CN113147772A - 一种半挂汽车列车全工况铰接角度状态估计方法 - Google Patents

一种半挂汽车列车全工况铰接角度状态估计方法 Download PDF

Info

Publication number
CN113147772A
CN113147772A CN202110473213.6A CN202110473213A CN113147772A CN 113147772 A CN113147772 A CN 113147772A CN 202110473213 A CN202110473213 A CN 202110473213A CN 113147772 A CN113147772 A CN 113147772A
Authority
CN
China
Prior art keywords
tractor
semi
condition
trailer train
articulation angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110473213.6A
Other languages
English (en)
Other versions
CN113147772B (zh
Inventor
夏光
赵名卓
张洋
张华磊
陈建杉
夏岩
魏志祥
刘贤阳
施展
盛楠
汪韶杰
孙保群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202110473213.6A priority Critical patent/CN113147772B/zh
Publication of CN113147772A publication Critical patent/CN113147772A/zh
Application granted granted Critical
Publication of CN113147772B publication Critical patent/CN113147772B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D53/00Tractor-trailer combinations; Road trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/14Trailers, e.g. full trailers, caravans
    • B60W2300/145Semi-trailers

Abstract

本发明公开了一种半挂汽车列车全工况铰接角度状态估计方法,是根据半挂汽车列车在不同行驶工况下对于铰接角度估计器带来的非线性扰动,通过确定估计器非线性扰动过大的判定条件,从而针对非线性扰动类型的不同,提出了一种全工况多模型信息融合的估计策略,继而可以对前进低速、高速以及倒车工况分类进行精准估计,从而能应用于不同的研究方向:高速时刻的稳定性分析与控制、倒车时刻的轨迹跟踪控制、倒车时刻的轨迹预测与实时影像显示等。

Description

一种半挂汽车列车全工况铰接角度状态估计方法
技术领域
本发明属于半挂车转向与安全控制领域,具体的说是一种半挂汽车列车全工况铰接角度状态估计方法。
背景技术
近十几年来,随着国家公路网的不断完善,公路运输已然成为综合运输体系中的一个重要运输模式,而具有载重量大、运输效率高、节油性好和运输成本低优点的各类半挂汽车列车越来越受社会的重视,已成为全球范围内的公路货运主力。
而在实际工作的半挂汽车列车当中,存在于牵引车与半挂车之间的铰接装置因为工作环境恶劣、承受较大的力和力矩、可利用空间极小的特点,往往没办法安装传统的角度传感器。即使能够安装非传统角度传感器,也存在着精度不足,费用过高等问题。
因此在半挂汽车列车倒车控制中存在有铰接角度传感器极难安装的问题(在以往的试验中往往选择的是拉线位移传感器,利用长度转角度进行标定的方式获取铰接角度)。这样获取的铰接角度数值,非常考验标定的精度,而且容易产生大量的测量噪声。同时,这样非传统的铰接角度传感器也使得安装成本大大增加。这样的成本对于产品化来说是无法接受的。
因此为了取消铰接角度传感器,产业化过程中需要一种能够在全工况(既包括前进,又包括倒车)情况下都能保证较高精度的铰接角度估计策略。
随着我国运输节奏不断加快,市场对于物流运输效率的期望日益提升,半挂汽车列车倒车辅助技术的重要性也日益凸显。基于以上的需求,一个精准有效的铰接角度估计器对于半挂汽车列车倒车安全与诱导控制来说是非常有必要的。全工况的铰接角度估计将会是今后的必然趋势。
发明内容
本发明是为了解决上述现有技术存在的不足之处,提出一种半挂汽车列车全工况铰接角度状态估计方法,以期能通过不同的解决方案,实现对于全工况下的半挂汽车列车铰接角度状态估计,从而能够取代传统的昂贵且不实用的传统铰接角度传感器,继而提升半挂汽车列车安全性、智能性,为半挂汽车列车辅助驾驶技术以及自动驾驶技术的发展提供一个有效的接口。
本发明为达到上述发明目的,采用如下技术方案:
本发明一种半挂汽车列车全工况铰接角度的状态估计方法的特点是按如下步骤进行:
步骤1、获取半挂汽车列车的行驶方向及运行车速;
步骤2、确定非线性扰动过大的工况及条件;
步骤2.1、利用式(1)定义轮胎的相对侧偏刚度ke
Figure BDA0003046324830000021
式(1)中:F代表轮胎的侧向力;α代表轮胎的侧偏角;
步骤2.2、根据所述相对侧偏刚度ke,确定轮胎的非线性度阈值ay1max
步骤2.3、当半挂汽车列车处于倒车行驶的条件时,或者,当半挂汽车列车处于前进行驶时且牵引车侧向加速度绝对值大于等于ay1max的条件时,定为非线性扰动过大的工况;
步骤3、针对于不同工况下所产生的非线性扰动构建不同的铰接角度估计器用于估计全工况铰接角度。
本发明所述的全工况铰接角度的状态估计方法的特点在于,所述步骤2.2中的轮胎的非线性度阈值ay1max是按以下方法确定:
步骤2.2.1、假设半挂汽车列车在不同车速下通过同一道路,且所述道路上存在轮胎非线性度过大的现象;
步骤2.2.2、当相对侧偏刚度ke的绝对值大于等于所设定的阈值时,表示所述相对侧偏刚度ke为有效数据,并定义当前时刻为有效时刻,执行步骤步骤2.2.3;
步骤2.2.3、从有效时刻开始实时采集若干组相对侧偏刚度,并用最小二乘法对所采集的数据进行线性规划,得到线性规划的变化率k的绝对值并作为标准非线性度;若采集的数据在到达极值时的未满足数据量的要求,则重新执行步骤2.2.2;
步骤2.2.4、当|k(ti)|≥2|k|时,则表示第i个有效时刻ti下存在轮胎非线性扰动过大的现象,并定义第i个有效时刻ti为估计器失效时刻,执行步骤2.2.5,其中,k(ti)表示第i个有效时刻ti下的相对侧偏刚度的变化率;
步骤2.2.5、将每个估计器失效时刻下所测量的不同车速的牵引车侧向加速度的绝对值均值作为ay1max
所述步骤3中的估计策略是按以下方法得到:
步骤3.1、若未处于非线性扰动过大的工况时,用半挂汽车列车的状态空间方程构建卡尔曼滤波的铰接角度状态估计器;
若处于非线性扰动过大的工况且半挂汽车列车处于倒车行驶的条件时,则执行步骤3.2;
若处于非线性扰动过大的工况且半挂汽车列车处于前进行驶的条件时,则执行步骤3.3;
步骤3.2、利用式(2)构建侧偏刚度估计器,并将估计的侧偏刚度Cα嵌入所述铰接角度状态估计器,从而得到嵌入后的铰接角度状态估计器:
Figure BDA0003046324830000031
式(2)中,Cα表示轮胎的侧偏刚度,F为轮胎各轴侧向力的向量矩阵;α为轮胎各轴侧偏角的向量矩阵,并有:
F=ma=(m1+m2)(ay1+ay2_y) (3)
Figure BDA0003046324830000032
式(4)中,δ为牵引车的前轮外侧转角,v为牵引车的侧向速度,u为牵引车的纵向速度,
Figure BDA0003046324830000033
为牵引车的横摆角速度,a为牵引车转向轴距离质心的距离,b1为牵引车质心距离第二轴的距离,b2为牵引车质心距离第三轴的距离,c为牵引车质心距离铰接点的距离,γ为牵引车与半挂车之间的铰接角度,L1为铰接点距离第四轴的距离,L2为铰接点距离第五轴的距离;
式(3)中,ay1为牵引车的侧向加速度,ay2_y为半挂车相对于整个半挂汽车列车的等效加速度,并有:
Figure BDA0003046324830000034
式(5)中,
Figure BDA0003046324830000035
为牵引车的横摆角加速度,d为铰接点距离半挂车质心的距离,m1为牵引车的质量,m2为半挂车的质量;
步骤3.3、利用式(6)所示的运动学模型作为所述铰接角度状态估计器的输入,从而得到信息融合后的铰接角度状态估计器:
Figure BDA0003046324830000036
式(6)中,
Figure BDA0003046324830000041
为铰接角度的变化率,Lf为半挂车的等效轴距,其值为
Figure BDA0003046324830000042
与现有技术相比,本发明的有益效果在于:
1、本发明通过密码学中非线性度的概念对非线性特征与加速度之间的关系进行分析,确定了在传统铰接角度状态估计器在不同工况下非线性扰动过大的判定条件,从而能够针对不同工况下的不同特征执行不同的铰接角度估计策略。
2、实际过程中,因为牵引车与半挂车的铰接位置可利用空间小,工作环境恶劣,行驶过程中承受巨大的力和力矩,使得传统的角度传感器几乎无法正常安装。而采取一些非常规的传感器获取铰接角度,一方面是这种方法通常都要实现其他度量单位与角度的转化而导致的精度不够以及相应的累积误差,另一方面则是成本高昂,安装复杂,考虑实际半挂汽车列车的使用需求,所以可行性不高。而本发明提出的一种半挂汽车列车全工况铰接角度状态估计方法,无需额外添加任何附加装置,仅通过数值状态估计的方式即可获取全工况下的铰接角度数值。
3、本发明通过分工况、多模型的信息融合技术,可以在全工况下获取精准的铰接角度数值;未来可以应用于不同的技术方向:高速时刻的稳定性分析与控制、倒车时刻的轨迹跟踪控制、倒车时刻的轨迹预测与实时影像显示等。通过本发明全工况下精准的铰接角度估计在不同方向上共同完善半挂汽车列车的辅助驾驶技术,从而加速半挂汽车列车智能化、自动化进程。
附图说明
图1为本发明确定非线性扰动的算法示意图。
图2为本发明铰接点与半挂车的运动学关系示意图;
图3为本发明全工况多模型状态估计策略示意图。
具体实施方式
本实施例中,一种半挂汽车列车全工况铰接角度状态估计方法,是通过确定传统铰接角度状态估计器在不同工况下,非线性扰动过大的判断条件。通过不同工况下的状态估计器非线性扰动过大的不同原因执行不同的铰接角度估计策略,从而实现半挂汽车列车铰接角度的全工况精准估计,具体地说,是按如下步骤进行:
步骤1、获取半挂汽车列车的行驶方向及运行车速,用来判断半挂汽车列车此时处于何种工况,以确定相应的非线性扰动特征;
步骤2、传统的半挂汽车列车铰接角度估计器在高速和倒车时,往往会因为估计器中的非线性扰动过大而失去应有的估计效果,所以在进行全工况的铰接角度估计时,首先需要确定非线性扰动过大的工况及条件,具体地说,是按以下方法确定:
步骤2.1、本方案认为估计器中的非线性扰动是由轮胎侧偏刚度在高速及高侧滑状况下产生的,因此考虑利用式(1)定义轮胎的相对侧偏刚度ke,其中,|α|+1是为了防止计算过程中奇点的出现:
Figure BDA0003046324830000051
式(1)中:F代表轮胎的侧向力;α代表轮胎的侧偏角;
步骤2.2、根据所述相对侧偏刚度ke,确定轮胎的非线性度阈值ay1max,具体地说,是按以下方法确定:
步骤2.2.1、假设半挂汽车列车在不同车速下通过同一道路,且所述道路上存在轮胎非线性度过大的现象,即:(1)道路中的附着系数需要足够大;(2)半挂汽车列车的速度与转向角度需要达到可以使轮胎侧偏刚度进入强非线性区;
步骤2.2.2、此时需要通过相对侧偏刚度数值的变化判断轮胎的非线性扰动是否过大,本方案参考密码学中非线性度的定义,当相对侧偏刚度ke的绝对值大于等于所设定的阈值时,表示所述相对侧偏刚度ke为有效数据,本方法设定相对侧偏刚度ke的绝对值的阈值为50N/deg,因为低于此值的相对侧偏刚度很容易受到数值计算波动的影响,并定义当前时刻为有效时刻,执行步骤步骤2.2.3;
步骤2.2.3、从有效时刻开始实时采集若干组(在本方案中,要求相对侧偏刚度的数据量不得少于100组,因为本方法是利用实时相对侧偏刚度数据的变化率与总有效数据作线性规划后的变化率作对比,来判断侧偏刚度的非线性度。少于100组数据,意味着相对侧偏刚度很可能处于某一个局部小极值,从而对变化率的判断产生较大误差)相对侧偏刚度,并用最小二乘法对所采集的数据进行线性规划,得到线性规划的变化率k的绝对值并作为标准非线性度;若采集的数据在到达极值时的未满足数据量的要求(即相对侧偏刚度数据既要满足未到极值的约束,又要满足100组数据量的约束),则重新执行步骤2.2.2;
步骤2.2.4、当|k(ti)|≥2|k|时,则表示第i个有效时刻ti下存在轮胎非线性扰动过大的现象,并定义第i个有效时刻ti为估计器失效时刻,执行步骤2.2.5,其中,k(ti)表示第i个有效时刻ti下的相对侧偏刚度的变化率,其具体的非线性扰动判断步骤流程图如图1所示;
步骤2.2.5、ti时刻后,传统的估计器即会失去对于铰接角度的精准估计,而本方法是希望找寻估计器失效与相关参数之间的定量普遍关系,而不是仅仅发现估计器何时失效。因此,在大量的试验过程中,本方法发现牵引车侧向加速度的绝对值均值与轮胎的非线性扰动存在有相应的量化映射关系。因此,本方案将每个估计器失效时刻下所测量的不同车速的牵引车侧向加速度的绝对值均值作为ay1max
步骤2.3、当半挂汽车列车处于倒车行驶的条件时,此时不论半挂汽车列车的速度如何,由于轮胎会产生大量的侧滑量,即轮胎始终处于高度非线性的状态,因此:当半挂汽车列车处于倒车行驶的条件时,或者,当半挂汽车列车处于前进行驶时且牵引车侧向加速度绝对值大于等于ay1max的条件时,定为非线性扰动过大的工况;
步骤3、针对于不同工况下所产生的非线性扰动构建不同的铰接角度估计器用于估计全工况铰接角度,具体地说,是按以下方法确定:
步骤3.1、若未处于非线性扰动过大的工况时,用半挂汽车列车的状态空间方程构建卡尔曼滤波的铰接角度状态估计器,此处属于本领域常用的技术常识,此处不作赘述;
若处于非线性扰动过大的工况且半挂汽车列车处于倒车行驶的条件时,则执行步骤3.2;
若处于非线性扰动过大的工况且半挂汽车列车处于前进行驶的条件时,则执行步骤3.3;
步骤3.2、当车辆前进高速转向使得轮胎特性进入强非线性区域时,利用式(2)构建侧偏刚度估计器,并将估计的侧偏刚度Cα嵌入所述铰接角度状态估计器,从而得到嵌入后的铰接角度状态估计器(值得注意的是:在所有时刻(如低中速前进行驶,侧偏刚度非线性特性不强的工况)对轮胎侧偏刚度进行估计并不是更优的解决方法。一方面是因为嵌套估计器对控制器的计算能力提出了相当高的要求,并不适合长时间的实时高频率计算;另一方面是因为以现有的方法对侧偏刚度进行估计的精度并不高。因此这样的方法更适合用在线性侧偏刚度估计器失去精度,并且实际使用中频率极低、持续观测时间不长的工况(前进高速转向和倒车)):
Figure BDA0003046324830000061
式(2)中,Cα表示轮胎的侧偏刚度,F为轮胎各轴侧向力的向量矩阵;α为轮胎各轴侧偏角的向量矩阵,并有:
F=ma=(m1+m2)(ay1+ay2_y) (3)
Figure BDA0003046324830000071
式(4)中,δ为牵引车的前轮外侧转角,v为牵引车的侧向速度,u为牵引车的纵向速度,
Figure BDA0003046324830000072
为牵引车的横摆角速度,a为牵引车转向轴距离质心的距离,b1为牵引车质心距离第二轴的距离,b2为牵引车质心距离第三轴的距离,c为牵引车质心距离铰接点的距离,γ为牵引车与半挂车之间的铰接角度,L1为铰接点距离第四轴的距离,L2为铰接点距离第五轴的距离;
式(3)中,ay1为牵引车的侧向加速度,ay2_y为半挂车相对于整个半挂汽车列车的等效加速度,并有:
Figure BDA0003046324830000073
又因为半挂车相对于整体有ψ和γ两个方向上的角位移。因此:式(5)中,
Figure BDA0003046324830000074
为牵引车的横摆角加速度,d为铰接点距离半挂车质心的距离,m1为牵引车的质量,m2为半挂车的质量;
步骤3.3、当车辆倒车行驶使得侧偏刚度波动剧烈时,此时即使侧偏刚度估计器能够完成完美的估计(直接以真实值进行铰接角度的估计),其剧烈的波动依旧会使得铰接角度估计器鲁棒性不高,且极容易受到干扰噪声的影响。因此本方法通过如图2所示的运动学关系抽离出了一种运动学方程,如式(6)。利用式(6)所示的运动学模型作为所述铰接角度状态估计器的输入,从而得到信息融合后的铰接角度状态估计器:
Figure BDA0003046324830000075
式(6)中,
Figure BDA0003046324830000076
为铰接角度的变化率,Lf为半挂车的等效轴距,其值为
Figure BDA0003046324830000077
其中铰接点的横向与纵向速度是作为铰接角度估计器的预测值输出,保留一定的动力学特性(以减小轮胎侧偏角对运动学模型的精度影响)。
同时,将
Figure BDA0003046324830000078
在离散时间内累加得到实时的γ。再以
Figure BDA0003046324830000079
和γ为滤波器中另外两个信息融合输入(除
Figure BDA0003046324830000081
外),对系统动力学模型进行倒车自适应修正。这样的修正也会在一定程度上消除轮胎侧偏角因素对运动学模型的扰动。
综上所述,本申请提出的一种半挂汽车列车全工况铰接角度状态估计方法可以针对不同工况所产生非线性扰动特性的不同执行不同的估计策略,从而得到全工况下的精准铰接角度数值。其具体的策略示意图如图3所示。

Claims (3)

1.一种半挂汽车列车全工况铰接角度的状态估计方法,其特征是按如下步骤进行:
步骤1、获取半挂汽车列车的行驶方向及运行车速;
步骤2、确定非线性扰动过大的工况及条件;
步骤2.1、利用式(1)定义轮胎的相对侧偏刚度ke
Figure FDA0003046324820000011
式(1)中:F代表轮胎的侧向力;α代表轮胎的侧偏角;
步骤2.2、根据所述相对侧偏刚度ke,确定轮胎的非线性度阈值ay1max
步骤2.3、当半挂汽车列车处于倒车行驶的条件时,或者,当半挂汽车列车处于前进行驶时且牵引车侧向加速度绝对值大于等于ay1max的条件时,定为非线性扰动过大的工况;
步骤3、针对于不同工况下所产生的非线性扰动构建不同的铰接角度估计器用于估计全工况铰接角度。
2.根据权利要求1所述的全工况铰接角度的状态估计方法,其特征在于,所述步骤2.2中的轮胎的非线性度阈值ay1max是按以下方法确定:
步骤2.2.1、假设半挂汽车列车在不同车速下通过同一道路,且所述道路上存在轮胎非线性度过大的现象;
步骤2.2.2、当相对侧偏刚度ke的绝对值大于等于所设定的阈值时,表示所述相对侧偏刚度ke为有效数据,并定义当前时刻为有效时刻,执行步骤步骤2.2.3;
步骤2.2.3、从有效时刻开始实时采集若干组相对侧偏刚度,并用最小二乘法对所采集的数据进行线性规划,得到线性规划的变化率k的绝对值并作为标准非线性度;若采集的数据在到达极值时的未满足数据量的要求,则重新执行步骤2.2.2;
步骤2.2.4、当|k(ti)|≥2|k|时,则表示第i个有效时刻ti下存在轮胎非线性扰动过大的现象,并定义第i个有效时刻ti为估计器失效时刻,执行步骤2.2.5,其中,k(ti)表示第i个有效时刻ti下的相对侧偏刚度的变化率;
步骤2.2.5、将每个估计器失效时刻下所测量的不同车速的牵引车侧向加速度的绝对值均值作为ay1max
3.根据权利要求1所述的全工况铰接角度状态估计方法,其特征在于,所述步骤3中的估计策略是按以下方法得到:
步骤3.1、若未处于非线性扰动过大的工况时,用半挂汽车列车的状态空间方程构建卡尔曼滤波的铰接角度状态估计器;
若处于非线性扰动过大的工况且半挂汽车列车处于倒车行驶的条件时,则执行步骤3.2;
若处于非线性扰动过大的工况且半挂汽车列车处于前进行驶的条件时,则执行步骤3.3;
步骤3.2、利用式(2)构建侧偏刚度估计器,并将估计的侧偏刚度Cα嵌入所述铰接角度状态估计器,从而得到嵌入后的铰接角度状态估计器:
Figure FDA0003046324820000021
式(2)中,Cα表示轮胎的侧偏刚度,F为轮胎各轴侧向力的向量矩阵;α为轮胎各轴侧偏角的向量矩阵,并有:
F=ma=(m1+m2)(ay1+ay2_y) (3)
Figure FDA0003046324820000022
式(4)中,δ为牵引车的前轮外侧转角,v为牵引车的侧向速度,u为牵引车的纵向速度,
Figure FDA0003046324820000023
为牵引车的横摆角速度,a为牵引车转向轴距离质心的距离,b1为牵引车质心距离第二轴的距离,b2为牵引车质心距离第三轴的距离,c为牵引车质心距离铰接点的距离,γ为牵引车与半挂车之间的铰接角度,L1为铰接点距离第四轴的距离,L2为铰接点距离第五轴的距离;
式(3)中,ay1为牵引车的侧向加速度,ay2_y为半挂车相对于整个半挂汽车列车的等效加速度,并有:
Figure FDA0003046324820000024
式(5)中,
Figure FDA0003046324820000025
为牵引车的横摆角加速度,d为铰接点距离半挂车质心的距离,m1为牵引车的质量,m2为半挂车的质量;
步骤3.3、利用式(6)所示的运动学模型作为所述铰接角度状态估计器的输入,从而得到信息融合后的铰接角度状态估计器:
Figure FDA0003046324820000031
式(6)中,
Figure FDA0003046324820000032
为铰接角度的变化率,Lf为半挂车的等效轴距,其值为
Figure FDA0003046324820000033
CN202110473213.6A 2021-04-29 2021-04-29 一种半挂汽车列车全工况铰接角度状态估计方法 Active CN113147772B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110473213.6A CN113147772B (zh) 2021-04-29 2021-04-29 一种半挂汽车列车全工况铰接角度状态估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110473213.6A CN113147772B (zh) 2021-04-29 2021-04-29 一种半挂汽车列车全工况铰接角度状态估计方法

Publications (2)

Publication Number Publication Date
CN113147772A true CN113147772A (zh) 2021-07-23
CN113147772B CN113147772B (zh) 2022-04-26

Family

ID=76872275

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110473213.6A Active CN113147772B (zh) 2021-04-29 2021-04-29 一种半挂汽车列车全工况铰接角度状态估计方法

Country Status (1)

Country Link
CN (1) CN113147772B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113548058A (zh) * 2021-09-22 2021-10-26 天津所托瑞安汽车科技有限公司 一种半挂汽车列车折叠角预测方法、设备和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060187008A1 (en) * 2005-02-04 2006-08-24 Robert Bosch Gmbh Trailer presence detection system and method
DE102007061835A1 (de) * 2007-12-20 2009-06-25 Daimler Ag Stabilisierungsverfahren für ein Fahrzeuggespann
US20160236526A1 (en) * 2015-02-17 2016-08-18 Daniel Robert Shepard Dual Purpose Hitch Sensor
CN106274907A (zh) * 2016-08-12 2017-01-04 浙江零跑科技有限公司 一种基于卡尔曼滤波的多列车铰接角视觉测量优化方法
CN109677217A (zh) * 2018-12-27 2019-04-26 魔视智能科技(上海)有限公司 牵引车与挂车偏航角的检测方法
CN111071338A (zh) * 2019-12-30 2020-04-28 合肥工业大学 一种半挂汽车列车直线稳定倒车的铰接角度确定方法
CN111532283A (zh) * 2020-05-15 2020-08-14 吉林大学 一种基于模型预测控制的半挂汽车列车的路径跟踪方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060187008A1 (en) * 2005-02-04 2006-08-24 Robert Bosch Gmbh Trailer presence detection system and method
DE102007061835A1 (de) * 2007-12-20 2009-06-25 Daimler Ag Stabilisierungsverfahren für ein Fahrzeuggespann
US20160236526A1 (en) * 2015-02-17 2016-08-18 Daniel Robert Shepard Dual Purpose Hitch Sensor
CN106274907A (zh) * 2016-08-12 2017-01-04 浙江零跑科技有限公司 一种基于卡尔曼滤波的多列车铰接角视觉测量优化方法
CN109677217A (zh) * 2018-12-27 2019-04-26 魔视智能科技(上海)有限公司 牵引车与挂车偏航角的检测方法
CN111071338A (zh) * 2019-12-30 2020-04-28 合肥工业大学 一种半挂汽车列车直线稳定倒车的铰接角度确定方法
CN111532283A (zh) * 2020-05-15 2020-08-14 吉林大学 一种基于模型预测控制的半挂汽车列车的路径跟踪方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113548058A (zh) * 2021-09-22 2021-10-26 天津所托瑞安汽车科技有限公司 一种半挂汽车列车折叠角预测方法、设备和存储介质

Also Published As

Publication number Publication date
CN113147772B (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
CN108128308B (zh) 一种分布式驱动电动汽车的车辆状态估计系统及方法
CN108482379B (zh) 轮毂电机驱动车辆路面附着系数及路面坡度同步实时估算系统及方法
US9330061B2 (en) Determination of steering angle for a motor vehicle
CN107415939B (zh) 一种分布式驱动电动汽车转向稳定性控制方法
US20140136052A1 (en) Method for determining the drawbar length of a trailer of a tractor vehicle
US6502014B1 (en) Regulating circuit for regulating the driving stability of a motor vehicle using a motor vehicle reference model
CN110077392B (zh) 一种自动泊车定位系统的航迹推算方法
CN110341714B (zh) 一种同时估计车辆质心侧偏角和扰动的方法
CN111775950B (zh) 车辆参考速度测算方法、装置、设备、存储介质和系统
CN104354697A (zh) 一种利用在线修正的汽车状态参数估计路面附着系数的方法
CN113830088B (zh) 一种智能半挂牵引车轨迹跟踪预测控制方法与车辆
WO2022134929A1 (zh) 一种确定车辆质量方法、装置、设备及介质
CN110979026A (zh) 一种基于实时路况的分布式驱动公交车转矩分配方法
CN102582626A (zh) 重型半挂车状态估计方法
CN113147772B (zh) 一种半挂汽车列车全工况铰接角度状态估计方法
CN111216732B (zh) 路面摩擦系数的估测方法、装置及车辆
CN111497866A (zh) 一种基于改进马氏距离的转向盘转角传感器故障诊断方法
CN112550294B (zh) 基于车辆故障信号隔离的路径跟踪控制方法
US20060095167A1 (en) Driving situation detection system
CN112660136B (zh) 汽车底盘动力学域控制器的路面附着系数辨识方法及装置
CN109823334A (zh) 减小自动泊车路径误差方法及系统
CN112660107B (zh) 一种改善分布式电驱动底盘功率循环的转矩分配方法
Xia et al. State estimation and application of the hitch angle of a semitrailer train under full working conditions based on multimodel information fusion
US20230182751A1 (en) Tire stiffness estimation system
CN113887060B (zh) 一种新型的自动泊车系统车辆定位方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant