CN113130983B - Solid electrolyte and solid lithium ion battery - Google Patents
Solid electrolyte and solid lithium ion battery Download PDFInfo
- Publication number
- CN113130983B CN113130983B CN201911395266.XA CN201911395266A CN113130983B CN 113130983 B CN113130983 B CN 113130983B CN 201911395266 A CN201911395266 A CN 201911395266A CN 113130983 B CN113130983 B CN 113130983B
- Authority
- CN
- China
- Prior art keywords
- solid
- solid electrolyte
- compound
- lithium
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 84
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 51
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 51
- 239000007787 solid Substances 0.000 title claims abstract description 23
- 150000001875 compounds Chemical class 0.000 claims abstract description 45
- 229920000642 polymer Polymers 0.000 claims abstract description 40
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 39
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000000654 additive Substances 0.000 claims abstract description 16
- 230000000996 additive effect Effects 0.000 claims abstract description 15
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 7
- 239000001257 hydrogen Substances 0.000 claims abstract description 7
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims abstract description 7
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000011737 fluorine Substances 0.000 claims abstract description 6
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 6
- 239000000178 monomer Substances 0.000 claims description 24
- 239000003792 electrolyte Substances 0.000 claims description 17
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 14
- 239000002904 solvent Substances 0.000 claims description 12
- -1 trimethylsiloxy Chemical group 0.000 claims description 9
- 239000007773 negative electrode material Substances 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 229940125904 compound 1 Drugs 0.000 claims description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 150000007942 carboxylates Chemical class 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 4
- 239000003575 carbonaceous material Substances 0.000 claims description 4
- 229920001940 conductive polymer Polymers 0.000 claims description 4
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 3
- 229910000733 Li alloy Inorganic materials 0.000 claims description 3
- 229910007969 Li-Co-Ni Inorganic materials 0.000 claims description 3
- 229910006555 Li—Co—Ni Inorganic materials 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 150000001336 alkenes Chemical class 0.000 claims description 3
- 125000002947 alkylene group Chemical group 0.000 claims description 3
- 150000001408 amides Chemical class 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 3
- 239000001989 lithium alloy Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 3
- 150000002825 nitriles Chemical class 0.000 claims description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229920006112 polar polymer Polymers 0.000 claims description 3
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 3
- 229940126214 compound 3 Drugs 0.000 claims description 2
- 150000004820 halides Chemical class 0.000 claims description 2
- 229910000676 Si alloy Inorganic materials 0.000 claims 1
- 229910001128 Sn alloy Inorganic materials 0.000 claims 1
- 229940125782 compound 2 Drugs 0.000 claims 1
- 229940125898 compound 5 Drugs 0.000 claims 1
- 125000001153 fluoro group Chemical group F* 0.000 claims 1
- 230000000379 polymerizing effect Effects 0.000 claims 1
- 210000001787 dendrite Anatomy 0.000 abstract description 23
- 238000000034 method Methods 0.000 abstract description 6
- 230000008569 process Effects 0.000 abstract description 5
- 238000007599 discharging Methods 0.000 abstract description 4
- 238000002360 preparation method Methods 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 14
- 239000011256 inorganic filler Substances 0.000 description 10
- 229910003475 inorganic filler Inorganic materials 0.000 description 10
- 229910003002 lithium salt Inorganic materials 0.000 description 7
- 159000000002 lithium salts Chemical class 0.000 description 7
- 230000005012 migration Effects 0.000 description 6
- 238000013508 migration Methods 0.000 description 6
- 239000007774 positive electrode material Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000011244 liquid electrolyte Substances 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 229920002749 Bacterial cellulose Polymers 0.000 description 4
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000005016 bacterial cellulose Substances 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 4
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 4
- 239000005518 polymer electrolyte Substances 0.000 description 4
- 239000013354 porous framework Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000002687 intercalation Effects 0.000 description 3
- 238000009830 intercalation Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 2
- 229910009178 Li1.3Al0.3Ti1.7(PO4)3 Inorganic materials 0.000 description 2
- 229910009511 Li1.5Al0.5Ge1.5(PO4)3 Inorganic materials 0.000 description 2
- 229910013075 LiBF Inorganic materials 0.000 description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 description 2
- 229910013684 LiClO 4 Inorganic materials 0.000 description 2
- 229910011990 LiFe0.5Mn0.5PO4 Inorganic materials 0.000 description 2
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 2
- 229910013100 LiNix Inorganic materials 0.000 description 2
- 229910013872 LiPF Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 101150058243 Lipf gene Proteins 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 239000006258 conductive agent Substances 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 2
- 239000011883 electrode binding agent Substances 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052901 montmorillonite Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920000379 polypropylene carbonate Polymers 0.000 description 2
- 229910001251 solid state electrolyte alloy Inorganic materials 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000001132 ultrasonic dispersion Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910005793 GeO 2 Inorganic materials 0.000 description 1
- 229910003003 Li-S Inorganic materials 0.000 description 1
- 229910013733 LiCo Inorganic materials 0.000 description 1
- 229910010710 LiFePO Inorganic materials 0.000 description 1
- 229910006715 Li—O Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 1
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N germanium monoxide Inorganic materials [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- DVATZODUVBMYHN-UHFFFAOYSA-K lithium;iron(2+);manganese(2+);phosphate Chemical compound [Li+].[Mn+2].[Fe+2].[O-]P([O-])([O-])=O DVATZODUVBMYHN-UHFFFAOYSA-K 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- AICOOMRHRUFYCM-ZRRPKQBOSA-N oxazine, 1 Chemical compound C([C@@H]1[C@H](C(C[C@]2(C)[C@@H]([C@H](C)N(C)C)[C@H](O)C[C@]21C)=O)CC1=CC2)C[C@H]1[C@@]1(C)[C@H]2N=C(C(C)C)OC1 AICOOMRHRUFYCM-ZRRPKQBOSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
Abstract
Description
技术领域technical field
本发明属于二次电池技术领域,具体涉及一种固态电解质及固态锂离子电池。The invention belongs to the technical field of secondary batteries, and in particular relates to a solid electrolyte and a solid lithium ion battery.
背景技术Background technique
相比于铅酸、镍铬电池等传统电化学能源器件,锂离子电池因具有能量密度高、工作电压高、无记忆效应、循环寿命长和环境友好等优点,已是运用最广泛的商业储能体系。虽然传统的液态锂离子电池具备良好的离子导电率和浸润性,但同时也存在着热稳定性差、易燃、易漏液等安全问题。当前石墨为负极的锂离子电池体系经过多年量产优化,能量密度已经很难超过300Wh/kg,难以满足市场对高续航里程的要求。因此高理论能量密度的锂金属负极电池,如Li-S及Li-O2体系等,高镍、高电压三元正极材料配备硅、硅碳负极锂离子电池进入视线。然而,一方面传统的有机系液态电解液容易在锂金属表面的分解,导致电池寿命的缩短;同时液态电解液无法有效抑制锂枝晶的生长,进而带来电池的短路,热失控甚至引起火灾及爆炸的问题,另一方面电极材料在使用中的体积膨胀等问题都对电池的设计提出了挑战。Compared with traditional electrochemical energy devices such as lead-acid and nickel-chromium batteries, lithium-ion batteries have become the most widely used commercial storage devices due to their advantages such as high energy density, high working voltage, no memory effect, long cycle life and environmental friendliness. energy system. Although traditional liquid lithium-ion batteries have good ionic conductivity and wettability, they also have safety problems such as poor thermal stability, flammability, and easy leakage. The current lithium-ion battery system with graphite as the negative electrode has been mass-produced and optimized for many years, and the energy density has hardly exceeded 300Wh/kg, which is difficult to meet the market's requirements for high cruising range. Therefore, lithium metal anode batteries with high theoretical energy density, such as Li-S and Li-O 2 systems, etc., high-nickel, high-voltage ternary cathode materials equipped with silicon and silicon-carbon anode lithium-ion batteries have come into view. However, on the one hand, the traditional organic liquid electrolyte is easy to decompose on the surface of lithium metal, resulting in shortened battery life; at the same time, the liquid electrolyte cannot effectively inhibit the growth of lithium dendrites, which in turn leads to short circuit of the battery, thermal runaway and even fire. And the problem of explosion, on the other hand, the volume expansion of electrode materials in use all pose challenges to the design of batteries.
具有更高的能量密度和优异的安全性能的固态电解质成为代替液态电解质解决上述解决问题的潜在最佳方法。聚合物固态电池与电极材料界面接触良好,同时兼容现有的锂离子电池生产设备,是最有可能实现规模化应用的固态电池体系。但聚合物电解质使用相对柔性的有机物,锂电池中电极与电解质的界面接触相对较好,但存在离子电导率低,不能抑制锂枝晶的问题。当制备过程金属锂负极存在缺陷或不均匀或界面接触不好时,均会引起锂枝晶的产生,造成电池循环性能衰减及失效,同时良品率下降。Solid-state electrolytes with higher energy density and excellent safety performance become the potential best way to replace liquid electrolytes to solve the above-mentioned problems. Polymer solid-state batteries have good interface contact with electrode materials and are compatible with existing lithium-ion battery production equipment. They are the most likely solid-state battery systems for large-scale applications. However, polymer electrolytes use relatively flexible organic substances, and the interfacial contact between electrodes and electrolytes in lithium batteries is relatively good, but there is a problem of low ionic conductivity, which cannot suppress lithium dendrites. When the metal lithium negative electrode is defective or uneven or the interface contact is not good during the preparation process, it will cause the generation of lithium dendrites, resulting in attenuation and failure of battery cycle performance, and at the same time, the yield of good products will decrease.
因此,亟需开发一种能够耐受金属锂的缺陷,提升电池良品率和寿命的聚合物固态电解质。Therefore, there is an urgent need to develop a polymer solid electrolyte that can tolerate the defects of lithium metal and improve the yield and life of the battery.
发明内容Contents of the invention
针对现有固态电解质存在锂枝晶生长导致电池循环性能衰减及失效的问题,本发明提供了一种固态电解质及固态锂离子电池。Aiming at the problem that lithium dendrite growth in the existing solid electrolyte leads to attenuation and failure of battery cycle performance, the invention provides a solid electrolyte and a solid lithium ion battery.
本发明解决上述技术问题所采用的技术方案如下:The technical solution adopted by the present invention to solve the problems of the technologies described above is as follows:
一方面,本发明提供了一种固态电解质,包括聚合物和添加剂,所述添加剂包括以下结构式1所示的化合物:In one aspect, the present invention provides a solid electrolyte, including a polymer and an additive, and the additive includes a compound represented by the following structural formula 1:
其中,R1、R2、R3、R4、R5、R6各自独立地选自氢、氟或含1-5个碳原子基团。Wherein, R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently selected from hydrogen, fluorine, or groups containing 1-5 carbon atoms.
可选的,所述添加剂分散于固态电解质的表面和内部。Optionally, the additive is dispersed on the surface and inside of the solid electrolyte.
可选的,所述含1-5个碳原子的基团选自烃基、氟代烃基、含氧烃基、含硅烃基或含氰基取代的烃基。Optionally, the group containing 1-5 carbon atoms is selected from hydrocarbon group, fluorinated hydrocarbon group, oxygen-containing hydrocarbon group, silicon-containing hydrocarbon group or cyano-substituted hydrocarbon group.
可选的,R1、R2、R3、R4、R5、R6各自独立地选自氢、氟、甲基、乙基、三甲基硅氧基、氰基或三氟甲基。Optionally, each of R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 is independently selected from hydrogen, fluorine, methyl, ethyl, trimethylsilyloxy, cyano or trifluoromethyl .
可选的,所述结构式1所示的化合物选自于如下所示化合物中的一种或多种:Optionally, the compound shown in structural formula 1 is selected from one or more of the compounds shown below:
可选的,以所述固态电解质的总质量为100%计,所述结构式1所示的化合物的质量百分含量为0.01~20%。Optionally, based on 100% of the total mass of the solid electrolyte, the mass percentage of the compound represented by the structural formula 1 is 0.01-20%.
可选的,以所述固态电解质的总质量为100%计,所述结构式1所示的化合物的质量百分含量为0.01~10%。Optionally, based on 100% of the total mass of the solid electrolyte, the mass percentage of the compound represented by the structural formula 1 is 0.01-10%.
可选的,所述聚合物为极性聚合物,所述聚合物包括环氧烷烃类单体、硅氧烷类单体、烯烃类单体、丙烯酸酯类单体、羧酸酯类单体、碳酸酯类单体、酰胺类单体、腈类单体中的至少一种聚合得到的聚合物及其卤代物;Optionally, the polymer is a polar polymer, and the polymer includes alkylene oxide monomers, siloxane monomers, olefin monomers, acrylate monomers, and carboxylate monomers , polymers obtained by polymerization of at least one of carbonate monomers, amide monomers, and nitrile monomers, and their halogenated products;
以所述固态电解质的总质量为100%计,所述聚合物的质量百分含量为10-90%。Based on the total mass of the solid electrolyte as 100%, the mass percentage of the polymer is 10-90%.
可选的,所述固态电解质还包括有锂盐,所述锂盐包括LiBr、LiI、LiClO4、LiBF4、LiPF6、LiSCN、LiB10Cl10、LiCF3SO3、LiCF3CO2、LiBF2C2O4、LiB(C2O4)2、LiN(SO2CF3)2、LiN(SO2F)2、LiN(SO2F)(SO2CF3)、LiC(SO2CF3)3、LiPF2(C2O4)中的一种或多种;Optionally, the solid electrolyte also includes lithium salts, including LiBr, LiI, LiClO 4 , LiBF 4 , LiPF 6 , LiSCN, LiB 10 Cl 10 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiBF 2 C 2 O 4 , LiB(C 2 O 4 ) 2 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 F) 2 , LiN(SO 2 F)(SO 2 CF 3 ), LiC(SO 2 CF 3 ) One or more of 3 , LiPF 2 (C 2 O 4 );
以所述固态电解质的总质量为100%计,所述锂盐的质量百分含量为10-80%。Based on the total mass of the solid electrolyte as 100%, the mass percentage of the lithium salt is 10-80%.
可选的,所述固态电解质还包括有无机填料,所述无机填料包括LiF、LiCl、Li2CO3、SiO2、Al2O3、TiO2、ZrO2、MgO、Li7La3Zr2O12、LixLa3ZryA2-yO12、硫化物、Li1.3Al0.3Ti1.7(PO4)3、Li1.5Al0.5Ge1.5(PO4)3、Li2.88PO3.73N0.14、蒙脱土、高岭土和硅藻土中的一种或多种,其中,A为Ta,Al,Nb中一种,6≤x≤7,0.5≤y≤2;Optionally, the solid electrolyte also includes inorganic fillers, the inorganic fillers include LiF, LiCl, Li 2 CO 3 , SiO 2 , Al 2 O 3 , TiO 2 , ZrO 2 , MgO, Li 7 La 3 Zr 2 O 12 , Li x La 3 Zry A 2-y O 12 , sulfide, Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 , Li 2.88 PO 3.73 N 0.14 , One or more of montmorillonite, kaolin and diatomite, wherein A is one of Ta, Al and Nb, 6≤x≤7, 0.5≤y≤2;
以所述固态电解质的总质量为100%计,所述无机填料的质量百分含量为0~40%。Based on the total mass of the solid electrolyte as 100%, the mass percentage of the inorganic filler is 0-40%.
可选的,所述固态电解质还包括有溶剂,所述溶剂包括碳酸酯、羧酸酯、氟代溶剂中的一种或多种;Optionally, the solid electrolyte also includes a solvent, and the solvent includes one or more of carbonates, carboxylates, and fluorinated solvents;
以所述固态电解质的总质量为100%计,所述溶剂的质量百分含量为0~10%。Based on the total mass of the solid electrolyte as 100%, the mass percentage of the solvent is 0-10%.
另一方面,本发明提供了一种固态锂离子电池,包括正极、负极和如上所述的固态电解质,所述固态电解质位于所述正极和所述负极之间。In another aspect, the present invention provides a solid lithium ion battery, comprising a positive electrode, a negative electrode, and the solid electrolyte as described above, and the solid electrolyte is located between the positive electrode and the negative electrode.
可选的,所述负极包括负极活性材料,所述负极活性材料包括钛酸锂、碳材料、LiXFe2O3、LiyWO2、锂金属、锂合金、硅系合金、锡系合金、金属氧化物、导电聚合物、Li-Co-Ni基材料中的一种或多种,其中,0≤x≤1,0≤y≤1。Optionally, the negative electrode includes a negative electrode active material, and the negative electrode active material includes lithium titanate, carbon material, Li X Fe 2 O 3 , Li y WO 2 , lithium metal, lithium alloy, silicon-based alloy, tin-based alloy , one or more of metal oxides, conductive polymers, and Li-Co-Ni-based materials, wherein 0≤x≤1, 0≤y≤1.
可选的,所述负极活性材料为锂金属。Optionally, the negative electrode active material is lithium metal.
根据本发明提供的固态电解质,在聚合物中加入有结构式1所示的化合物,化合物能够均匀分散并复合固定于所述聚合物中,与传统液态电解质不同,电池化成时仅有位于固态电解质界面的结构式1所示的化合物能够与负极发生反应,从而在负极表面形成均匀的界面层,该界面层具有传导锂离子的特性,使得锂离子在界面处迁移速率趋向于均一化,降低了迁移速率梯度,有利于锂的均匀嵌入/沉积,而固态电解质内部的结构式1所示的化合物处于未反应状态。同时结构式1所示的化合物与负极反应生成的界面层具有一定的机械强度,能够对锂枝晶的生成起到抑制作用。另一方面,固态电解质内部的结构式1所示的化合物,在电池充放电的过程中,若生成锂枝晶,锂枝晶在进入固态电解质内部时,会与固态电解质内部的结构式1所示的化合物反应进一步生成机械强度高的钝化膜,对锂枝晶位点施加阻力,从而进一步抑制锂枝晶的生长,提升固态锂离子电池的循环性能。According to the solid electrolyte provided by the present invention, the compound shown in structural formula 1 is added to the polymer, and the compound can be uniformly dispersed and compounded and fixed in the polymer. Unlike traditional liquid electrolytes, when the battery is formed, it is only located at the interface of the solid electrolyte The compound represented by the structural formula 1 can react with the negative electrode to form a uniform interface layer on the surface of the negative electrode. The interface layer has the characteristics of conducting lithium ions, so that the migration rate of lithium ions at the interface tends to be uniform, reducing the migration rate. Gradient, which is conducive to the uniform intercalation/deposition of lithium, while the compound shown by structural formula 1 inside the solid electrolyte is in an unreacted state. At the same time, the interface layer formed by the reaction between the compound represented by the structural formula 1 and the negative electrode has a certain mechanical strength, which can inhibit the formation of lithium dendrites. On the other hand, if the compound shown in structural formula 1 inside the solid electrolyte generates lithium dendrites during the charging and discharging process of the battery, when the lithium dendrites enter the solid electrolyte, they will interact with the compound shown in structural formula 1 inside the solid electrolyte. The compound reaction further forms a passivation film with high mechanical strength, which exerts resistance to the lithium dendrite sites, thereby further inhibiting the growth of lithium dendrites and improving the cycle performance of solid-state lithium-ion batteries.
具体实施方式detailed description
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the technical problems, technical solutions and beneficial effects solved by the present invention clearer, the present invention will be further described in detail below in conjunction with the embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
本发明的一实施例提供了一种固态电解质,包括聚合物和添加剂,所述添加剂包括以下结构式1所示的化合物:An embodiment of the present invention provides a solid electrolyte, including a polymer and an additive, and the additive includes a compound represented by the following structural formula 1:
其中,R1、R2、R3、R4、R5、R6各自独立地选自氢、氟或含1-5个碳原子基团。Wherein, R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently selected from hydrogen, fluorine, or groups containing 1-5 carbon atoms.
在聚合物中加入有结构式1所示的化合物,该化合物能够均匀分散并复合于所述聚合物中,与传统液态电解质不同,电池化成时仅有位于固态电解质界面的结构式1所示的化合物能够与负极发生反应,从而在负极表面形成均匀的界面层,该界面层具有传导锂离子的特性,使得锂离子在界面处迁移速率趋向于均一化,降低了迁移速率梯度,利于锂的均匀嵌入/沉积,而固态电解质内部的结构式1所示的化合物处于未反应状态。同时结构式1所示的化合物与负极反应生成的界面层具有一定的机械强度,能够对锂枝晶的生成起到抑制作用。另一方面,固态电解质内部的结构式1所示的化合物,在电池充放电的过程中,若生成锂枝晶,锂枝晶在进入固态电解质内部时,会与固态电解质内部的结构式1所示的化合物反应进一步生成机械强度高的钝化膜,对锂枝晶位点施加阻力,从而进一步抑制锂枝晶的生长,提升固态锂离子电池的循环性能。A compound represented by structural formula 1 is added to the polymer, which can be uniformly dispersed and compounded in the polymer. Unlike traditional liquid electrolytes, only the compound represented by structural formula 1 located at the solid electrolyte interface can It reacts with the negative electrode to form a uniform interface layer on the surface of the negative electrode. The interface layer has the characteristics of conducting lithium ions, so that the migration rate of lithium ions at the interface tends to be uniform, reducing the migration rate gradient and facilitating the uniform intercalation/intercalation of lithium ions. deposition, while the compound represented by structural formula 1 inside the solid electrolyte is in an unreacted state. At the same time, the interface layer formed by the reaction between the compound represented by the structural formula 1 and the negative electrode has a certain mechanical strength, which can inhibit the formation of lithium dendrites. On the other hand, if the compound shown in structural formula 1 inside the solid electrolyte generates lithium dendrites during the charging and discharging process of the battery, when the lithium dendrites enter the solid electrolyte, they will interact with the compound shown in structural formula 1 inside the solid electrolyte. The compound reaction further forms a passivation film with high mechanical strength, which exerts resistance to the lithium dendrite sites, thereby further inhibiting the growth of lithium dendrites and improving the cycle performance of solid-state lithium-ion batteries.
在一些实施例中,所述添加剂分散于固态电解质的表面和内部。In some embodiments, the additive is dispersed on the surface and inside of the solid electrolyte.
在一些实施例中,所述含1-5个碳原子的基团选自烃基、氟代烃基、含氧烃基、含硅烃基或含氰基取代的烃基。In some embodiments, the group containing 1-5 carbon atoms is selected from hydrocarbyl, fluorohydrocarbyl, oxygen-containing hydrocarbyl, silicon-containing hydrocarbyl or cyano-substituted hydrocarbyl.
在一些实施例中,R1、R2、R3、R4、R5、R6各自独立地选自氢、氟、甲基、乙基、三甲基硅氧基、氰基或三氟甲基。In some embodiments, each of R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 is independently selected from hydrogen, fluorine, methyl, ethyl, trimethylsilyloxy, cyano, or trifluoro methyl.
在一些实施例中,所述结构式1所示的化合物选自于如下所示化合物中的一种或多种:In some embodiments, the compound represented by the structural formula 1 is selected from one or more of the compounds shown below:
需要说明的是,以上是本发明所要求保护的部分化合物,但不限于此,不应理解为对本发明的限制。It should be noted that the above are some of the compounds claimed in the present invention, but are not limited thereto, and should not be construed as limiting the present invention.
在一些实施例中,以所述固态电解质的总质量为100%计,所述结构式1所示的化合物的质量百分含量为0.01~20%。In some embodiments, based on 100% of the total mass of the solid electrolyte, the mass percentage of the compound represented by the structural formula 1 is 0.01-20%.
在优选的实施例中,以所述固态电解质的总质量为100%计,所述结构式1所示的化合物的质量百分含量为0.01~10%。In a preferred embodiment, based on 100% of the total mass of the solid electrolyte, the mass percentage of the compound represented by the structural formula 1 is 0.01-10%.
在更优选的实施例中,以所述固态电解质的总质量为100%计,所述结构式1所示的化合物的质量百分含量为0.05~10%。In a more preferred embodiment, based on 100% of the total mass of the solid electrolyte, the mass percentage of the compound represented by the structural formula 1 is 0.05-10%.
若所述结构式1所示的化合物的含量过少,则不足以与固态锂离子电池的电化学过程中产生的锂枝晶反应,抑制锂枝晶的效果较差,难以改善固态锂离子电池的性能;若所述结构式1所示的化合物的含量过多,位于固态电解质界面的化合物与负极发生反应生成的界面层沉积厚度过大,过厚的界面层的锂离子传导性能降低,锂离子在界面层的迁移阻力增大,固态锂离子电池在充放电过程中的极化严重,不利于固态锂离子电池的循环稳定性提高,且电池的内阻增大,初始容量降低。If the content of the compound shown in the structural formula 1 is too small, it is not enough to react with the lithium dendrites produced in the electrochemical process of the solid-state lithium-ion battery, and the effect of inhibiting the lithium dendrites is poor, and it is difficult to improve the performance of the solid-state lithium-ion battery. Performance; if the content of the compound shown in the structural formula 1 is too much, the deposition thickness of the interfacial layer formed by the reaction between the compound at the interface of the solid electrolyte and the negative electrode is too large, and the lithium ion conductivity of the excessively thick interfacial layer is reduced, and lithium ions in the The migration resistance of the interface layer increases, and the polarization of the solid-state lithium-ion battery is serious during the charging and discharging process, which is not conducive to the improvement of the cycle stability of the solid-state lithium-ion battery, and the internal resistance of the battery increases, and the initial capacity decreases.
在一些实施例中,所述聚合物为极性聚合物。In some embodiments, the polymer is a polar polymer.
通过聚合物链上的极性基团通过路易斯酸碱作用溶解、解离锂盐,锂离子通过聚合物链的运动进行传输。The polar groups on the polymer chain dissolve and dissociate the lithium salt through Lewis acid-base action, and lithium ions are transported through the movement of the polymer chain.
在一些实施例中,所述聚合物包括环氧烷烃类单体、硅氧烷类单体、烯烃类单体、丙烯酸酯类单体、羧酸酯类单体、碳酸酯类单体、酰胺类单体、腈类单体中的至少一种聚合得到的聚合物及其卤代物;In some embodiments, the polymer includes alkylene oxide monomers, siloxane monomers, olefin monomers, acrylate monomers, carboxylate monomers, carbonate monomers, amides Polymers obtained by polymerization of at least one of quasi-monomers and nitrile monomers and their halides;
以所述固态电解质的总质量为100%计,所述聚合物的质量百分含量为10-90%。Based on the total mass of the solid electrolyte as 100%, the mass percentage of the polymer is 10-90%.
在一些实施例中,所述固态电解质还包括有锂盐,所述锂盐包括LiBr、LiI、LiClO4、LiBF4、LiPF6、LiSCN、LiB10Cl10、LiCF3SO3、LiCF3CO2、LiBF2C2O4、LiB(C2O4)2、LiN(SO2CF3)2、LiN(SO2F)2、LiN(SO2F)(SO2CF3)、LiC(SO2CF3)3、LiPF2(C2O4)中的一种或多种。In some embodiments, the solid electrolyte further includes a lithium salt, and the lithium salt includes LiBr, LiI, LiClO 4 , LiBF 4 , LiPF 6 , LiSCN, LiB 10 Cl 10 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiBF 2 C 2 O 4 , LiB(C 2 O 4 ) 2 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 F) 2 , LiN(SO 2 F)(SO 2 CF 3 ), LiC(SO One or more of 2 CF 3 ) 3 , LiPF 2 (C 2 O 4 ).
以所述固态电解质的总质量为100%计,所述锂盐的质量百分含量为10-80%。Based on the total mass of the solid electrolyte as 100%, the mass percentage of the lithium salt is 10-80%.
在一些实施例中,所述固态电解质还包括有无机填料,所述无机填料包括LiF、LiCl、Li2CO3、SiO2、Al2O3、TiO2、ZrO2、MgO、Li7La3Zr2O12、LixLa3ZryA2-yO12、硫化物、Li1.3Al0.3Ti1.7(PO4)3、Li1.5Al0.5Ge1.5(PO4)3、Li2.88PO3.73N0.14、蒙脱土、高岭土和硅藻土中的一种或多种,其中,A为Ta,Al,Nb中一种,6≤x≤7,0.5≤y≤2;In some embodiments, the solid electrolyte further includes inorganic fillers, the inorganic fillers include LiF, LiCl, Li 2 CO 3 , SiO 2 , Al 2 O 3 , TiO 2 , ZrO 2 , MgO, Li 7 La 3 Zr 2 O 12 , Li x La 3 Zry A 2-y O 12 , sulfide, Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 , Li 2.88 PO 3.73 N 0.14 . One or more of montmorillonite, kaolin and diatomite, wherein A is one of Ta, Al and Nb, 6≤x≤7, 0.5≤y≤2;
通过在所述固态电解质中加入无机填料,能够进一步改善固态电解质的机械性能,抑制锂枝晶的生长。同时,无机填料可降低聚合物的结晶度,提高聚合物的链段移动能力,从而提升锂离子在聚合物中的迁移速度,为固态电解质带来更高的离子电导率,有助于降低电化学过程中的极化。By adding inorganic fillers to the solid electrolyte, the mechanical properties of the solid electrolyte can be further improved, and the growth of lithium dendrites can be suppressed. At the same time, the inorganic filler can reduce the crystallinity of the polymer, improve the mobility of the polymer chain segment, thereby increasing the migration speed of lithium ions in the polymer, bringing higher ionic conductivity to the solid electrolyte, and helping to reduce the electrical conductivity. Polarization in chemical processes.
以所述固态电解质的总质量为100%计,所述无机填料的质量百分含量为0~40%。Based on the total mass of the solid electrolyte as 100%, the mass percentage of the inorganic filler is 0-40%.
所述无机填料的重量含量过高时,固态电解质的机械强度受到影响,成膜性变差。When the weight content of the inorganic filler is too high, the mechanical strength of the solid electrolyte is affected, and the film-forming property becomes poor.
所述无机填料的中值粒径D50为5nm~5μm。The median particle diameter D50 of the inorganic filler is 5 nm˜5 μm.
在一些实施例中,所述固态电解质还包括多孔骨架,所述聚合物负载于所述多孔骨架上。In some embodiments, the solid electrolyte further includes a porous framework on which the polymer is supported.
在一些实施例中,所述多孔骨架选自细菌纤维素膜。In some embodiments, the porous framework is selected from bacterial cellulose membranes.
在一些实施例中,所述固态电解质还包括有溶剂,所述溶剂包括碳酸酯、羧酸酯、氟代溶剂中的一种或多种;In some embodiments, the solid electrolyte also includes a solvent, and the solvent includes one or more of carbonates, carboxylates, and fluorinated solvents;
以所述固态电解质的总质量为100%计,所述溶剂的质量百分含量为0~10%。Based on the total mass of the solid electrolyte as 100%, the mass percentage of the solvent is 0-10%.
另一方面,本发明提供了一种固态锂离子电池,包括正极、负极和如上所述的固态电解质,所述固态电解质位于所述正极和所述负极之间。In another aspect, the present invention provides a solid lithium ion battery, comprising a positive electrode, a negative electrode, and the solid electrolyte as described above, and the solid electrolyte is located between the positive electrode and the negative electrode.
在一些实施例中,所述正极包括正极活性材料,所述正极活性材料包括LiNixCoyMnzL(1-x-y-z)O2、LiCox’L(1-x’)O2、LiNix”L’y’Mn(2-x”-y’)O4、Liz’MPO4中的至少一种;其中,L为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe;0≤x≤1,0≤y≤1,0≤z≤1,0<x+y+z≤1,0<x’≤1,0.3≤x”≤0.6,0.01≤y’≤0.2;L’为Co、Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe;0.5≤z’≤1,M为Fe、Mn、Co中的至少一种。In some embodiments, the positive electrode includes a positive electrode active material, and the positive electrode active material includes LiNix Co y Mnz L (1-xyz) O 2 , LiCo x' L (1-x') O 2 , LiNix " At least one of L'y' Mn (2-x"-y') O 4 , Li z' MPO 4 ; wherein, L is Al, Sr, Mg, Ti, Ca, Zr, Zn, Si or Fe ;0≤x≤1, 0≤y≤1, 0≤z≤1, 0<x+y+z≤1, 0<x'≤1, 0.3≤x"≤0.6, 0.01≤y'≤0.2;L' is Co, Al, Sr, Mg, Ti, Ca, Zr, Zn, Si or Fe; 0.5≤z'≤1, and M is at least one of Fe, Mn and Co.
具体的,所述正极活性材料选自钴酸锂、镍钴铝、镍钴锰、磷酸铁锰锂、锰酸锂、磷酸铁锂中的一种或多种。Specifically, the positive electrode active material is selected from one or more of lithium cobalt oxide, nickel cobalt aluminum, nickel cobalt manganese, lithium iron manganese phosphate, lithium manganate, and lithium iron phosphate.
在一些实施例中,所述正极还包括正极粘结剂和正极导电剂。In some embodiments, the positive electrode further includes a positive electrode binder and a positive electrode conductive agent.
在一些实施例中,所述负极包括负极活性材料,所述负极活性材料包括钛酸锂(LTO)、碳材料、LiXFe2O3、LiyWO2、锂金属、锂合金、硅系合金、锡系合金、金属氧化物、导电聚合物、Li-Co-Ni基材料中的一种或多种,其中,0≤x≤1,0≤y≤1。In some embodiments, the negative electrode includes a negative electrode active material, and the negative electrode active material includes lithium titanate (LTO), carbon material, Li X Fe 2 O 3 , Li y WO 2 , lithium metal, lithium alloy, silicon-based One or more of alloys, tin-based alloys, metal oxides, conductive polymers, and Li-Co-Ni-based materials, where 0≤x≤1, 0≤y≤1.
在一些优选的实施例中,所述负极活性材料为锂金属。In some preferred embodiments, the negative electrode active material is lithium metal.
所述碳材料包括非石墨化碳和石墨化碳。The carbon material includes non-graphitizable carbon and graphitizable carbon.
所述金属氧化物包括SnO、SnO2、PbO、Pb2O3、Pb3O4、Sb2O3、Sb2O4、Sb2O5、GeO、GeO2、Bi2O3、Bi2O4、Bi2O5和钛氧化物中的一种或多种The metal oxides include SnO, SnO 2 , PbO, Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 One or more of O 4 , Bi 2 O 5 and titanium oxide
所述导电聚合物包括聚乙炔。The conductive polymer includes polyacetylene.
在一些实施例中,所述负极还包括负极粘结剂和负极导电剂。In some embodiments, the negative electrode further includes a negative electrode binder and a negative electrode conductive agent.
所述固态锂离子电池由于采用了如上所述的固态电解质,具有较好的循环稳定性,能够有效避免锂枝晶引起的电池短路和极化电压提高。The solid-state lithium-ion battery has good cycle stability due to the use of the above-mentioned solid-state electrolyte, and can effectively avoid battery short-circuit and increase in polarization voltage caused by lithium dendrites.
以下通过实施例对本发明进行进一步的说明。The present invention is further described by way of examples below.
实施例1Example 1
本实施例用于说明本发明公开的固态电解质及固态锂离子电池的制备方法,包括以下的操作步骤:This embodiment is used to illustrate the preparation method of the solid electrolyte and solid lithium ion battery disclosed in the present invention, including the following steps:
聚合物固态电解质的制备:Preparation of polymer solid electrolyte:
采用的添加剂为化合物1,将1.0g重均分子量为60W的聚环氧乙烷(PEO)、0.41gLiN(SO2CF3)2溶解于5g乙腈中,再加入0.029g化合物1,搅拌至固体完全溶解。将所得聚合物溶液置于涂布机上,用刮刀自动刮涂,常温真空干燥8h,再于80℃真空下干燥12h,得到40μm的聚合物固态电解质。电解质中的化合物1含量占电解质总重量的2%。The additive used is Compound 1. Dissolve 1.0g of polyethylene oxide (PEO) with a weight average molecular weight of 60W and 0.41g of LiN(SO 2 CF 3 ) 2 in 5g of acetonitrile, then add 0.029g of Compound 1, and stir until solid completely dissolved. The obtained polymer solution was placed on a coating machine, automatically scraped with a scraper, dried in vacuum at room temperature for 8 hours, and then dried in vacuum at 80°C for 12 hours to obtain a polymer solid electrolyte with a thickness of 40 μm. The content of Compound 1 in the electrolyte accounts for 2% of the total weight of the electrolyte.
固态锂离子电池的制备:Preparation of solid-state lithium-ion batteries:
正极:将LiFePO4活性材料、导电炭黑、上述聚合物电解质以80:10:10的质量比混合,加入环己酮,搅拌至混合均匀。将上述所得的浆料均匀地涂敷在铝箔上,先在80℃下烘干至无明显液体,再于100℃真空下干燥12h。Positive electrode: Mix LiFePO 4 active material, conductive carbon black, and the above-mentioned polymer electrolyte in a mass ratio of 80:10:10, add cyclohexanone, and stir until the mixture is uniform. The slurry obtained above was evenly coated on an aluminum foil, firstly dried at 80°C until there was no obvious liquid, and then dried under vacuum at 100°C for 12 hours.
负极:采用锂金属作为负极。Negative electrode: Lithium metal is used as the negative electrode.
固态锂离子电池的制备:按照负极壳-弹片-垫片-负极-聚合物固态电解质-正极-正极壳的顺序组装2032扣式电池。Preparation of solid-state lithium-ion battery: Assemble 2032 button batteries in the order of negative electrode case-shrapnel-gasket-negative electrode-polymer solid electrolyte-positive electrode-positive electrode case.
实施例2Example 2
本实施例用于说明本发明公开的固态电解质及固态锂离子电池的制备方法,包括实施例1中大部分操作步骤,其不同之处在于:This embodiment is used to illustrate the preparation method of the solid electrolyte and solid lithium ion battery disclosed in the present invention, including most of the operation steps in Example 1, the difference is:
采用聚碳酸丙烯酯(PPC)替代实施例1中的聚环氧乙烷(PEO)。Polypropylene carbonate (PPC) was used instead of polyethylene oxide (PEO) in Example 1.
实施例3Example 3
本实施例用于说明本发明公开的固态电解质及固态锂离子电池的制备方法,包括实施例1中大部分操作步骤,其不同之处在于:This embodiment is used to illustrate the preparation method of the solid electrolyte and solid lithium ion battery disclosed in the present invention, including most of the operation steps in Example 1, the difference is:
采用LiCF3SO3替代实施例1中的锂盐LiN(SO2CF3)2。The lithium salt LiN(SO 2 CF 3 ) 2 in Example 1 was replaced by LiCF 3 SO 3 .
实施例4Example 4
本实施例用于说明本发明公开的固态电解质及固态锂离子电池的制备方法,包括实施例1中大部分操作步骤,其不同之处在于:This embodiment is used to illustrate the preparation method of the solid electrolyte and solid lithium ion battery disclosed in the present invention, including most of the operation steps in Example 1, the difference is:
所述“聚合物固态电解质的制备”操作中,往聚合物溶液中加入0.1656g纳米氧化铝,纳米氧化铝尺寸为8~12nm,d50=10nm,并进行超声分散,超声分散后,固态电解质溶液置于聚四氟乙烯模板中干燥,常温挥发4h,再60℃真空干燥6h,得到固态聚合物电解质。In the "preparation of polymer solid electrolyte" operation, add 0.1656g of nano-alumina to the polymer solution, the size of nano-alumina is 8-12nm, d50=10nm, and perform ultrasonic dispersion. After ultrasonic dispersion, the solid electrolyte solution Place in a polytetrafluoroethylene template to dry, volatilize at room temperature for 4 hours, and then dry in vacuum at 60°C for 6 hours to obtain a solid polymer electrolyte.
实施例5Example 5
本实施例用于说明本发明公开的固态电解质及固态锂离子电池的制备方法,包括实施例1中大部分操作步骤,其不同之处在于:This embodiment is used to illustrate the preparation method of the solid electrolyte and solid lithium ion battery disclosed in the present invention, including most of the operation steps in Example 1, the difference is:
所述“聚合物固态电解质的制备”操作中,在固态电解质溶液配置完成后,获取细菌纤维素膜,该细菌纤维素膜的孔隙率通过阿基米德法计算为85vol%,固态电解质溶液浸润到细菌纤维素膜中,常温挥发溶剂后再浸润该固态电解质溶液,重复该操作至孔隙完全被聚合物填充后,60℃真空干燥6h,得到固态电解质,固态电解质膜的平均厚度为52μm。In the "preparation of polymer solid electrolyte" operation, after the configuration of the solid electrolyte solution is completed, the bacterial cellulose membrane is obtained. The porosity of the bacterial cellulose membrane is calculated as 85vol% by the Archimedes method, and the solid electrolyte solution infiltrates Put it into the bacterial cellulose membrane, volatilize the solvent at room temperature and then infiltrate the solid electrolyte solution. Repeat the operation until the pores are completely filled with the polymer, and then vacuum dry at 60°C for 6 hours to obtain a solid electrolyte. The average thickness of the solid electrolyte membrane is 52 μm.
实施例6Example 6
本实施例用于说明本发明公开的固态电解质及固态锂离子电池的制备方法,包括实施例3中大部分操作步骤,其不同之处在于:This embodiment is used to illustrate the preparation method of the solid-state electrolyte and solid-state lithium-ion battery disclosed in the present invention, including most of the operation steps in Example 3, the difference being:
采用LiFe0.5Mn0.5PO4替代实施例1中的正极活性材料LiFePO4。The positive electrode active material LiFePO 4 in Example 1 was replaced by LiFe 0.5 Mn 0.5 PO 4 .
实施例7Example 7
本实施例用于说明本发明公开的固态电解质及固态锂离子电池的制备方法,包括实施例1中大部分操作步骤,其不同之处在于:This embodiment is used to illustrate the preparation method of the solid electrolyte and solid lithium ion battery disclosed in the present invention, including most of the operation steps in Example 1, the difference is:
采用结构式为的化合物3替换实施例1中的化合物1。The structural formula is Compound 3 replaces Compound 1 in Example 1.
实施例8Example 8
本实施例用于说明本发明公开的固态电解质及固态锂离子电池的制备方法,包括实施例1中大部分操作步骤,其不同之处在于:This embodiment is used to illustrate the preparation method of the solid electrolyte and solid lithium ion battery disclosed in the present invention, including most of the operation steps in Example 1, the difference is:
采用结构式为的化合物4替换实施例1中的化合物1。The structural formula is Compound 4 replaces Compound 1 in Example 1.
实施例9Example 9
本实施例用于说明本发明公开的固态电解质及固态锂离子电池的制备方法,包括实施例1中大部分操作步骤,其不同之处在于:This embodiment is used to illustrate the preparation method of the solid electrolyte and solid lithium ion battery disclosed in the present invention, including most of the operation steps in Example 1, the difference is:
采用结构式为的化合物8替换实施例1中的化合物1。The structural formula is Compound 8 replaces Compound 1 in Example 1.
实施例10Example 10
本实施例用于说明本发明公开的固态电解质及固态锂离子电池的制备方法,包括实施例1中大部分操作步骤,其不同之处在于:This embodiment is used to illustrate the preparation method of the solid electrolyte and solid lithium ion battery disclosed in the present invention, including most of the operation steps in Example 1, the difference is:
采用结构式为的化合物9替换实施例1中的添加剂。The structural formula is Compound 9 replaces the additive in Example 1.
对比例1Comparative example 1
本对比例用于对比说明本发明公开的固态电解质及固态锂离子电池的制备方法,包括实施例1中大部分操作步骤,其不同之处在于:This comparative example is used to compare and illustrate the preparation method of the solid-state electrolyte and solid-state lithium-ion battery disclosed by the present invention, including most of the operating steps in Example 1, the difference being:
所述“聚合物固态电解质的制备”操作中,往聚合物溶液中不加入结构式1所示化合物。In the operation of "preparation of polymer solid electrolyte", no compound represented by structural formula 1 is added to the polymer solution.
对比例2Comparative example 2
本对比例用于对比说明本发明公开的固态电解质及固态锂离子电池的制备方法,包括实施例6中大部分操作步骤,其不同之处在于:This comparative example is used to compare and illustrate the preparation method of the solid-state electrolyte and solid-state lithium-ion battery disclosed by the present invention, including most of the operating steps in Example 6, the difference being:
所述“聚合物固态电解质的制备”操作中,往聚合物溶液中不加入结构式1所示化合物。In the operation of "preparation of polymer solid electrolyte", no compound represented by structural formula 1 is added to the polymer solution.
性能测试Performance Testing
对上述实施例1~10和对比例1、2制备得到的固态电解质及固态锂离子电池行如下性能测试:The following performance tests were carried out on the solid-state electrolytes and solid-state lithium-ion batteries prepared in the above-mentioned Examples 1-10 and Comparative Examples 1 and 2:
在蓝电测试仪上对上述实施例1~10和对比例1、2制备得到的固态锂离子电池进行充放电的循环测试,测试温度为60℃。其中实施例1~5、7~10和对比例1的固态锂离子电池以0.2C的电流充电至3.8V,再恒压充电至电流下降至0.20mA,再以0.2C的电流恒流放电至2.8V,循环200周;实施例6和对比例2的固态锂离子电池以0.2C的电流充电至4.2V,再恒压充电至电流下降至0.20mA,再以0.2C的电流放电至3.0V,循环200周,根据公式“容量保持率=第300周的放电容量/第1周的放电容量×100%”,计算出电池的容量保持率。根据公式“库伦效率=每一周的放电容量/每一周的充电容量×100%”,计算出电池的首圈库伦效率,以及循环N周的平均库伦效率=N周库伦效率的总和/N,The solid-state lithium-ion batteries prepared in Examples 1-10 and Comparative Examples 1 and 2 above were subjected to a charge-discharge cycle test on a blue battery tester, and the test temperature was 60°C. The solid-state lithium-ion batteries of Examples 1-5, 7-10 and Comparative Example 1 are charged to 3.8V with a current of 0.2C, then charged at a constant voltage until the current drops to 0.20mA, and then discharged at a constant current of 0.2C to 3.8V. 2.8V, cycle 200 cycles; the solid-state lithium-ion battery of Example 6 and Comparative Example 2 was charged to 4.2V with a current of 0.2C, then charged at a constant voltage until the current dropped to 0.20mA, and then discharged to 3.0V with a current of 0.2C , cycled for 200 cycles, and calculated the capacity retention rate of the battery according to the formula "capacity retention rate = discharge capacity of the 300th cycle/discharge capacity of the first cycle × 100%". According to the formula "Coulombic efficiency = discharge capacity per week/charge capacity per week × 100%", calculate the first-cycle coulombic efficiency of the battery, and the average coulombic efficiency of N cycles = the sum of N-week coulombic efficiencies/N,
得到的测试结果填入表1。The obtained test results are filled in Table 1.
表1Table 1
对比表1中对比例1和实施例1的测试结果可以看出,当固态电解质中添加2wt%的化合物1作为添加剂后,虽然实施例1的首周库伦效率低于对比例1,但是其循环平均库伦效率要远高于对比例1,这主要是因为添加剂在首周参与了负极表面发生电化学反应,在金属锂表面生成一层新的界面层。对比例1在循环120周时发生短路,这是由于金属锂枝晶生长刺穿电解质引起短路,而实施例1在循环480周后容量保持率在80%以上。同样实施例6与对比例2的数据也同样验证了上述结论。Comparing the test results of Comparative Example 1 and Example 1 in Table 1, it can be seen that when 2wt% of Compound 1 is added to the solid electrolyte as an additive, although the first-week Coulombic efficiency of Example 1 is lower than that of Comparative Example 1, its cycle The average Coulombic efficiency is much higher than that of Comparative Example 1, mainly because the additive participated in the electrochemical reaction on the surface of the negative electrode in the first week, forming a new interfacial layer on the surface of lithium metal. In Comparative Example 1, a short circuit occurred at 120 cycles, which was caused by metal lithium dendrite growth piercing the electrolyte, while in Example 1, the capacity retention rate was above 80% after 480 cycles. The data of Example 6 and Comparative Example 2 also verified the above conclusions.
对比实施例1~实施例10的电池性能结果可以看出,采用本发明所述的固态聚合物电解质制备的电池在60℃时0.2C循环平均库伦效率为98.2%以上,以LiFePO4为正极的电池,0.2C循环的容量保持率在80%以上循环周数在456周以上,说明添加剂的加入对于抑制锂枝晶的生成,延长固态锂离子电池的寿命具有重要作用。从实施例6和对比例2的测试结果可以看出,采用不同正极材料,如LiFe0.5Mn0.5PO4作为正极材料时,固态锂离子电池的循环性能同样具有显著提高,说明本发明提供的固态电解质适用于不同的正极材料体系。对比实施例1和实施例5可以发现电解质中引入多孔骨架时,电池循环容量保持率在80%以上的循环周数有所提升,这是由于多孔骨架的引入提升了电解质的机械强度,降低了电解质的玻璃化转变问题,更有效的抑制了负极枝晶生长。Comparing the battery performance results of Examples 1 to 10, it can be seen that the battery prepared by using the solid polymer electrolyte of the present invention has an average coulombic efficiency of more than 98.2% at 0.2C cycle at 60 ° C, and LiFePO is used as the positive electrode . The capacity retention rate of the battery at 0.2C cycle is above 80%, and the cycle cycle is above 456 cycles, indicating that the addition of additives plays an important role in inhibiting the formation of lithium dendrites and prolonging the life of solid-state lithium-ion batteries. As can be seen from the test results of Example 6 and Comparative Example 2, when using different positive electrode materials such as LiFe 0.5 Mn 0.5 PO 4 as the positive electrode material, the cycle performance of the solid-state lithium-ion battery is also significantly improved, indicating that the solid-state lithium ion battery provided by the present invention The electrolyte is suitable for different cathode material systems. Comparing Example 1 and Example 5, it can be found that when the porous framework is introduced into the electrolyte, the number of cycle cycles with a battery cycle capacity retention rate of more than 80% is improved. This is because the introduction of the porous framework improves the mechanical strength of the electrolyte and reduces the The glass transition problem of the electrolyte can more effectively inhibit the dendrite growth of the negative electrode.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention should be included in the protection of the present invention. within range.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911395266.XA CN113130983B (en) | 2019-12-30 | 2019-12-30 | Solid electrolyte and solid lithium ion battery |
PCT/CN2020/136014 WO2021135900A1 (en) | 2019-12-30 | 2020-12-14 | Solid electrolyte and solid lithium-ion battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911395266.XA CN113130983B (en) | 2019-12-30 | 2019-12-30 | Solid electrolyte and solid lithium ion battery |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113130983A CN113130983A (en) | 2021-07-16 |
CN113130983B true CN113130983B (en) | 2022-12-06 |
Family
ID=76687026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911395266.XA Active CN113130983B (en) | 2019-12-30 | 2019-12-30 | Solid electrolyte and solid lithium ion battery |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113130983B (en) |
WO (1) | WO2021135900A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117913351A (en) * | 2024-03-19 | 2024-04-19 | 蜂巢能源科技股份有限公司 | All-solid-state battery and preparation method thereof |
CN118645589B (en) * | 2024-08-08 | 2024-11-15 | 深圳市贝特瑞新能源技术研究院有限公司 | A lithium metal composite negative electrode and preparation method thereof, and a lithium ion battery |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08295713A (en) * | 1995-04-25 | 1996-11-12 | Showa Denko Kk | Solid polymer electrolyte, battery and solid electric double layer capacitor containing same, their production and material for solid polymer electrolyte |
CN109273760A (en) * | 2018-09-30 | 2019-01-25 | 淮安新能源材料技术研究院 | A kind of lithium ion cell electrode piece and coating method with solid-state electrolyte layer |
CN109768320A (en) * | 2018-12-19 | 2019-05-17 | 南方科技大学 | All-solid-state polymer electrolyte, preparation method thereof and all-solid-state lithium ion battery |
CN110137566A (en) * | 2019-05-21 | 2019-08-16 | 哈尔滨工业大学 | A kind of method and application inhibiting solid electrolyte interface Li dendrite |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3078948B2 (en) * | 1993-03-31 | 2000-08-21 | 日石三菱株式会社 | Organic solvents and electrolytes |
JP3867756B2 (en) * | 1999-03-08 | 2007-01-10 | 三洋化成工業株式会社 | Non-aqueous electrolyte and secondary battery using the same |
JP2002175837A (en) * | 2000-12-06 | 2002-06-21 | Nisshinbo Ind Inc | Polymer gel electrolyte, secondary battery and electric double layer capacitor |
JP5233024B2 (en) * | 2001-07-02 | 2013-07-10 | パイオトレック株式会社 | Solid lithium battery |
KR100657225B1 (en) * | 2003-09-05 | 2006-12-14 | 주식회사 엘지화학 | Electrolyte solvent for improving safety of battery and lithium secondary battery comprising the same |
JP2015092476A (en) * | 2013-10-04 | 2015-05-14 | 旭化成株式会社 | Nonaqueous electrolyte, electrolyte for lithium ion secondary batteries and nonaqueous electrolyte battery |
US20170275310A1 (en) * | 2014-09-09 | 2017-09-28 | Daikin Industries, Ltd. | Electrolytic solution and novel fluorinated phosphoric acid ester |
US10497968B2 (en) * | 2016-01-04 | 2019-12-03 | Global Graphene Group, Inc. | Solid state electrolyte for lithium secondary battery |
CN107591557B (en) * | 2016-07-08 | 2019-05-21 | 深圳新宙邦科技股份有限公司 | A kind of non-aqueous electrolyte for lithium ion cell and the lithium ion battery using the electrolyte |
-
2019
- 2019-12-30 CN CN201911395266.XA patent/CN113130983B/en active Active
-
2020
- 2020-12-14 WO PCT/CN2020/136014 patent/WO2021135900A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08295713A (en) * | 1995-04-25 | 1996-11-12 | Showa Denko Kk | Solid polymer electrolyte, battery and solid electric double layer capacitor containing same, their production and material for solid polymer electrolyte |
CN109273760A (en) * | 2018-09-30 | 2019-01-25 | 淮安新能源材料技术研究院 | A kind of lithium ion cell electrode piece and coating method with solid-state electrolyte layer |
CN109768320A (en) * | 2018-12-19 | 2019-05-17 | 南方科技大学 | All-solid-state polymer electrolyte, preparation method thereof and all-solid-state lithium ion battery |
CN110137566A (en) * | 2019-05-21 | 2019-08-16 | 哈尔滨工业大学 | A kind of method and application inhibiting solid electrolyte interface Li dendrite |
Non-Patent Citations (1)
Title |
---|
基于聚合物电解质固态锂硫电池的研究进展和发展趋势;石凯等;《储能科学与技术》;20170531;第06卷(第03期);479-489 * |
Also Published As
Publication number | Publication date |
---|---|
WO2021135900A1 (en) | 2021-07-08 |
CN113130983A (en) | 2021-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fu et al. | A dual-salt coupled fluoroethylene carbonate succinonitrile-based electrolyte enables Li-metal batteries | |
US12183883B2 (en) | Solid electrolyte and polymer lithium ion battery | |
CA2792747C (en) | Lithium secondary battery using ionic liquid | |
CN110416615A (en) | A kind of electrolyte and lithium battery for inhibiting lithium dendrite growth | |
WO2021135899A1 (en) | Solid-state electrolyte and solid-state lithium ion battery | |
CN103367804B (en) | A kind of lithium ion battery nonaqueous electrolytic solution and use the lithium ion battery of this nonaqueous electrolytic solution | |
CN103151559A (en) | Non-aqueous electrolyte solution for lithium ion battery and corresponding lithium ion battery | |
CN103107363B (en) | Non-water electrolysis solution of lithium ion battery and corresponding lithium ion battery thereof | |
CN113555600B (en) | a solid state battery | |
CN114583270A (en) | Lithium ion battery | |
CN114300750A (en) | Lithium-ion battery electrolyte and lithium-ion battery | |
CN113299983B (en) | Gel electrolyte, lithium ion battery and preparation method | |
CN111344256A (en) | Method for preparing positive electrode active material for secondary battery | |
KR20220017994A (en) | In situ polymerization polymer electrolyte for lithium ion batteries | |
WO2024153145A1 (en) | Positive electrode material and battery comprising same | |
CN114665150A (en) | Lithium metal solid-state battery capable of running at room temperature and preparation method thereof | |
CN113130983B (en) | Solid electrolyte and solid lithium ion battery | |
CN114927762A (en) | Fluorinated sulfonyl electrolyte, preparation method and application thereof, and lithium metal battery | |
CN101599556A (en) | A kind of electrolysis additive and contain the electrolyte and the lithium ion battery of this additive | |
CN100344015C (en) | Method for preparing lithium secondary battery anode tab and lithium ion secondary battery | |
CN112119529A (en) | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same | |
KR20230138935A (en) | High capacity and high reversible anode for lithium secondary batteries, manufacturing method for the same, and lithium secondary batteries including the same | |
CN113113723B (en) | Coating diaphragm and preparation method and application thereof | |
JP2009187819A (en) | Method for producing paste for lithium ion secondary battery | |
CN115863738A (en) | A secondary lithium battery using a composite quasi-solid electrolyte membrane and a preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |