CN113144276B - 复合载药骨水泥及其制备方法和应用 - Google Patents
复合载药骨水泥及其制备方法和应用 Download PDFInfo
- Publication number
- CN113144276B CN113144276B CN202110282055.6A CN202110282055A CN113144276B CN 113144276 B CN113144276 B CN 113144276B CN 202110282055 A CN202110282055 A CN 202110282055A CN 113144276 B CN113144276 B CN 113144276B
- Authority
- CN
- China
- Prior art keywords
- bone cement
- loaded
- magnesium
- drug
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/04—Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
- A61L24/06—Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
- A61K31/352—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/02—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/32—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/001—Use of materials characterised by their function or physical properties
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/001—Use of materials characterised by their function or physical properties
- A61L24/0015—Medicaments; Biocides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/02—Surgical adhesives or cements; Adhesives for colostomy devices containing inorganic materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/10—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
- A61L2300/102—Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/216—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials with other specific functional groups, e.g. aldehydes, ketones, phenols, quaternary phosphonium groups
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/412—Tissue-regenerating or healing or proliferative agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/602—Type of release, e.g. controlled, sustained, slow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/06—Flowable or injectable implant compositions
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Education & Sports Medicine (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Rheumatology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Materials For Medical Uses (AREA)
Abstract
本发明公开了一种复合载药骨水泥,由包括骨水泥固相粉体和骨水泥液相的原料制得,所述骨水泥固相粉体包括载药粉体、固化剂和聚甲基丙烯酸甲酯,载药粉体包括具有介孔孔道的镁基介孔材料与负载在介孔孔道中和/或镁基介孔材料表面上的大豆异黄酮:骨水泥液相包括甲基丙烯酸甲酯单体和固化促进剂。镁基介孔材料能够同时释放镁、硅等功能性离子,并且其介孔孔道结构能够高容量地负载成骨因子促进成骨,形成的复合载药骨水泥材料释放的微量镁、硅等离子,可在患处形成离子富集区,调控体内矿物质代谢,与周围宿主骨形成骨性结合,加快骨修复过程;所负载的药物大豆异黄酮也能够起到促进骨修复的治疗效果,从而更加有效地治疗骨质疏松性骨折。
Description
技术领域
本发明涉及骨水泥技术领域,尤其是涉及一种复合载药骨水泥及其制备方法和应用。
背景技术
随着中国老龄化情况日益严重,老年性疾病也成了目前最大的挑战之一。骨质疏松是一种全身性的骨代谢疾病,其特点是骨量减少和骨微结构破坏,导致骨质脆性增加,易发生骨折。在我国,每年发生骨质疏松性骨折超过150万例,常见于中老年患者,尤其是60岁以上的老人。我国已将它列为重点研究的老年疾病之一。由于骨质疏松症患者多为老年人,是骨缺失的高发人群,对骨植入物有着广泛而特殊的需求。对于骨质疏松患者,骨修复能力降低导致植入物周围骨组织的再生能力下降,从而影响植入物的效果,如松动、移位或下沉,乃至植入失败。显然,骨质疏松状态下植入物的骨结合不良是影响患者长期手术效果的主要因素之一,而促进骨质疏松状况下骨修复及形成骨性结合是解决植入物失败的关键。因此,研制用于骨质疏松性骨折的生物活性植入材料,对于提高患者生活质量,具有非常重要的意义。
PMMA(聚甲基丙烯酸甲酯)骨水泥具有成型容易,使用方便等优点而广泛应用于临床手术,且力学强度高,可用于承重骨修复。PMMA骨水泥广泛应用于骨缺损及骨癌刮除后的空洞填充修复,而且对于人工关节的发展起到了极大的推动作用。目前临床上骨科手术中,PMMA骨水泥作为一种骨粘结剂,可将假体与骨结合,较好地解决一般性骨折。然而,PMMA属于生物惰性材料,骨相容性差,不能与人骨有机结合,不利于细胞的粘附、渗透与增殖,不能与宿主骨组织形成有机的化学界面结合;聚合温度高,损伤骨组织与周边血管;且操作时间有限,从而限制了其应用。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种复合载药骨水泥。
本发明的第一方面,提供复合载药骨水泥,由包括骨水泥固相粉体和骨水泥液相的原料制得,所述骨水泥固相粉体包括载药粉体、固化剂和聚甲基丙烯酸甲酯,所述载药粉体包括具有介孔孔道的镁基介孔材料与负载在所述介孔孔道中和/或所述镁基介孔材料表面上的大豆异黄酮:所述骨水泥液相包括甲基丙烯酸甲酯单体和固化促进剂。
根据本发明实施例的复合载药骨水泥,至少具有如下有益效果:
镁元素能够参与人体中的多种代谢途径,可促进钙的沉积,对骨组织的钙化有重要影响,本发明实施例的复合载药骨水泥使用镁基介孔材料(MgBG)作为原料,能够同时释放镁、硅等功能性离子,并且其介孔孔道结构能够高容量地负载成骨因子促进成骨,这些独特的结构特性,使MgBG在药物载体和骨修复材料等方面具有潜在的应用前景。大豆异黄酮(IS)是一类存在于大豆等植物中的天然化合物,具有弱的雌激素作用,被称为植物雌激素,为抗骨质疏松症药物研究的热点,本发明实施例通过将大豆异黄酮负载到镁基介孔材料的介孔孔道内部,再与聚甲基丙烯酸甲酯复合,制备具有缓释功能的复合载药骨水泥。在复合载药骨水泥固化前,可以将其注射到骨折部位,待骨水泥固化后,复合载药骨水泥材料可填充在缺损部位,起到力学支撑作用。经过体液的不断渗透和侵蚀,复合载药骨水泥材料释放的微量镁、硅等离子,可在患处形成离子富集区,调控体内矿物质代谢,与周围宿主骨形成骨性结合,加快骨修复过程;此外,所负载的药物大豆异黄酮也能够起到促进骨修复的治疗效果,从而更加有效地治疗骨质疏松性骨折。
根据本发明的一些实施例,所述镁基介孔材料为掺杂镁的SBA介孔材料。
根据本发明的一些实施例,所述固化促进剂为N,N-二甲基对甲苯胺。
本发明的第二方面,提供上述的复合载药骨水泥的制备方法,包括以下步骤:
制备镁基介孔材料:取包括盐酸溶液、模板剂、镁盐和正硅酸乙酯的原料,混匀后干燥,然后置于500~700℃烧结;
制备骨水泥固相粉体:将所述镁基介孔材料加入至大豆异黄酮溶液中,充分搅拌后干燥后形成载药粉体,然后与聚甲基丙烯酸甲酯、固化剂混合;
取所述骨水泥固相粉体与骨水泥液相,混合后固化成型。
根据本发明的一些实施例,所述模板剂为P123。
根据本发明的一些实施例,所述骨水泥固相粉体:所述骨水泥液相的质量体积比为1:(2~4)。
本发明的第三方面,提供上述的复合载药骨水泥或根据上述的复合载药骨水泥的制备方法制得的复合载药骨水泥在制备治疗骨质疏松性骨折的药物中的应用。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例中溶胶-凝胶法合成镁基介孔材料的示意图;
图2为本发明实施例中制备的MgBG的XRD图;
图3为本发明实施例中制备的MgBG的TEM图;
图4为本发明实施例中MgBG负载大豆异黄酮前和后的SEM照片;
图5为本发明实施例中MgBG负载大豆异黄酮前后的FTIR图;
图6为本发明实施例中具有不同载药粉体MgBG/IS含量的复合载药骨水泥PMMA/MgBG的FTIR图;
图7为本发明实施例中具有不同载药粉体MgBG/IS含量的复合载药骨水泥PMMA/MgBG的SEM图;
图8为本发明实施例中具有不同载药粉体MgBG/IS含量的复合载药骨水泥浸泡在SBF溶液5天的扫描电镜图;
图9为本发明实施例中BMSCs在复合载药骨水泥PMMA、P80和P60表面培养3天的SEM图和培养不同时间后细胞增殖图;
图10为本发明实施例中BMSCs细胞在不同复合载药骨水泥上培养不同时间后的ALP活性;
图11为本发明实施例中复合载药骨水泥在RANKL存在的条件下与RAW264.7共培养5天后,细胞形态和破骨细胞数目统计图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
本发明实施例中涉及的仪器和测定过程如下:
(1)氮气吸附脱附(BET):采用孔隙率仪(Tristar 3000,Micro-metricsInstrument Corp.,Norcross,GA,USA)测定不同相对压力P/P0下N2等温吸附-脱附曲线,通过Brunauer Emmett Teller(BET)计算材料的比表面积和孔容,并根据Barrett-Joyner-Helen(BJH)公式计算平均孔径。
(2)透射电镜(TEM):将经研磨的MgBG粉末样品加入无水乙醇中超声分散15min,吸取一滴溶液滴在铜网上,干燥后采用透射电镜(TEM;JEM2010,日本)观察材料的微观结构。
(3)扫描电镜(SEM):将粉末样品研磨后黏附在导电胶上采用电子扫描电镜(S-3400N,Hitachi,Japan)观察样品表面形貌。
(4)元素分析(EDS):通过元素分析仪(EDS,Falcon,USA)上测得样品表面的元素组成。
(5)X射线衍射分析(XRD):采用X射线衍射仪(XRD,Rigaku D/max2550,日本)在0.5~80和10~80°分析了材料的微观结构及结晶状态。
实施例1
本实施例提供了一种复合载药骨水泥,按照以下步骤制备:
(1)参见图1,本实施例采用溶胶-凝胶法合成镁基介孔材料(MgBG):
首先,将30mL去离子水和120mL2.0M稀盐酸(HC1)的混合溶液,置于50℃水浴中。然后,准确称取4.0g P123(EO20PO70EO20,5800),将其加入上述混合溶液中,搅拌30分钟至澄清。随后,依次称取4.8g六水合硝酸镁(Mg(NO3)26H20),准确称量8.5g正硅酸乙酯(TEOS)加入到上述澄清溶液中,搅拌5小时。静置后抽滤,去离子水清洗,再抽滤,重复3次后,置于60℃电热鼓风干燥箱中得到白色粉末。最后将上述粉末置于马弗炉中,在600℃条件下进行烧结(升温速率:1℃/min),从而获得MgBG粉末。
(2)制备载药粉体(MgBG/IS):将1g大豆异黄酮(≥95%)溶于1000mL的95%乙醇溶液中,配制浓度1g/L的大豆异黄酮(IS)溶液。称取1gMgBG粉末加入10mL IS溶液中,磁力搅拌24h后,37℃干燥。
(3)制备复合载药骨水泥(PMMA/MgBG):
在室温,取上述载药粉体MgBG/IS按照占比骨水泥固相粉体0wt%(标记为PMMA)、20wt%(标记为P80)和40wt%(标记为P60)的质量百分比与PMMA粉末均匀混合,组成骨水泥固相粉体。将骨水泥固相粉体和骨水泥液相组分按质量体积比(W/V)为1:3的比例混合后搅拌均匀,灌入模具,完全固化后取出样品,将样品打磨成规定的规格。其中骨水泥固相粉体中包含PMMA,MgBG,BPO(过氧化二苯甲酰);液相组分中包含MMA(甲基丙烯酸甲酯),DMT(N,N-二甲基对甲苯胺)。各组分的具体用量见如表1所示,各组分用量可根据实际需要成倍数扩大或缩小。
表1复合载药骨水泥的各组分用量表
图2示出了MgBG的XRD图。其中a表示MgBG的广角XRD图,由图看出,在22°左右有一个馒头峰,属于典型的无定形硅酸盐的XRD谱图,说明MgBG是一种无定形的非晶材料。b表示MgBG的小角XRD图,图中出现的三个峰分别对应二维六方有序介孔的(100)、(110)和(200)这3个衍射峰,可以证明MgBG中的介孔结构规整有序。
图3示出了MgBG的TEM图,从图中可以看出MgBG具有均匀排列的大小一致的狭长孔道,其介孔孔道结构具有高度的有序性。MgBG的这种高度有序的介孔结构,增加了材料与体液的接触面积,同时由于介孔结构的存在,使得材料能够负载一些小分子药物,达到了载药的目的。
图4示出了MgBG负载大豆异黄酮前(图4中a)和后(图4中b)的SEM照片。由图可知,载药前MgBG形状较为规整,由棒状结构有序堆积在一起形成的;MgBG表面载大豆异黄酮后表面明显存在一些颗粒状的药物。因此,可以证明MgBG表面对药物具有吸附作用,满足载药的要求。
图5示出了MgBG负载大豆异黄酮前后的FTIR(红外衍射光谱)图。MgBG(镁基介孔材料)的红外光图谱上,3400~3250cm-1处为OH-的吸收峰,1641.3cm-1处是水分子的吸收峰,最强的吸收峰出现在1081.1cm-1处,这是Si–O键伸缩振动吸收峰,805cm-1也是Si–O键伸缩振动吸收峰,而459.5cm-1处是Si–O–Si键伸缩振动的吸收峰。大豆异黄酮(IS)在3456cm-1处对应OH-的振动吸收峰,1515和1448cm-1处对应苯环骨架伸缩振动所产生的吸收峰,1616,1569和1518cm-1对应苯环吸收峰,1252cm-1处为C-O-C吸收峰,1746cm-1处为羰基特征峰,通过文献比较分析得知IS的主要成分为异黄酮苷和染料木黄酮。对比载药前的MgBG红外光谱图,在MgBG/IS的红外光谱图上出现了大豆异黄酮的特征峰,由此可知材料表面吸附了大豆异黄酮,证明了材料具有吸附药物的性质。
MgBG负载大豆异黄酮前后的BET分析结果如表2所示。由表可知,MgBG材料吸附大豆异黄酮后,比表面积由444.98m2/g下降到了3.31m2/g,这表明药物被大量吸附在MgBG的孔隙中。孔容由0.62cm3/g下降到了0.0053cm3/g,这是由于MgBG大部分的介孔孔道被药物填充,降低了材料的比表面积和孔容。平均孔径由12nm下降到了6.4nm。上述结果表明药物可吸附在MgBG的孔道里,并且规整孔道结构能够促进药物的进入。孔道吸附和表面吸附赋予MgBG较强的吸附能力,可作为良好的药物载体。
表2 MgBG负载大豆异黄酮前后比表面积及孔容比较
图6示出了具有不同载药粉体MgBG/IS含量的复合载药骨水泥PMMA/MgBG的FTIR(红外衍射光谱)图,由图可知,3000~2842cm-1处为-CH3伸缩振动峰,1732cm-1处为C=O对称伸缩振动峰以及1150cm-1处为C-O伸缩振动峰。此外,在1630~1700cm-1处没有出现C=C双键的峰,说明MMA全部参与了聚合反应,得到产物为PMMA。在复合载药骨水泥P80和P60的谱图中,随着MgBG/IS含量的增加,在3400~3250cm-1处OH-的吸收峰和1081.1cm-1处Si–O键伸缩振动吸收峰强度逐渐提高。
图7示出了具有不同载药粉体MgBG/IS含量的复合载药骨水泥PMMA/MgBG的SEM图,其中(a1)-(a3)分别表示PMMA放大倍数为200、500、2000时的SEM图,(b1)-(b3)分别表示P80放大倍数为200、500、2000时的SEM图,(c1)-(c3)分别表示P60放大倍数为200、500、2000时的SEM图。由图可见,PMMA骨水泥表面相对比较平整、光滑。而P80和P60的表面由于载药MgBG的加入而变得粗糙且多微孔。图中出现明显的不规则片状或团状的MgBG颗粒。MgBG分布于PMMA中,使得原本致密的结构变得松散多孔。
表3示出了步骤(3)中复合载药骨水泥的凝固时间和固化温度,PMMA的固化时间为16min,而P80和P60的固化时间分别为23min和52min;说明随着MgBG掺入量的增加,复合载药骨水泥的固化时间延长,骨水泥更加容易操作,方便了临床使用。结果表明:在PMMA中添加一定量的MgBG,解决了PMMA骨水泥在临床使用时,其固化时间过快,医生不易操作的缺点,同时PMMA聚合过程中会大量放热,MgBG可以一定程度地降低聚合温度。
表3复合载药骨水泥的凝固时间和固化温度
复合载药骨水泥的体外生物活性:
图8示出了具有不同载药粉体MgBG/IS含量的复合载药骨水泥浸泡在SBF溶液7天的扫描电镜图,其中a表示PMMA,b表示P80,c表示P60,从图中可以看出,PMMA表面几乎没有类骨磷灰石附着,P80表面能看到部分颗粒分布,数量较少,而P60表面铺满了这种团簇状颗粒,是典型的类骨磷灰石形态。这表明复合载药骨水泥的生物活性由于MgBG的掺入而显著提高。这是因为MgBG中含有的镁离子、钙离子和表面覆盖的硅羟基与SBF中的钙离子和磷酸根离子发生反应,加速诱导HA(羟基磷灰石)的沉积,从而在P60表面生成大量的类骨磷灰石形态。
图9示出了BMSCs(骨髓间充质干细胞)在复合载药骨水泥PMMA、P80和P60表面培养3天的SEM图和培养不同时间后细胞增殖图。其中(a)-(c)分别表示BMSCs细胞在PMMA、P80和P60表面培养3天的SEM图,相较于PMMA(图9中(a)),(b)和(c)展示了细胞在复合载药骨水泥表面优异的粘附效果和细胞活性,在P80和P60表面可以明显观察到细胞伪足的存在,结果表明加入MgBG有利于细胞的粘附与生长。(d)表示细胞培养不同时间后在三种骨水泥表面的增殖情况,由图可见,随着时间的增加,细胞的吸光度(OD)值增加,说明细胞在三种骨水泥样品上持续增殖。在第7d时,细胞在P60表面的OD值明显高于P80和PMMA,说明细胞在P60表面增殖较快。结果表明:添加MgBG的复合骨水泥能促进成骨细胞生长和增殖,可能是由于MgBG降解产生的硅、镁离子及钙离子,有利于成骨细胞的增殖。
图10示出了BMSCs细胞在不同复合载药骨水泥上培养不同时间后的ALP活性,ALP活性可以反应细胞成骨的分化程度。由图可见,随着时间的增加,细胞的ALP活性不断增加;且细胞在P80和P60上的ALP活性高于PMMA;7天时,在P60上的细胞ALP活性明显高于PMMA。实验结果说明:添加MgBG的复合骨水泥能促进细胞成骨分化。
图11示出了复合载药骨水泥在RANKL(TNF相关激活诱导细胞因子)存在的条件下与RAW264.7(单核巨噬细胞)共培养5天后,细胞形态和破骨细胞数目统计,(d)中的四个分组中的培养基完全相同,其中对照组(Control)为不添加骨水泥,细胞直接接种在孔板内。由图可知,与PMMA(图11中(a))相比,P80(图11中(b))和P60(图11中(c))都能显著降低破骨细胞数目,且P60的效果更佳显著。结果表明P80和P60都可以显著地抑制破骨细胞的形成,阻碍破骨细胞的成熟,且随着载药MgBG含量的增加,效果更加明显,这可能是由于随着MgBG的降解,其孔内搭载的IS随之释放到培养液中,从而抑制了破骨细胞的形成。
本发明实施例制备了镁基介孔材料(MgBG),并对其进行了测试。结果表明:MgBG是具有有序的介孔孔道结构,平均孔径为12nm,比表面积为444.98m2/g,孔容为0.62cm/g。MgBG负载和缓释大豆异黄酮的实验证实:其通过介孔孔道的吸附以及表面吸附两种方式对药物进行高效负裁。将载药MgBG粉末按不同比例(0wt%、20wt%、40wt%)制备新型PMMA复合载药骨水泥材料。FTIR和SEM的分析结果表明MgBG均匀分散在PMMA中。载药MgBG的含量越高,复合骨水泥的固化时间越长,固化温度降低。体外生物活性实验结果表明:复合载药骨水泥的体外生物活性由于载药介孔生物玻璃的掺入而不断增强。细胞实验表明:复合骨水泥的细胞相容性优于PMMA骨水泥,且载药MgBG的加入能够促进骨髓间充质干细胞的粘附、增殖与成骨分化。随着载药MgBG含量的增加,复合骨水泥能够明显抑制破骨细胞的形成和成熟。
Claims (7)
1.复合载药骨水泥,其特征在于,由包括骨水泥固相粉体和骨水泥液相的原料制得,所述骨水泥固相粉体包括载药粉体、固化剂和聚甲基丙烯酸甲酯,所述载药粉体包括具有介孔孔道的镁基介孔材料与负载在所述介孔孔道中和/或所述镁基介孔材料表面上的大豆异黄酮,所述镁基介孔材料为掺杂镁的SBA介孔材料;所述骨水泥液相包括甲基丙烯酸甲酯单体和固化促进剂。
2.根据权利要求1所述的复合载药骨水泥,其特征在于,所述固化促进剂为N,N-二甲基对甲苯胺。
3.根据权利要求1所述的复合载药骨水泥,其特征在于,所述固化剂为过氧化二苯甲酰。
4.权利要求1至3任一项所述的复合载药骨水泥的制备方法,其特征在于,包括以下步骤:
制备镁基介孔材料:取包括盐酸溶液、模板剂、镁盐和正硅酸乙酯的原料,混匀后干燥,然后置于500~700℃烧结;
制备骨水泥固相粉体:将所述镁基介孔材料加入至大豆异黄酮溶液中,充分搅拌后干燥后形成载药粉体,然后与聚甲基丙烯酸甲酯、固化剂混合;
取所述骨水泥固相粉体与骨水泥液相,混合后固化成型。
5.根据权利要求4所述的复合载药骨水泥的制备方法,其特征在于,所述模板剂为P123。
6.根据权利要求4所述的复合载药骨水泥的制备方法,其特征在于,所述骨水泥固相粉体:所述骨水泥液相的质量体积比为1:(2~4)。
7.权利要求1至3任一项所述的复合载药骨水泥或根据权利要求4至6任一项所述的复合载药骨水泥的制备方法制得的复合载药骨水泥在制备治疗骨质疏松性骨折的药物中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110282055.6A CN113144276B (zh) | 2021-03-16 | 2021-03-16 | 复合载药骨水泥及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110282055.6A CN113144276B (zh) | 2021-03-16 | 2021-03-16 | 复合载药骨水泥及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113144276A CN113144276A (zh) | 2021-07-23 |
CN113144276B true CN113144276B (zh) | 2022-08-23 |
Family
ID=76887289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110282055.6A Active CN113144276B (zh) | 2021-03-16 | 2021-03-16 | 复合载药骨水泥及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113144276B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101811686A (zh) * | 2010-05-04 | 2010-08-25 | 重庆大学 | 一种含镁β-磷酸三钙纳米粒子及其制备方法 |
WO2013023715A1 (de) * | 2011-08-14 | 2013-02-21 | BLüCHER GMBH | Aktivkohle mit metallbasierter komponente |
CN103830774A (zh) * | 2014-03-05 | 2014-06-04 | 宁波华科润生物科技有限公司 | 一种新型骨水泥及其制备方法 |
CN104307035A (zh) * | 2014-10-14 | 2015-01-28 | 中国科学院上海硅酸盐研究所 | 具有诱导成骨功能的镁黄长石/pmma复合骨水泥及其制备方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010116321A2 (en) * | 2009-04-06 | 2010-10-14 | Universitat Politecnica De Catalunya | Biopolymer-containing calcium phosphate foam, process for obtaining thereof and use for bone regeneration |
SG181156A1 (en) * | 2009-12-04 | 2012-07-30 | Agency Science Tech & Res | Nanostructured material formulated with bone cement for effective antibiotic delivery |
CN102755650B (zh) * | 2012-07-27 | 2014-03-26 | 华东理工大学 | 一种介孔钙硅凝胶及其制备方法和应用 |
CN104922731B (zh) * | 2015-06-01 | 2017-09-22 | 深圳市中科海世御生物科技有限公司 | 复合骨水泥前体、锶硼酸盐生物玻璃/聚甲基丙烯酸甲酯复合骨水泥的制备方法和应用 |
AU2016278854A1 (en) * | 2015-06-19 | 2018-02-08 | Global Health Solutions, LLC. | Petrolatum-based delivery systems and for active ingredients |
CN108478872B (zh) * | 2018-03-28 | 2020-10-23 | 中山大学 | 一种复合型医用生物骨水泥及其制备方法及应用 |
CN108992706A (zh) * | 2018-08-08 | 2018-12-14 | 上海应用技术大学 | 一种抗生素持续高效释放的丙烯酸树脂骨水泥及其制备方法 |
CN110755690A (zh) * | 2019-11-21 | 2020-02-07 | 南京鼓楼医院 | 一种增强药物持续释放能力的介孔二氧化硅原位掺杂丙烯酸树脂骨水泥复合材料制备方法 |
-
2021
- 2021-03-16 CN CN202110282055.6A patent/CN113144276B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101811686A (zh) * | 2010-05-04 | 2010-08-25 | 重庆大学 | 一种含镁β-磷酸三钙纳米粒子及其制备方法 |
WO2013023715A1 (de) * | 2011-08-14 | 2013-02-21 | BLüCHER GMBH | Aktivkohle mit metallbasierter komponente |
CN103830774A (zh) * | 2014-03-05 | 2014-06-04 | 宁波华科润生物科技有限公司 | 一种新型骨水泥及其制备方法 |
CN104307035A (zh) * | 2014-10-14 | 2015-01-28 | 中国科学院上海硅酸盐研究所 | 具有诱导成骨功能的镁黄长石/pmma复合骨水泥及其制备方法 |
Non-Patent Citations (1)
Title |
---|
Mechanical properties and antibiotic release characteristics of poly(methyl methacrylate)-based bone cement formulated with mesoporous silica nanoparticles;Kumaran Letchmanan等;《Journal of the Mechanical Behavior of Biomedical Materials》;20170502;第72卷;第163-170页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113144276A (zh) | 2021-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Almirall et al. | Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α-TCP paste | |
Andersson et al. | Sol–gel synthesis of a multifunctional, hierarchically porous silica/apatite composite | |
Sánchez-Salcedo et al. | Hydroxyapatite/β-tricalcium phosphate/agarose macroporous scaffolds for bone tissue engineering | |
Xue et al. | Mesoporous calcium silicate for controlled release of bovine serum albumin protein | |
CN101157045B (zh) | 生物活性磷酸钙/硅酸三钙复合自固化材料、方法及应用 | |
Rodrıguez-Lorenzo et al. | Development of porous ceramic bodies for applications in tissue engineering and drug delivery systems | |
Li et al. | Fabrication and properties of Ca-P bioceramic spherical granules with interconnected porous structure | |
El-Fiqi et al. | Novel bioactive nanocomposite cement formulations with potential properties: incorporation of the nanoparticle form of mesoporous bioactive glass into calcium phosphate cements | |
Deng et al. | Enhanced osteoinductivity of porous biphasic calcium phosphate ceramic beads with high content of strontium-incorporated calcium-deficient hydroxyapatite | |
US9539359B2 (en) | Mesoporous calcium silicate compositions and methods for synthesis of mesoporous calcium silicate for controlled release of bioactive agents | |
Swain et al. | Fabrication of porous hydroxyapatite scaffold via polyethylene glycol-polyvinyl alcohol hydrogel state | |
EP2569025B1 (en) | Injectable osteoinductive bone cements | |
Ślósarczyk et al. | The kinetics of pentoxifylline release from drug-loaded hydroxyapatite implants | |
Masaeli et al. | Efficacy of the biomaterials 3 wt%-nanostrontium-hydroxyapatite-enhanced calcium phosphate cement (nanoSr-CPC) and nanoSr-CPC-incorporated simvastatin-loaded poly (lactic-co-glycolic-acid) microspheres in osteogenesis improvement: An explorative multi-phase experimental in vitro/vivo study | |
JP2009526600A (ja) | 骨誘導性リン酸カルシウム | |
Banerjee et al. | Biphasic resorbable calcium phosphate ceramic for bone implants and local alendronate delivery | |
KR20070010919A (ko) | 다공성의 β-인산삼칼슘 과립의 제조 방법 | |
Sohrabi et al. | The influence of polymeric component of bioactive glass‐based nanocomposite paste on its rheological behaviors and in vitro responses: hyaluronic acid versus sodium alginate | |
Cai et al. | Macro-mesoporous composites containing PEEK and mesoporous diopside as bone implants: characterization, in vitro mineralization, cytocompatibility, and vascularization potential and osteogenesis in vivo | |
Bahati et al. | Synthesis, characterization, and in vitro apatite formation of strontium-doped sol-gel-derived bioactive glass nanoparticles for bone regeneration applications | |
EP2793961A1 (en) | Porous calcium phosphate granules and methods of making and using the same | |
Webler et al. | Use of micrometric latex beads to improve the porosity of hydroxyapatite obtained by chemical coprecipitation method | |
Roozbahani et al. | Dexamethasone loaded Laponite®/porous calcium phosphate cement for treatment of bone defects | |
Jie et al. | Preparation of macroporous sol-gel bioglass using PVA particles as pore former | |
Miao et al. | Multi-stage controllable degradation of strontium-doped calcium sulfate hemihydrate-tricalcium phosphate microsphere composite as a substitute for osteoporotic bone defect repairing: degradation behavior and bone response |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |