CN113150562B - 一种醛胺缩合席夫碱改性蛋白复合膜的制备方法 - Google Patents

一种醛胺缩合席夫碱改性蛋白复合膜的制备方法 Download PDF

Info

Publication number
CN113150562B
CN113150562B CN202110525566.6A CN202110525566A CN113150562B CN 113150562 B CN113150562 B CN 113150562B CN 202110525566 A CN202110525566 A CN 202110525566A CN 113150562 B CN113150562 B CN 113150562B
Authority
CN
China
Prior art keywords
aldehyde
schiff base
amine condensation
protein
composite membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110525566.6A
Other languages
English (en)
Other versions
CN113150562A (zh
Inventor
何明
尹国强
陈文杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongkai University of Agriculture and Engineering
Original Assignee
Zhongkai University of Agriculture and Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongkai University of Agriculture and Engineering filed Critical Zhongkai University of Agriculture and Engineering
Priority to CN202110525566.6A priority Critical patent/CN113150562B/zh
Publication of CN113150562A publication Critical patent/CN113150562A/zh
Application granted granted Critical
Publication of CN113150562B publication Critical patent/CN113150562B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H1/00Macromolecular products derived from proteins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2489/00Characterised by the use of proteins; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明涉及一种醛胺缩合席夫碱改性蛋白制备复合膜的方法,涉及农产生物质功能化领域,包括以下步骤:(1)合成醛胺缩合席夫碱;(2)将蛋白粉溶液溶解于pH值为8~10的碱溶液中,搅拌均匀,得到蛋白溶液;(3)将醛胺缩合席夫碱加入蛋白溶液中,在40~60℃下搅拌20~60min,得到醛胺缩合席夫碱改性蛋白液;(4)将水溶性高聚物溶液加入醛胺缩合席夫碱改性蛋白液中,搅拌均匀,得到混合液;(5)通过浇铸法制得醛胺缩合席夫碱改性蛋白复合膜。其中,缩醛席夫碱加入量为原料总固体质量的10%~50%。本发明中的醛胺缩合席夫碱一方面起到抗菌改性剂作用,赋予复合膜抗菌性能,另一方面起到增塑剂作用,提高复合膜的机械性能。

Description

一种醛胺缩合席夫碱改性蛋白复合膜的制备方法
技术领域
本发明属于改性蛋白复合膜的制备领域,尤其涉及一种醛胺缩合席夫碱改性蛋白复合膜的制备方法。
背景技术
蛋白复合膜性能较差,使用领域受限,需要添加一些改性剂来提高蛋白复合膜的性能。然而,在制备蛋白复合膜过程中如果同时添加增塑剂和交联剂会导致膜材料成分较为复杂,性能稳定性较差。某些改性剂同时添加,还可能降低棉籽蛋白和高分子聚合物的相容性,使蛋白析出膜材料表面,从而导致蛋白复合膜的力学性能不佳。因此,通过单一改性剂对蛋白复合膜进行改性,同时提高蛋白复合膜的多种性能,提高蛋白复合膜的实用性和进一步拓宽应用领域。
发明内容
为解决上述问题,本发明所要提供的是一种醛胺缩合席夫碱改性蛋白复合膜的制备方法,本发明所制备的醛胺缩合席夫碱改性蛋白复合膜通过利用醛胺缩合席夫碱同时作为抗菌剂和增塑剂的改性作用,同时提高蛋白复合膜的抗菌性能和机械性能,有望应用于食品包装塑料和医用伤口敷料领域。
本发明提高的一种醛胺缩合席夫碱改性蛋白复合膜的制备方法,包括以下步骤:
(1)合成醛胺缩合席夫碱:
S1:将醛试剂和无水乙醇加入到三口烧瓶中,在氮气保护下搅拌均匀;
S2:加热至无水乙醇持续回流状态,缓慢滴加醇胺类试剂,滴加完反应一段时间后停止加热;
S3:将反应液在50℃下进行旋转蒸发处理,除去反应液中的无水乙醇,得到醛胺缩合席夫碱;
(2)将蛋白粉溶解于pH值为8~10的碱溶液中,搅拌均匀,得到蛋白溶液;
(3)将醛胺缩合席夫碱加入蛋白溶液中,40~60℃下搅拌20~60min,得到醛胺缩合席夫碱改性蛋白液;
(4)将水溶性高聚物溶液加入醛胺缩合席夫碱改性蛋白液中,搅拌均匀,得到混合液;
(5)通过浇铸法制得醛胺缩合席夫碱改性蛋白复合膜;
其中,蛋白粉和水溶性高聚物的质量比为9:1~1:9;缩醛席夫碱加入量为蛋白粉和水溶性高聚物总固体质量的10%~50%。
优选地,所述步骤(1)醛试剂为香草醛或香兰素或甲醛或乙醛或戊二醛,优选地所述步骤(1)醇胺试剂为乙醇胺或丙醇胺。
优选地,所述步骤(1)滴加醇胺试剂物质的量为对应醛试剂醛基物质的量的1~1.5倍。
优选地,所述步骤(2)中蛋白粉包括角蛋白或胶原蛋白或明胶或棉籽蛋白或大豆蛋白中的一种或多种组合。
优选地,所述步骤(2)中蛋白溶液质量分数为5%~15%。
优选地,所述步骤(3)中水溶性高聚物包括聚乙烯醇或聚环氧乙烷或聚乙二醇或甲壳素或淀粉或羧甲基纤维素的一种或多种组合。
优选地,所述步骤(4)中水溶性高聚物溶液的质量分数为5%~12%。
优选地,所述步骤(5)中采用浇铸法制备复合膜,将装有混合液的聚丙烯或聚偏氟乙烯或聚乙烯模具放置在温度为25~40℃,相对湿度为40~60%的恒温恒湿箱中,平衡干燥6~24h。
本发明中,利用醛试剂和醇胺试剂的醛基和氨基反应,生成亚胺基团,合成席夫碱。该类席夫碱有一定的抗菌性能,用其改性蛋白复合膜可提高复合膜的抗菌性能。此外,所选用的醛试剂和醇胺试剂均为小分子化合物,合成的席夫碱会同时带有丰富的羟基,具有增塑剂的作用。
与现有技术相比,本发明的有益效果如下:
本发明合成的既含有亚胺基又含有羟基的小分子席夫碱,可以同时作为抗菌剂和增塑剂作用于蛋白复合膜,提高蛋白膜的抗菌能力和机械性能。本发明的实施将原本需要两道改性工序和两种改性剂优化为为一道改性工序和一种改性剂,提高蛋白复合膜的性能,降低了生产成本,简化蛋白膜成分。本发明的产品可以应用于食品包装塑料和医用伤口敷料领域。
附图说明
附图1为本发明实施例2与对照例1的外观图。
附图2为本发明实施例1的微观形貌图。
附图3为本发明实施例2的微观形貌图。
附图4为本发明对照例1的微观形貌图。
附图5为本发明对照例3的微观形貌图。
附图6为本发明实施例1、实施例2、对照例1、对照例2与对照例3的抗菌性能。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
(1)合成醛胺缩合席夫碱:
S1:将15.215 g香草醛和100 mL无水乙醇加入到三口烧瓶中,在氮气保护下搅拌均匀;
S2:加热至无水乙醇持续回流状态,缓慢滴加6.04 mL乙醇胺,滴加完反应一段时间后停止加热;
S3:将反应液在50℃下进行旋转蒸发处理,除去反应液中的无水乙醇,得到醛胺缩合席夫碱;
(2)将棉籽蛋白粉溶解于PH值为10的碱溶液中,搅拌均匀,得到6%棉籽蛋白溶液;
(3)醛胺缩合席夫碱加入棉籽蛋白溶液中,40℃下搅拌30min,得到醛胺缩合席夫碱改性棉籽蛋白液;
(4)将6%聚乙烯醇溶液加入醛胺缩合席夫碱改性蛋白液中,搅拌均匀,得到混合液;
(5)通过浇铸法制得醛胺缩合席夫碱改性蛋白复合膜。将装有混合液的聚丙烯模具放置在温度为25℃,相对湿度为50%的恒温恒湿箱中,平衡干燥12h;
其中,棉籽蛋白与聚乙烯醇的质量比为5:5,醛胺缩合席夫碱加入量为棉籽蛋白与聚乙烯醇总固体质量的10%。
实施例2
(1)合成醛胺缩合席夫碱:
S1:将15.215 g香草醛和100 mL无水乙醇加入到三口烧瓶中,在氮气保护下搅拌均匀;
S2:加热至无水乙醇持续回流状态,缓慢滴加6.04 mL乙醇胺,滴加完反应一段时间后停止加热;
S3:将反应液在50℃下进行旋转蒸发处理,除去反应液中的无水乙醇,得到醛胺缩合席夫碱;
(2)将棉籽蛋白粉溶解于pH值为10的碱溶液中,搅拌均匀,得到6%棉籽蛋白溶液;
(3)将醛胺缩合席夫碱加入棉籽蛋白溶液中,40℃下搅拌30min,得到醛胺缩合席夫碱改性棉籽蛋白液;
(4)将6%聚乙烯醇溶液加入醛胺缩合席夫碱改性蛋白液中,搅拌均匀,得到混合液;
(5)通过浇铸法制得醛胺缩合席夫碱改性蛋白复合膜。将装有混合液的聚丙烯模具放置在温度为25℃,相对湿度为50%的恒温恒湿箱中,平衡干燥12h;
其中,棉籽蛋白与聚乙烯醇的质量比为5:5,醛胺缩合席夫碱加入量为棉籽蛋白与聚乙烯醇总固体质量的20%。
对照例1
(1)将棉籽蛋白粉溶解于PH值为10的碱溶液中,搅拌均匀,得到6%棉籽蛋白溶液;
(2)将6%聚乙烯醇溶液加入6%棉籽蛋白液中,搅拌均匀,得到混合液;
(3)将通过浇铸法制得棉籽蛋白复合膜。将装有混合液的聚丙烯模具放置在温度为25℃,相对湿度为50%的恒温恒湿箱中,平衡干燥12h;
其中,棉籽蛋白与聚乙烯醇的质量比为5:5。
对照例2
(1)合成醛胺缩合席夫碱:
S1:将15.215 g香草醛和100 mL无水乙醇加入到三口烧瓶中,在氮气保护下搅拌均匀;
S2:加热至无水乙醇持续回流状态,缓慢滴加6.04 mL乙醇胺,滴加完反应一段时间后停止加热;
S3:将反应液在50℃下进行旋转蒸发处理,除去反应液中的无水乙醇,得到醛胺缩合席夫碱;
(2)将棉籽蛋白粉溶解于PH值为10的碱溶液中,搅拌均匀,得到6%棉籽蛋白溶液;
(3)将醛胺缩合席夫碱加入棉籽蛋白溶液中,40℃下搅拌30min,得到醛胺缩合席夫碱改性棉籽蛋白液;
(4)将6%聚乙烯醇溶液加入醛胺缩合席夫碱改性蛋白液中,搅拌均匀,得到混合液;
(5)通过浇铸法制得醛胺缩合席夫碱改性蛋白复合膜。将装有混合液的聚丙烯模具放置在温度为25℃,相对湿度为50%的恒温恒湿箱中,平衡干燥12h;
其中,棉籽蛋白与聚乙烯醇的质量比为5:5,醛胺缩合席夫碱加入量为棉籽蛋白与聚乙烯醇总固体质量的3%。
对照例3
(1)合成醛胺缩合席夫碱:
S1:将15.215 g香草醛和100 mL无水乙醇加入到三口烧瓶中,在氮气保护下搅拌均匀;
S2:加热至无水乙醇持续回流状态,缓慢滴加6.04 Ml乙醇胺,滴加完反应一段时间后停止加热;
S3:将反应液在50℃下进行旋转蒸发处理,除去反应液中的无水乙醇,得到醛胺缩合席夫碱;
(2)将棉籽蛋白粉溶解于PH值为10的碱溶液中,搅拌均匀,得到6%棉籽蛋白溶液;
(3)将醛胺缩合席夫碱加入棉籽蛋白溶液中,40℃下搅拌30min,得到醛胺缩合席夫碱改性棉籽蛋白液;
(4)将6%聚乙烯醇溶液加入醛胺缩合席夫碱改性蛋白液中,搅拌均匀,得到混合液;
(5)通过浇铸法制得醛胺缩合席夫碱改性蛋白复合膜。将装有混合液的聚丙烯模具放置在温度为25℃,相对湿度为50%的恒温恒湿箱中,平衡干燥12h;
其中,棉籽蛋白与聚乙烯醇的质量比为5:5,醛胺缩合席夫碱加入量分别为原料总固体质量的5%。
以同批提取的棉籽蛋白和同型号的聚乙烯醇为原料,以同批合成的醛胺缩合席夫碱为改性剂,分别按照实施例1、实施例2、对照例1、对照例2和对照例3所述方法制备醛胺缩合席夫碱改性蛋白复合膜(制得的样品分别记为①CP-10SF、②CP-20SF、③CP-0SF、④CP-3SF、⑤CP-5SF),并对其机械性能和抗菌性能进行测定,结果如表1、附图1、附图2和附图3。
外观测试:采用数码相机拍照样品外观。
微观形貌测试:剪取一小块样品贴在粘有导电胶的样品台上,对样品进行喷金处理后,在加速电压为10kV的扫描电镜下对样品的微观形貌进行观察。
机械性能测试:将样品裁剪成75mm×10mm的尺寸,夹具间距为40mm,拉伸速率为5mm/min,每个试样测3次取平均值。
抗菌性能测试:将膜样品裁剪成直径为8 mm的小圆片,采用紫外灭菌灯对样品两面各杀菌1 h。将适量的金黄色葡萄球菌 (S aureus)接种于琼脂培养基平板上,并在菌液涂布均匀后将样品分别平铺于培养基上的不同区域。在37°C的恒温培养箱中培养24 h,采用游标卡尺测量抑菌圈大小。
表1为各样品的机械性能检测结果。
样品 断裂伸长率(%) 抗拉强度(MPa)
①CP-10SF 156.50 7.06
②CP-20SF 262.83 4.16
③CP-0SF 10.17 9.57
④CP-3SF 14.00 8.67
⑤CP-5SF 49.67 7.83
实施例2与对照例1相对比,对照例1样品为不使用醛胺缩合席夫碱的棉籽蛋白复合膜,其外观为棕黄色透明薄膜,表面较为平滑。实施例2为使用20%醛胺缩合席夫碱改性棉籽蛋白复合膜,其外观为深棕色透明度较低的薄膜,表面可见相对粗糙的细纹,呈金属光泽。
实施例1、实施例2、对照例1与对照例3相对比,在微观形貌方面,对照例1样品表面形貌稍有粗糙,有部分小颗粒与小气泡状形貌。对照例3样品表面形貌相对平整,未见小颗粒析出,仅有少量气泡存在。这是因为醛胺缩合席夫碱分子中存在羟基结构,具有小分子醇类增塑剂相同的增塑、增溶效果,当醛胺缩合席夫碱与棉籽蛋白、聚乙烯醇作用时能够增加它们之间的相容性。实施例1与实施例2样品表面生长了一些长条晶体状物质,外观上可呈金属光泽。
实施例1、实施例2、对照例1对照例2与对照例3相对比,在机械性能方面,随着醛胺缩合席夫碱的使用量逐渐增加,实施例2的断裂伸长率大于实施例1的断裂伸长率,实施例1的断裂伸长率大于对照例2,对照例2的断裂伸长率大于对照例1,对照例3的断裂伸长率大于对照例2而它们的抗拉强度有与断裂伸长率相反的结果。这是因为本发明合成的醛胺缩合席夫碱分子中含有羟基等亲水基团,其可与棉籽蛋白复合膜分子链形成氢键作用力,从而削弱棉籽蛋白与聚乙烯醇分子见原本氢键作用,降低复合膜的抗拉强度。此外,醛胺缩合席夫碱分子量较小,可以进入棉籽蛋白/聚乙烯醇大分子链之间,从而增大分子链间的距离,促使大分子链段具备更大的相对滑动性形成较大的断裂伸长率。因此,醛胺缩合席夫碱能充当小分子醇类增塑剂的作用,有效提高CP/PVA复合膜的柔韧性。
实施例1、实施例2、对照例1、对照例2与对照例3相对比,抗菌性能方面,对照例1、对照例2、对照例3的样品对金黄色葡萄球菌没有明显的抑制作用,而实施例1与实施例2的样品对金黄色葡萄球菌表现出明显的抑制活性,其中实施例1样品的抑菌圈直径为1.7 cm,实施例2抑菌圈的直径达到2.9cm。这证明通过醛胺缩合席夫碱改性可以赋予棉籽蛋白复合膜抗菌性能。
通过对实施例1-2与对比例1-3样品的性能对比,可以确定醛胺缩合席夫碱能够改性蛋白复合膜,提高蛋白复合膜的机械性能和抗菌性能。而醛胺缩合席夫碱添加量大于10%时,才能有效赋予蛋白复合膜抗菌性能。
以上对本发明实施例所提供的技术方案进行了详细介绍,本文中应用了具体个例对本发明实施例的原理以及实施方式进行了阐述,以上实施例的说明只适用于帮助理解本发明实施例的原理;同时,对于本领域的一般技术人员,依据本发明实施例,在具体实施方式以及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (5)

1.一种醛胺缩合席夫碱改性蛋白复合膜的制备方法,其特征在于,包括以下步骤:
(1)合成醛胺缩合席夫碱:
S1:将醛试剂和无水乙醇加入到三口烧瓶中,在氮气保护下搅拌均匀;
S2:加热至无水乙醇持续回流状态,缓慢滴加醇胺类试剂,滴加完反应一段时间后停止加热;
S3:将反应液在50 ℃下进行旋转蒸发处理,除去反应液中的无水乙醇,得到醛胺缩合席夫碱;
(2)将蛋白粉溶解于pH值为8~10的碱溶液中,搅拌均匀,得到蛋白溶液;
(3)将醛胺缩合席夫碱加入蛋白溶液中,40~60 ℃下搅拌20~60 min,得到醛胺缩合席夫碱改性蛋白液;
(4)将水溶性高聚物溶液加入醛胺缩合席夫碱改性蛋白液中,搅拌均匀,得到混合液;
(5)通过浇铸法制得醛胺缩合席夫碱改性蛋白复合膜;
其中,蛋白粉和水溶性高聚物的质量比为9:1~1:9;醛胺缩合席夫碱加入量为蛋白粉和水溶性高聚物总固体质量的10%~50%;
所述步骤(1)醛试剂为香草醛或甲醛或乙醛或戊二醛,所述步骤(1)醇胺类试剂为乙醇胺或丙醇胺;
所述步骤(1)滴加醇胺类试剂物质的量为所用醛试剂醛基物质的量的1~1.5倍;
所述步骤(4)中水溶性高聚物包括聚乙烯醇或聚环氧乙烷或淀粉或羧甲基纤维素的一种或多种组合。
2.根据权利要求1所述的一种醛胺缩合席夫碱改性蛋白复合膜的制备方法,其特征在于,所述步骤(2)中蛋白粉包括角蛋白或胶原蛋白或明胶或棉籽蛋白或大豆蛋白中的一种或多种组合。
3.根据权利要求1所述的一种醛胺缩合席夫碱改性蛋白复合膜的制备方法,其特征在于,所述步骤(2)中蛋白溶液质量分数为5%~15%。
4.根据权利要求1所述的一种醛胺缩合席夫碱改性蛋白复合膜的制备方法,其特征在于,所述步骤(4)中水溶性高聚物溶液的质量分数为5%~12%。
5.权利要求1所述的一种醛胺缩合席夫碱改性蛋白复合膜的制备方法,其特征在于,所述步骤(5)中采用浇铸法制备复合膜,将装有混合液的聚丙烯或聚偏氟乙烯或聚乙烯模具放置在温度为25~40 ℃,相对湿度为40~60%的恒温恒湿箱中,平衡干燥6~24 h。
CN202110525566.6A 2021-05-14 2021-05-14 一种醛胺缩合席夫碱改性蛋白复合膜的制备方法 Active CN113150562B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110525566.6A CN113150562B (zh) 2021-05-14 2021-05-14 一种醛胺缩合席夫碱改性蛋白复合膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110525566.6A CN113150562B (zh) 2021-05-14 2021-05-14 一种醛胺缩合席夫碱改性蛋白复合膜的制备方法

Publications (2)

Publication Number Publication Date
CN113150562A CN113150562A (zh) 2021-07-23
CN113150562B true CN113150562B (zh) 2022-10-04

Family

ID=76875021

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110525566.6A Active CN113150562B (zh) 2021-05-14 2021-05-14 一种醛胺缩合席夫碱改性蛋白复合膜的制备方法

Country Status (1)

Country Link
CN (1) CN113150562B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115212358B (zh) * 2022-06-16 2023-09-22 健诺维(成都)生物科技有限公司 一种用于眼科治疗的引流管新材料及其制备方法
CN115053909B (zh) * 2022-06-22 2024-04-19 湖南工业大学 一种生物基绿色复合抗菌剂及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106633120B (zh) * 2016-10-19 2018-10-30 重庆大学 一种壳聚糖交联醇溶蛋白的制备方法

Also Published As

Publication number Publication date
CN113150562A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
Haider et al. A novel use of cellulose based filter paper containing silver nanoparticles for its potential application as wound dressing agent
CN113150562B (zh) 一种醛胺缩合席夫碱改性蛋白复合膜的制备方法
Mehrabani et al. Preparation of biocompatible and biodegradable silk fibroin/chitin/silver nanoparticles 3D scaffolds as a bandage for antimicrobial wound dressing
Moritz et al. Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine
Kingkaew et al. Effect of molecular weight of chitosan on antimicrobial properties and tissue compatibility of chitosan-impregnated bacterial cellulose films
EP2454286B1 (en) Chitosan hydrogel derivatives as a coating agent with broad spectrum of antimicrobial activities
Shanmugapriya et al. Fabrication of multifunctional chitosan-based nanocomposite film with rapid healing and antibacterial effect for wound management
Tsao et al. Antibacterial activity and biocompatibility of a chitosan–γ-poly (glutamic acid) polyelectrolyte complex hydrogel
Yu et al. Preparation, characterization, and antibacterial properties of biofilms comprising chitosan and ε-polylysine
Ul-Islam et al. Ex situ synthesis and characterization of high strength multipurpose bacterial cellulose-aloe vera hydrogels
CN110818955B (zh) 一种mof负载原花青素抑菌膜及其制备方法
CN109369948B (zh) 一种细菌纤维素/聚乙烯醇抗菌水凝胶及其制备方法和应用
Simões et al. Biofunctionalization of electrospun poly (caprolactone) fibers with Maillard reaction products for wound dressing applications
Zhang et al. Surface biocompatible modification of polyurethane by entrapment of a macromolecular modifier
Fan et al. Preparation and characterization of antibacterial polyvinyl alcohol/chitosan sponge and potential applied for wound dressing
Suneetha et al. Cell/Tissue Adhesive, Self‐Healable, Biocompatible, Hemostasis, and Antibacterial Hydrogel Dressings for Wound Healing Applications
CN108498878B (zh) 一种具有“三明治”夹心结构的生物医用水凝胶涂层及其制备方法
Yang et al. Biocompatibility of epoxidized styrene–butadiene–styrene block copolymer membrane
Rana et al. Tensile properties, cell adhesion, and drug release behavior of chitosan-silver-gelatin nanohybrid films and scaffolds
JP2008127510A (ja) バクテリアセルロースと有機高分子からなる複合材料
Liu et al. Crosslinking of collagen using a controlled molecular weight bio-crosslinker: β-cyclodextrin polyrotaxane multi-aldehydes
Gonçalves et al. Preparation and characterization of a novel antimicrobial film dressing for wound healing application
Zarafshan et al. A novel biocompatible and biodegradable electrospun nanofibers containing M. Neglectum: Antifungal properties and in vitro investigation
Srivastava et al. Dextrose modified flexible tasar and muga fibroin films for wound healing applications
Miralaei et al. Design, fabrication, evaluation, and in vitro study of green biomaterial and antibacterial polymeric biofilms of polyvinyl alcohol/tannic acid/CuO/SiO2

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant