation Method of Velocity, Angle and Distance Based on Conjugate ZC Sequence Pairs |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110272610.7A CN113156365B (en) | 2021-03-12 | 2021-03-12 | Joint Estimation Method of Velocity, Angle and Distance Based on Conjugate ZC Sequence Pairs |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113156365A CN113156365A (en) | 2021-07-23 |
CN113156365B true CN113156365B (en) | 2022-04-12 |
Family
ID=76886923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110272610.7A Active CN113156365B (en) | 2021-03-12 | 2021-03-12 | Joint Estimation Method of Velocity, Angle and Distance Based on Conjugate ZC Sequence Pairs |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113156365B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114089273B (en) * | 2021-11-22 | 2023-05-26 | 电子科技大学 | GPS and UWB-based motion platform positioning method |
CN114338297B (en) * | 2021-11-26 | 2023-06-30 | 河南工程学院 | Combined timing synchronization and frequency offset estimation method under incoherent LoRa system |
FI20216241A1 (en) * | 2021-12-02 | 2023-06-03 | Nokia Technologies Oy | Device positioning |
CN114185002B (en) * | 2021-12-09 | 2022-10-25 | 重庆邮电大学 | A 3D Parameter Estimation Method Based on Beam Spatial Matrix Beam |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020217146A1 (en) * | 2019-04-22 | 2020-10-29 | King Abdullah University Of Science And Technology | High-accuracy velocity and range estimation of a moving target using differential zadoff-chu codes by means of correlation |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11516051B2 (en) * | 2018-03-06 | 2022-11-29 | Samsung Electronics Co., Ltd. | Method and apparatus for AI-based UE speed estimation using uplink SRS measurements |
WO2020217145A1 (en) * | 2019-04-22 | 2020-10-29 | King Abdullah University Of Science And Technology | High-accuracy velocity and range estimation of a moving target using differential zadoff-chu codes by means of maximum-likelihood estimation |
-
2021
- 2021-03-12 CN CN202110272610.7A patent/CN113156365B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020217146A1 (en) * | 2019-04-22 | 2020-10-29 | King Abdullah University Of Science And Technology | High-accuracy velocity and range estimation of a moving target using differential zadoff-chu codes by means of correlation |
Non-Patent Citations (2)
Title |
---|
OFDM信号信噪比估计方法;周洋等;《指挥信息系统与技术》;20180702(第03期);全文 * |
宽带无线信道精细时延和响应联合估计方法;王海明等;《电波科学学报》;20141015(第05期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN113156365A (en) | 2021-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113156365B (en) | Joint Estimation Method of Velocity, Angle and Distance Based on Conjugate ZC Sequence Pairs | |
CN113472705B (en) | Estimation and prediction method of RIS auxiliary channel based on ZC sequence | |
CN109932680B (en) | Non-circular signal direction of arrival estimation method based on translational co-prime array | |
CN114286439B (en) | A mobile device positioning and tracking method based on multi-intelligent reflective surfaces | |
CN104698430B (en) | It is a kind of for carrying the high-precision angle estimating method based on virtual antenna array | |
JP2010525369A (en) | Method and system for simultaneous estimation of arrival time and amplitude based on super-resolution technology | |
CN104023397B (en) | Multiple target DOA estimating systems and method of estimation based on gossip algorithms in distributed network | |
CN114337871B (en) | RIS auxiliary channel simulation and channel capacity analysis method | |
CN109327850A (en) | Multi-user detection method of non-orthogonal multiple access system based on gradient tracking and multi-step quasi-Newton method technology | |
CN110380994B (en) | Fast Bayesian Matching Pursuit for Maritime Sparse Channel Estimation | |
CN115856767B (en) | A Reconfigurable Smart Metasurface-Assisted Method for Wave Arrival Direction Estimation | |
Yang et al. | Joint estimation of velocity, angle-of-arrival and range (JEVAR) using a conjugate pair of Zadoff-Chu sequences | |
US10579702B2 (en) | Systems and methods for signal processing using coordinate descent techniques for unit modulus least squares (UMLS) and unit-modulus quadratic program (UMQP) | |
US20090252259A1 (en) | Receiving device and receiving method | |
Allard et al. | The model-based parameter estimation of antenna radiation patterns using windowed interpolation and spherical harmonics | |
CN106507473A (en) | A method and device for indoor positioning based on compressed sensing algorithm | |
CN104023396B (en) | Single goal DOA estimating systems based on gossip algorithms and method of estimation in distributed network | |
Garcia et al. | On the trade-off between accuracy and delay in cooperative UWB navigation | |
CN113406562B (en) | TOA and DOA combined estimation dimension reduction method in Beidou and ultra-wideband system | |
CN116405348A (en) | Angle Estimation Method for Array Antennas and 5G New Radio Interface in Communication-Sensing Integrated System | |
CN115407266A (en) | Direct positioning method based on cross-spectrum subspace orthogonality | |
CN113093111A (en) | Method and system for demodulating two-dimensional coherent signals by uniform circular array based on compressed sensing and genetic algorithm | |
Venieris et al. | Preprocessing algorithm for source localisation in a multipath environment | |
CN117572339A (en) | Self-positioning method based on non-circular signal joint weighted propagation operator and dimension reduction search | |
Erić et al. | Method for direct self-localization of IR UWB node (s) in indoor scenario |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |