CN113138426B - 一种基于多变量核密度欧拉解概率密度成像方法 - Google Patents
一种基于多变量核密度欧拉解概率密度成像方法 Download PDFInfo
- Publication number
- CN113138426B CN113138426B CN202110390937.4A CN202110390937A CN113138426B CN 113138426 B CN113138426 B CN 113138426B CN 202110390937 A CN202110390937 A CN 202110390937A CN 113138426 B CN113138426 B CN 113138426B
- Authority
- CN
- China
- Prior art keywords
- euler
- data
- grid
- dimensional
- probability density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V7/00—Measuring gravitational fields or waves; Gravimetric prospecting or detecting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/15—Correlation function computation including computation of convolution operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Optimization (AREA)
- Theoretical Computer Science (AREA)
- Computational Mathematics (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Databases & Information Systems (AREA)
- Algebra (AREA)
- Operations Research (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computing Systems (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Probability & Statistics with Applications (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Complex Calculations (AREA)
Abstract
本发明提供一种基于多变量核密度欧拉解概率密度成像方法,首先通过测量或位场变换获得重力矢量及重力梯度张量数据,构建三维重力/重力梯度张量欧拉反褶积方程,逐一移动滑动窗口,获得一系列含异常源空间位置[x,y,z,N]欧拉解集,针对常规欧拉反褶积仅通过欧拉反褶积解的构造指数的“色谱”难于评价、分离异常,而不综合考虑欧拉解的空间分布特性及构造指数的相关性。采用三维核密度估计对欧拉反褶积解集综合分析,从而实现了欧拉反褶积对相邻异常有效分离、快速定位。
Description
技术领域
本发明涉及重力勘探技术领域,特别是涉及一种基于多变量核密度欧拉解概率密度成像方法。
背景技术
欧拉反褶积以Euler齐次方程为理论基础,利用总场及其梯度等位场数据,只需事先确定与场源性质有关的构造指数或枚举构造指数,便可快速有效地圈出异常源的基本轮廓,尤其适合于大面积位场数据的分析和解释。然而,使用欧拉反褶积对异常进行推断时,传统欧拉解图示方法一般使用色阶或不同大小圆来标定深度或构造指数,即色谱。但其难于标示异常源间及各单一欧拉解间的差异及相关性,尤其当欧拉解发散时,如对于在一处大量聚集(如欧拉解聚集程度大的地方)和在它处成零星分布(如多异常源间的伪迹)的两类欧拉解集,其色谱的空间分布上几乎没有差别。因而,如何在众多的欧拉解中提取优解、剔除谬解、分离欧拉解簇继而标定异常源一直是困扰人们的一个难题。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种基于多变量核密度欧拉解概率密度成像方法,用于解决现有技术中存在的问题。
为实现上述目的及其他相关目的,本发明提供一种基于多变量核密度欧拉解概率密度成像方法,包括以下步骤:
确定待测区域范围;并测量重力矢量数据及重力梯度张量数据,或测量重力数据,通过离散余弦变换或傅里叶变换将重力数据换算到重力矢量数据及重力梯度张量数据;
根据所述重力矢量数据或所述重力梯度张量数据构建三维重力梯度张量欧拉反褶积方程;
确定滑动窗口大小,并利用滑动窗口内的数据构建线性方程组;
利用奇异值分解所述线性方程组,获取所述线性方程组的欧拉解,并输出对应的欧拉解集;其中,所述欧拉解包括异常源空间位置、异常源类型和奇异值分解误差;
将欧拉解解集拆分成不同维度的组合,并根据所述欧拉解解集组合估算估计网格最大或最小带宽,及确定所述估计网格的大小;
将欧拉解数据作为独立同分布采样投影至所述估计网格,根据所述估计网络计算网格计数,并基于所述网格计数与核函数的卷积确定不同维度数据的异常源空间位置及类型。
可选地,所述根据所述重力矢量数据或所述重力梯度张量数据构建三维重力梯度张量欧拉反褶积方程,包括:
式中,Bα为异常背景场,gα为重力梯度,gαβ为重力张量分量,{α,β∈x,y,z}; (x0,y0,z0)为测点位置;(x,y,z)为待求解位场异常源位置;构造指数N是位场异常随场源深度衰减变化陡缓的量度,即异常源类型。
可选地,所述确定滑动窗口大小,并利用滑动窗口内的数据构建线性方程组,以及利用奇异值分解所述线性方程组,获取所述线性方程组的欧拉解,并输出对应的欧拉解集,包括:
确定滑动窗口大小为Wx×Wy;
将滑窗中的Wx×Wy个测点数据代入(1)~(3)构建线性方程组,如下:
Am=b (4);
利用奇异值分解求取异常源空间位置[x,y,z]及构造指数N。
逐一移动滑动窗口,构建线性方程组,并获得相应滑动窗口的欧拉解mi,直至滑动窗口覆盖整个测区,构建欧拉解集{mi}。
可选地,将欧拉解解集拆分成不同维度的组合,并根据所述不同欧拉解解集组合估算估计网格最大或最小带宽,及确定所述估计网格的大小,包括:
引入多维核密度估计,设独立同分布采样X=(X1,…,Xi,…,Xn)T为取值于d维实数空间的独立同分布随机变量;
式中,K为一维核密度基函数;
Kd,H为d个一维核密度基函数的内集;
χ为估计网格,可以写为(χ1,…,χd)T;
H为对角带宽矩阵;
d为数据样本维度数;
对于重力或重力梯度张量得欧拉解而言,第i个独立同分布随机变量Xi可以写为xi,yi,zi,Ni的不同维度组合;
采用高斯核作为一维核密度基函数,则有:
且
χjk为估计网格χ中第j维度方向χj的第k点;
对角带宽矩阵H,有:
当r=2时,所述估计网格χ的相应带宽达到最大;当r=0时,所述估计网格χ的相应带宽达到最小。
可选地,所述将欧拉解数据作为独立同分布采样投影至所述估计网格,根据所述估计网络计算网格计数,包括:
将观测数据样本X投影至所述估计网格χ,并以观测数据样本Xi在所述估计网格χ各点上的权重u之和网格计数C,作为所述观测数据样本的近似;
设所述估计网格χ上存在一条边χjk,j(k+1),并将边χjk,j(k+1)简化为(χjk,χj(k+1));
则观测数据样本Xi与超矩形l的第q个节点的网格计数可以为:
可选地,所述基于所述网格计数与核函数的卷积确定不同维度数据的异常源空间位置及类型,包括:
基于所述网格计数确定多变量核密度估计值,则相应概率密度结果可以由下式计算得到:
将上式改写为卷积形式,则有:
若所述观测数据样本X为二维数据,即d=2,通过概率密度图二维峰值与两横轴的坐标确定二维数据的异常源空间位置及类型;
若所述观测数据样本X为三维数据,即d=3,通过概率密度等值面确定三维数据的异常源空间位置及类型;
若所述观测数据样本X为高于三维的数据,即d>3,则将对应的概率密度结果降维至三维,并通过概率密度等值面确定三维数据的异常源空间位置及类型。
如上所述,本发明提供一种基于多变量核密度欧拉解概率密度成像方法,具有以下有益效果:
本发明充分利用欧拉反褶积优解能有效确定异常源中心,具有聚焦的特性,计算各欧拉解的概率密度,通过概率密度值的大小,从而达到快速定位异常源目的。相比于原有欧拉解剔除策略,该方法更易区分异常形态、判断异常位置。而且本发明不用剔除欧拉解缪解,减少了数据处理步骤。另外,本发明对于如{x}, {y},{z},{N}等一维欧拉解子集而言,可以极小的计算量,通过概率密度曲线的峰值于坐标横轴的位置,快速确定地下地质构造相应的空间位置和构造指数。对于如{x,y},{y,z},{x,z},{x,N}等二维欧拉解组合而言,通过概率密度图的二维峰值于坐标轴的位置,快速确定地下地质构造相应的空间位置和构造指数。对于如{x,y,z},{y,z,N},{x,y,N},{x,z,N}等三维欧拉解组合而言,通过三维概率密度等值面的数量级及等值面的多寡,快速确定地下地质构造相应的空间位置和构造指数。本发明在某一维度方向的估计网格χj采用等间距的估计点,可以将观测数据样本{Xj}整体投影至χj,从而易于构建矢量化(于MATLAB而言)/ 高效并行的算法(于C/C++等编程语言而言),进而快速获得网格计数C。同时,本发明与传统重力/重力梯度张量欧拉解解释技术难于剔除欧拉解缪解、确定欧拉解优解、分离欧拉解簇和标识欧拉反褶积解相比,本发明以各欧拉解的概率密度值为基础,可通过各概率密度的峰值点,进而快速有效地确定各异常源。
附图说明
图1为一实施例提供的基于多变量核密度欧拉解概率密度成像方法的流程示意图;
图2为一实施例提供的圆柱体正演含噪声结果示意图;
图3为一实施例提供的一维概率密度曲线{x}的结果示意图;
图4为一实施例提供的一维概率密度曲线{y}的结果示意图;
图5为一实施例提供的一维概率密度曲线{z}的结果示意图;
图6为一实施例提供的一维概率密度曲线{N}的结果示意图;
图7为一实施例提供的二维概率密度曲线{x,y}的结果示意图;
图8为一实施例提供的二维概率密度曲线{x,z}的结果示意图;
图9为一实施例提供的二维概率密度曲线{x,N}的结果示意图;
图10为一实施例提供的二维概率密度曲线{y,z}的结果示意图;
图11为一实施例提供的二维概率密度曲线{y,N}的结果示意图;
图12为一实施例提供的二维概率密度曲线{z,N}的结果示意图;
图13为一实施例提供的三维概率密度曲线{x,y,z}的结果示意图;
图14为一实施例提供的三维概率密度曲线{x,y,N}的结果示意图;
图15为一实施例提供的三维概率密度曲线{x,z,N}的结果示意图;
图16为一实施例提供的三维概率密度曲线{y,z,N}的结果示意图;
图17为一实施例提供的实际观测布格重力异常数据图;
图18为一实施例提供的第一待测区域中欧拉解及概率密度结果{x,y}的示意图;
图19为另一实施例提供的第一待测区域中欧拉解及概率密度结果{x,y}的示意图;
图20为一实施例提供的第一待测区域中欧拉解及概率密度结果{x,y,z}的对比示意图;
图21为另一实施例提供的第一待测区域中欧拉解及概率密度结果{x,y,z}对比示意图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
请参阅图1至图21所示,本发明提供一种基于多变量核密度欧拉解概率密度成像方法,包括:
根据勘探或研究工作要求,确定测区范围,根据测量设备条件,测量重力矢量数据及重力梯度张量数据,或通过离散余弦变换或傅里叶变换将重力数据换算到重力矢量数据及重力梯度张量数据。
根据所述重力矢量数据或所述重力梯度张量数据,利用公式(1-3)构建三维重力梯度张量欧拉反褶积方程;
确定滑动窗口大小,如wx=wy=3,并利用滑动窗口内的数据,根据公式(4) 构建线性方程组;
利用奇异值分解所述线性方程组,获取所述线性方程组的欧拉解 mi=[xi,yi,zi,Ni],并输出对应的欧拉解集{mi};其中,所述欧拉解包括异常源空间位置xi,yi,zi、异常源类型和奇异值分解误差Ni;
在公式(7)计算前,将欧拉解解集拆分成不同维度的组合,如{xi},{xi,yi}, {xi,yi,zi}等;并根据所述欧拉解解集组合,利用公式(8—9)估算估计网格最大或最小带宽,及确定所述估计网格的大小;
根据公式(10)将欧拉解数据作为独立同分布采样投影至所述估计网格;根据所述估计网络,利用式(11)计算网格计数,基于公式(12)所述网格计数与核函数的卷积,计算不同维度欧拉解数据的概论密度值,进而确定异常源空间位置及类型。
可选地,所述根据所述重力矢量数据或所述重力梯度张量数据构建三维重力梯度张量欧拉反褶积方程,包括:
式中,Bα为异常背景场,gα为重力梯度,gαβ为重力张量分量,{α,β∈x,y,z}; (x0,y0,z0)为测点位置;(x,y,z)为待求解位场异常源位置;构造指数N是位场异常随场源深度衰减变化陡缓的量度,即异常源类型。
可选地,所述确定滑动窗口大小,并利用滑动窗口内的数据构建线性方程组,以及利用奇异值分解所述线性方程组,获取所述线性方程组的欧拉解,并输出对应的欧拉解集,包括:
确定滑动窗口大小为Wx×Wy;
将滑窗中的Wx×Wy个测点数据代入(1)~(3)构建线性方程组,如下:
Am=b(4);
利用奇异值分解求取异常源空间位置[x,y,z]及构造指数N。
可选地,将欧拉解解集拆分成不同维度的组合,并根据所述欧拉解解集组合估算估计网格最大或最小带宽,及确定所述估计网格的大小,包括:
引入多维核密度估计,设独立同分布采样X=(X1,…,Xi,…,Xn)T为取值于d维实数空间的独立同分布随机变量;
对于欧拉解集的概率密度估计,当1≤d≤4时,其密度分布函数F的核密度梯度估计定义为:
式中,K为一维核密度基函数或多维核密度函数;
Kd,H为一维核密度基函数或多维核密度函数的内集;
χ为估计网格,可以写为(χ1,…,χd)T;
H为对角带宽矩阵;
d为观测数据样本维度数;
对于重力或重力梯度张量得欧拉解而言,第i个独立同分布随机变量Xi可以写为xi,yi,zi,Ni的不同维度组合。
选取高斯核作为一维核密度基函数,则有:
χjk为估计网格χ中第j维度方向χj的第k点;
对角带宽矩阵H,有:
当r=2时,所述估计网格χ的相应带宽达到最大;当r=0时,所述估计网格χ的相应带宽达达到最小。
可选地,所述将不同组合欧拉解数据作为独立同分布采样X投影至所述估计网格χ,根据所述估计网络计算网格计数C,包括:
将观测数据样本X投影至所述估计网格χ,并以观测数据样本Xi在所述估计网格χ各点上的权重u计算网格计数C,并将此网格计数C作为所述观测数据样本的近似;
设所述估计网格χ上存在一条边χjk,j(k+1),并将边χjk,j(k+1)简化为(χjk,χj(k+1));
则观测数据样本Xi与超矩形l的第q个节点的网格计数可以为:
可选地,所述基于所述网格计数与核函数的卷积确定不同维度数据的异常源空间位置及类型,包括:
基于所述网格计数确定多变量核密度估计值,则相应概率密度结果可以由下式计算得到:
将上式变为卷积形式,则有:
可选地,若所述观测数据样本X为一维数据,即d=1,通过概率密度曲线峰值与横轴的坐标确定一维数据的异常源空间位置及类型;
若所述观测数据样本X为二维数据,即d=2,通过概率密度图二维峰值与两横轴的坐标确定二维数据的异常源空间位置及类型;
若所述观测数据样本X为三维数据,即d=3,通过概率密度等值面确定三维数据的异常源空间位置及类型;
若所述观测数据样本X为高于三维的数据,即d>3,则将对应的概率密度结果降维至三维,并通过概率密度等值面确定三维数据的异常源空间位置及类型。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。
Claims (7)
1.一种基于多变量核密度欧拉解概率密度成像方法,其特征在于,包括以下步骤:
确定待测区域范围,并测量重力矢量数据及重力梯度张量数据;或测量重力数据,通过离散余弦变换或傅里叶变换将重力数据换算到重力矢量数据及重力梯度张量数据;
根据所述重力矢量数据或所述重力梯度张量数据构建三维重力梯度张量欧拉反褶积方程;
确定滑动窗口大小,并利用滑动窗口内的数据构建线性方程组;
利用奇异值分解所述线性方程组,获取所述线性方程组的欧拉解,并输出对应的欧拉解集;其中,所述欧拉解包括异常源空间位置、异常源类型和奇异值分解误差;
将欧拉解解集拆分成不同维度的组合,并根据所述欧拉解解集组合估算估计网格最大或最小带宽,及确定所述估计网格的大小;
将欧拉解数据作为独立同分布采样投影至所述估计网格,根据所述估计网格计算网格计数,并基于所述网格计数与核函数的卷积确定不同维度数据的异常源空间位置及类型。
3.根据权利要求2所述的基于多变量核密度欧拉解概率密度成像方法,其特征在于,所述确定滑动窗口大小,并利用滑动窗口内的数据构建线性方程组,以及利用奇异值分解所述线性方程组,获取所述线性方程组的欧拉解,并输出对应的欧拉解集,包括:
确定滑动窗口大小为Wx×Wy;
将滑窗中的Wx×Wy个测点数据代入(1)~(3)构建线性方程组,如下:
Am=b (4);
利用奇异值分解求取异常源空间位置[x,y,z]及构造指数N;
逐一移动滑动窗口,构建线性方程组,并获得相应滑动窗口的欧拉解mi,直至滑动窗口覆盖整个测区,构建欧拉解集{mi}。
4.根据权利要求3所述的基于多变量核密度欧拉解概率密度成像方法,其特征在于,将欧拉解解集拆分成不同维度的组合,并根据不同欧拉解解集组合估算估计网格最大或最小带宽,及确定所述估计网格的大小,包括:
引入多维核密度估计,设独立同分布采样X=(X1,…,Xi,…,Xn)T为取值于d维实数空间的独立同分布随机变量;
式中,K为一维核密度基函数;
Kd,H为d个一维核密度基函数的内积;
χ为估计网格,写为(χ1,…,χd)T;
H为对角带宽矩阵;
d为数据样本维度数;对于重力或重力梯度张量得欧拉解而言,第i个独立同分布随机变量Xi写为xi,yi,zi,Ni的不同维度组合;
采用高斯核作为一维核密度基函数,则有:
且
χjk为估计网格χ中第j维度方向χj的第k点;
对角带宽矩阵H,有:
当r=2时,所述估计网格χ的相应带宽达到最大;当r=0时,所述估计网格χ的相应带宽达到最小。
5.根据权利要求4所述的基于多变量核密度欧拉解概率密度成像方法,其特征在于,所述将欧拉解数据作为独立同分布采样投影至所述估计网格,根据所述估计网格计算网格计数,包括:
将观测数据样本X投影至所述估计网格χ,并以观测数据样本Xi在所述估计网格χ各点上的权重u之和网格计数C,作为所述观测数据样本的近似;
设所述估计网格χ上存在一条边χjk,j(k+1),并将边χjk,j(k+1)简化为(χjk,χj(k+1));
则观测数据样本Xi与超矩形l的第q个节点的网格计数为:
7.根据权利要求6所述的基于多变量核密度欧拉解概率密度成像方法,其特征在于,利用式(12)或式(13)计算得到观测数据样本X于估计网格χ上概率密度值若所述观测数据样本X为一维数据,即d=1,继而通过概率密度曲线峰值与横轴的坐标确定一维数据的异常源空间位置及类型;
若所述观测数据样本X为二维数据,即d=2,通过概率密度图二维峰值与两横轴的坐标确定二维数据的异常源空间位置及类型;
若所述观测数据样本X为三维数据,即d=3,通过概率密度等值面确定三维数据的异常源空间位置及类型;
若所述观测数据样本X为高于三维的数据,即d>3,则将对应的概率密度结果降维至三维,并通过概率密度等值面确定三维数据的异常源空间位置及类型。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110390937.4A CN113138426B (zh) | 2021-04-12 | 2021-04-12 | 一种基于多变量核密度欧拉解概率密度成像方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110390937.4A CN113138426B (zh) | 2021-04-12 | 2021-04-12 | 一种基于多变量核密度欧拉解概率密度成像方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113138426A CN113138426A (zh) | 2021-07-20 |
CN113138426B true CN113138426B (zh) | 2022-04-01 |
Family
ID=76811179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110390937.4A Active CN113138426B (zh) | 2021-04-12 | 2021-04-12 | 一种基于多变量核密度欧拉解概率密度成像方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113138426B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113806686B (zh) * | 2021-11-19 | 2022-02-08 | 中南大学 | 大规模复杂地质体重力梯度快速计算方法、装置和设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080023946A (ko) * | 2006-09-12 | 2008-03-17 | 한국지질자원연구원 | 오일러 해를 이용한 지하공동의 3차원 중력역산 방법 및이를 이용한 3차원 영상화 방법 |
CN108732622A (zh) * | 2018-05-18 | 2018-11-02 | 吉林大学 | 一种不同高度数据融合联合反演地质体几何形态的方法 |
CN112462442A (zh) * | 2020-11-30 | 2021-03-09 | 山东大学 | 重磁位场场源位置估计方法、系统、介质及电子设备 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130018588A1 (en) * | 2011-07-11 | 2013-01-17 | Technolmaging, Llc. | Method of real time subsurface imaging using gravity and/or magnetic data measured from a moving platform |
-
2021
- 2021-04-12 CN CN202110390937.4A patent/CN113138426B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080023946A (ko) * | 2006-09-12 | 2008-03-17 | 한국지질자원연구원 | 오일러 해를 이용한 지하공동의 3차원 중력역산 방법 및이를 이용한 3차원 영상화 방법 |
CN108732622A (zh) * | 2018-05-18 | 2018-11-02 | 吉林大学 | 一种不同高度数据融合联合反演地质体几何形态的方法 |
CN112462442A (zh) * | 2020-11-30 | 2021-03-09 | 山东大学 | 重磁位场场源位置估计方法、系统、介质及电子设备 |
Non-Patent Citations (3)
Title |
---|
基于自适应带宽的快速动态高斯核均值漂移算法;周芳芳 等;《控制理论与应用》;20080831;第25卷(第4期);第608-612页 * |
基于自适应模糊聚类分析的重力张量欧拉反褶积解;曹书锦 等;《中南大学学报(自然科学版)》;20120331;第43卷(第3期);第1033-1039页 * |
重力场欧拉反褶积最优解提取;周勇 等;《物探化探计算技术》;20170930;第39卷(第5期);第598-604页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113138426A (zh) | 2021-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105427300B (zh) | 一种基于低秩表示和学习字典的高光谱图像异常探测方法 | |
Sauber et al. | Multifield-graphs: An approach to visualizing correlations in multifield scalar data | |
Nascimento et al. | Vertex component analysis: A fast algorithm to unmix hyperspectral data | |
Altmann et al. | Unsupervised post-nonlinear unmixing of hyperspectral images using a Hamiltonian Monte Carlo algorithm | |
Bardsley et al. | Randomize-then-optimize: A method for sampling from posterior distributions in nonlinear inverse problems | |
Plaza et al. | Spatial/spectral endmember extraction by multidimensional morphological operations | |
AU2011248992B2 (en) | Windowed statistical analysis for anomaly detection in geophysical datasets | |
Cardiel et al. | Using spectroscopic data to disentangle stellar population properties | |
Nascimento et al. | Comparing edge detection methods based on stochastic entropies and distances for PolSAR imagery | |
CN103955926B (zh) | 基于Semi-NMF的遥感图像变化检测方法 | |
Bremer et al. | Derivation of tree skeletons and error assessment using LiDAR point cloud data of varying quality | |
Bourennane et al. | Improvement of target-detection algorithms based on adaptive three-dimensional filtering | |
CN113138426B (zh) | 一种基于多变量核密度欧拉解概率密度成像方法 | |
Jerez et al. | Fast target detection via template matching in compressive phase retrieval | |
Morháč et al. | Complete positive deconvolution of spectrometric data | |
Kappel | MSR, a multi-spectrum retrieval technique for spatially-temporally correlated or common Venus surface and atmosphere parameters | |
Tashlinskii et al. | Analysis of methods of estimating objective function gradient during recurrent measurements of image parameters | |
Uribe et al. | A hybrid Gibbs sampler for edge-preserving tomographic reconstruction with uncertain view angles | |
CN113011086B (zh) | 一种基于ga-svr算法森林生物量的估测方法 | |
Tate | Estimating the fractal dimension of synthetic topographic surfaces | |
US11634175B2 (en) | Dip angle-steering median filtering method based on a niche differential evolution algorithm | |
US6961677B1 (en) | Method and apparatus for categorizing unexplained residuals | |
CN105571716B (zh) | 一种基于差分与卷积核的线采样高光谱数据目标探测方法 | |
Clifford et al. | A process to colorize and assess visualizations of noisy x-ray computed tomography hyperspectral data of materials with similar spectral signatures | |
CN113177306B (zh) | 一种基于b样条函数的欧拉解集概率密度成像方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |