CN113109422A - 磁晶各向异性能的磁巴克豪森噪声表征方法 - Google Patents

磁晶各向异性能的磁巴克豪森噪声表征方法 Download PDF

Info

Publication number
CN113109422A
CN113109422A CN202110416557.3A CN202110416557A CN113109422A CN 113109422 A CN113109422 A CN 113109422A CN 202110416557 A CN202110416557 A CN 202110416557A CN 113109422 A CN113109422 A CN 113109422A
Authority
CN
China
Prior art keywords
magnetocrystalline anisotropy
magnetic
barkhausen noise
magnetization
anisotropy energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110416557.3A
Other languages
English (en)
Inventor
何存富
王丽婷
刘秀成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202110416557.3A priority Critical patent/CN113109422A/zh
Publication of CN113109422A publication Critical patent/CN113109422A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/725Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables by using magneto-acoustical effects or the Barkhausen effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/203Measuring back scattering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

本发明公开了磁晶各向异性能的磁巴克豪森噪声表征方法,首先,根据热力学平衡原理,通过最小化磁系统中的总能量来确定材料的宏观磁化方向;其次,借助于坐标变换方法,将材料宏观参考坐标系与微观晶体取向建立联系,得到磁化矢量在晶体坐标系中分量,建立给定晶体取向材料的磁晶各向异性能;最后,使用电子背散射衍射技术测定材料的微织构,提取晶体取向等微观结构参数引入到模型中,预测材料的磁晶各向异性结果。本发明描述了在饱和磁化状态反向至剩磁点区间产生的低强度磁巴克豪森噪声跳变,提出由畴旋转作为主要磁化机制产生的磁巴克豪森噪声信号区间中表征磁各向异性的方法,为铁磁性材料磁晶各向异性能的测试提供了新方法。

Description

磁晶各向异性能的磁巴克豪森噪声表征方法
技术领域
磁晶各向异性能的磁巴克豪森噪声表征方法属于微磁检测技术领域。通过对反向畴磁化行为与巴克豪森噪声关系的理论模型开展研究,为铁磁性材料磁晶各向异性能的测试提供了新方法。
背景技术
铁磁性材料的磁各向异性程度以及易磁化方向等磁特性在确定在役零部件的缺陷检测中发挥重要作用。材料的磁各向异性主要受到磁晶各向异性、加工(织构、位错塞积等)和应力致磁各向异性等三种机制的综合影响。通过测量不同方向的磁巴克豪森噪声信号,即可反映材料的宏观磁各向异性。磁巴克豪森噪声信号主要来源于不可逆畴壁运动和不可逆畴旋转,在磁巴克豪森噪声包络曲线上分别对应两个不同的磁化区间。前者在矫顽力点周围产生的磁巴克豪森噪声跳变强度较大,在这一区间提取的特征参量主要受到材料加工致磁各向异性的影响。后者在饱和磁化状态反向至剩磁点区间,产生的磁巴克豪森噪声跳变相对较小,主要与晶界处的反向畴成核和生长等行为相关,利用这一区间的检测结果可以有效反映材料的磁晶各向异性能。由于较强的磁巴克豪森噪声信号会淹没较小的信号,因此目前考虑磁各向异性的磁巴克豪森噪声表征方法都是以不可逆畴壁运动为主要运动特征,在各角度提取的特征参量也主要反映加工致磁各向异性。
铁磁性材料大多属于多晶体,本身具有一定的磁晶各向异性。发展磁晶各向异性能的磁巴克豪森噪声表征方法对于全面了解材料的磁各向异性至关重要。本发明在描述反向畴磁化行为与磁巴克豪森噪声跳变关系的基础上,提出了磁晶各向异性能的磁巴克豪森噪声表征方法,通过测定材料的微观结构参数,得到给定材料的磁晶各向异性能随角度变化的结果,为铁磁性材料磁晶各向异性能的测试提供了新方法。
发明内容
本发明旨在发展一种磁晶各向异性能的磁巴克豪森噪声表征方法,使用电子背散射衍射技术测定材料的微观结构参数,借助于坐标变换方法,将材料宏观磁性能与微观晶体取向建立联系,得到给定材料的磁晶各向异性能随角度变化的结果,为铁磁性材料磁晶各向异性能的测试提供新方法。
为了实现上述目的,本发明采用如下设计方案:
首先,根据热力学平衡原理,通过最小化磁系统中的总能量来确定材料的宏观磁化方向;
其次,借助于坐标变换方法,将材料宏观参考坐标系与微观晶体取向建立联系,得到磁化矢量在晶体坐标系中分量,建立给定晶体取向材料的磁晶各向异性能模型;
最后,采用电子背散射衍射技术对材料局部区域的微织构进行测定,提取晶体取向等微观结构参数引入到模型中,预测材料的磁晶各向异性结果。
磁晶各向异性能的磁巴克豪森噪声表征方法重点描述了在饱和磁化状态反向至剩磁点区间产生的低强度磁巴克豪森噪声跳变,提出了由畴旋转作为主要磁化机制产生的磁巴克豪森噪声信号区间中表征磁各向异性的方法,为铁磁性材料磁晶各向异性能的测试提供了新方法。
附图说明
图1外磁场下的磁化方向示意图;
图2在不同角度工作磁场下的宏观磁化方向;
图3给定晶体取向建模模拟的磁晶各向异性能;
图4在X60和X70管线钢中得到的磁晶各向异性能;
图5检测装置示意图;
图6在X60和X70管线钢中实验所得结果和模型结果的归一化比较;
图7为本发明方法实施流程图。
图中:1-励磁线圈,2-巴克豪森噪声检测线圈,3-U型磁芯,4-待测铁磁性材料。
具体实施方式
下面结合附图和实施例对本发明作进一步说明,且以下实施例只是描述性的不是限定性的,不能以此来限定本发明的保护范围。
1.如附图1所示,设定材料轧制方向为参考方向,外加磁场H相对于参考方向的夹角为η,材料内的磁化方向
Figure BDA0003026151420000022
随着工作磁场强度的变化而变化。此时系统内总的磁能为
Figure BDA0003026151420000021
式中K1是磁晶各向异性常数,Ms是单晶体的饱和磁化强度,μ0是真空磁导率。依据热力学平衡原理,通过最小化晶界两侧的总磁能来确定材料的宏观磁化方向
Figure BDA0003026151420000031
设定H=5×104(A/m),K1=4.8×104(J/m3),Ms=1.71×106(A/m)。以5°为步长,改变工作磁场η的角度,得到每个角位置η相对应的磁化方向
Figure BDA0003026151420000035
结果如图2所示。
2.取任意晶体取向
Figure BDA0003026151420000032
为例,设磁化矢量Ms在宏观参考坐标系和晶体坐标系中的分量依次是x,y,z和x',y',z',经过坐标变换,得到磁化矢量在晶体坐标系中的分量
Figure BDA0003026151420000033
最终得到欧拉角为g1的立方晶体磁晶各向异性能表达式(3),结果如图3所示。
Figure BDA0003026151420000034
3.以X60和X70管线钢为例,使用电子背散射衍射技术对材料的局部区域进行取向成像分析,得到取向成像图。将图中各颜色代表的每个晶体取向按照上述方法得到磁晶各向异性能结果,通过平均每个单独晶粒的磁晶各向异性能对多晶体的贡献,最终得到考虑外磁场方向的磁晶各向异性能,结果如图4所示。
后续开展了多角度磁巴克豪森噪声检测实验,检测装置如图5所示。提取特定磁化区间的磁巴克豪森噪声信号,得到与磁晶各向异性能密切相关的特征参量极图,将检测结果与预测结果进行对比(如图6所示),表明磁晶各向异性能的磁巴克豪森噪声表征方法可以有效评估材料的磁晶各向异性能。本发明发展的磁晶各向异性能的磁巴克豪森噪声表征方法可作为评价由磁晶各向异性能引起的磁各向异性的新方法,在结构健康检测和监测领域,具有极大的应用价值和潜力。

Claims (3)

1.磁晶各向异性能的磁巴克豪森噪声表征方法,其特征在于,使用电子背散射衍射技术测定材料的微观结构参数,借助于坐标变换方法,将材料宏观磁性能与微观晶体取向建立联系,得到给定材料的磁晶各向异性能随角度变化的结果;具体的实施步骤如下:
(1)根据热力学平衡原理,通过最小化磁系统中的总能量来确定材料的宏观磁化方向;
(2)借助于坐标变换方法,将材料宏观参考坐标系与微观晶体取向建立联系,得到磁化矢量在晶体坐标系中分量,建立给定晶体取向材料的磁晶各向异性能;
(3)采用电子背散射衍射技术对材料局部区域的微织构进行测定,提取晶体取向等微观结构参数引入到理论模型中,预测材料的磁晶各向异性结果。
2.根据权利要求1所述的磁晶各向异性能的磁巴克豪森噪声表征方法,其特征在于开展多角度磁巴克豪森噪声检测实验,提取特定磁化区间的磁巴克豪森噪声信号,得到与磁晶各向异性能密切相关的特征参量极图,将检测结果与预测结果进行对比。
3.根据权利要求1所述的磁晶各向异性能的磁巴克豪森噪声表征方法,其特征在于:描在饱和磁化状态反向至剩磁点区间产生的低强度磁巴克豪森噪声跳变,由畴旋转作为磁化机制产生的磁巴克豪森噪声信号区间中表征磁各向异性。
CN202110416557.3A 2021-04-19 2021-04-19 磁晶各向异性能的磁巴克豪森噪声表征方法 Pending CN113109422A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110416557.3A CN113109422A (zh) 2021-04-19 2021-04-19 磁晶各向异性能的磁巴克豪森噪声表征方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110416557.3A CN113109422A (zh) 2021-04-19 2021-04-19 磁晶各向异性能的磁巴克豪森噪声表征方法

Publications (1)

Publication Number Publication Date
CN113109422A true CN113109422A (zh) 2021-07-13

Family

ID=76718782

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110416557.3A Pending CN113109422A (zh) 2021-04-19 2021-04-19 磁晶各向异性能的磁巴克豪森噪声表征方法

Country Status (1)

Country Link
CN (1) CN113109422A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105891321A (zh) * 2016-04-06 2016-08-24 北京工业大学 铁磁性材料结构力学性能的微磁检测标定方法
CN109142057A (zh) * 2018-09-11 2019-01-04 北京工业大学 铁磁性材料局域应力和应变场的巴克豪森噪声无损测量方法与系统
WO2020223833A1 (zh) * 2019-05-08 2020-11-12 中国科学院金属研究所 一种快速呈现多晶材料特定晶面分布特征的方法
CN112070030A (zh) * 2020-09-09 2020-12-11 电子科技大学 一种巴克豪森信号随机性度量及转换方法
US20200394348A1 (en) * 2019-06-12 2020-12-17 Sichuan University Method for assessing fatigue damage and a fatigue life based on a crystal plastic welding process model
CN112461916A (zh) * 2020-09-30 2021-03-09 北京工业大学 一种磁性薄膜特性指标的磁巴克豪森噪声检测和反演方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105891321A (zh) * 2016-04-06 2016-08-24 北京工业大学 铁磁性材料结构力学性能的微磁检测标定方法
CN109142057A (zh) * 2018-09-11 2019-01-04 北京工业大学 铁磁性材料局域应力和应变场的巴克豪森噪声无损测量方法与系统
WO2020223833A1 (zh) * 2019-05-08 2020-11-12 中国科学院金属研究所 一种快速呈现多晶材料特定晶面分布特征的方法
US20200394348A1 (en) * 2019-06-12 2020-12-17 Sichuan University Method for assessing fatigue damage and a fatigue life based on a crystal plastic welding process model
CN112070030A (zh) * 2020-09-09 2020-12-11 电子科技大学 一种巴克豪森信号随机性度量及转换方法
CN112461916A (zh) * 2020-09-30 2021-03-09 北京工业大学 一种磁性薄膜特性指标的磁巴克豪森噪声检测和反演方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王丽婷 等: ""典型材料磁各向异性的磁巴克豪森噪声评估方法"", 《仪器仪表学报》, vol. 41, no. 12, pages 173 - 180 *

Similar Documents

Publication Publication Date Title
Roberts et al. Understanding fine magnetic particle systems through use of first‐order reversal curve diagrams
Egli et al. Detection of noninteracting single domain particles using first‐order reversal curve diagrams
Roberts et al. Domain state diagnosis in rock magnetism: evaluation of potential alternatives to the Day diagram
Lu et al. Mineral magnetic properties of a weathering sequence of soils derived from basalt in Eastern China
CN105203629B (zh) 一种磁性金属构件表面应力集中区及微裂纹的磁探测方法
CN109975879B (zh) 一种基于磁传感器阵列的磁偶极子目标跟踪方法
Yu et al. An iterative stacking method for pipeline defect inversion with complex MFL signals
Qiu et al. Characterization of applied tensile stress using domain wall dynamic behavior of grain-oriented electrical steel
Vacher et al. Eddy current nondestructive testing with giant magneto-impedance sensor
CN109933914B (zh) 双相铁磁性材料磁滞及巴克豪森噪声信号的建模方法
CN102288673B (zh) 一种金属磁记忆定量检测方法
Le Manh et al. Model for the correlation between magnetocrystalline energy and Barkhausen noise in ferromagnetic materials
Roberts et al. Unlocking information about fine magnetic particle assemblages from first-order reversal curve diagrams: Recent advances
Stillinger et al. Refining the archaeomagnetic dating curve for the Near East: new intensity data from Bronze Age ceramics at Tell Mozan, Syria
Henager Jr et al. Investigation of magnetic signatures and microstructures for heat-treated ferritic/martensitic HT-9 alloy
Liao et al. Principle and technical characteristics of non-contact magnetic tomography method inspection for oil and gas pipeline
CN106815552A (zh) 基于时频分析的数字信号后处理方法
Martínez-Ortiz et al. Influence of the maximum applied magnetic field on the angular dependence of Magnetic Barkhausen Noise in API5L steels
Manh et al. Estimation of magnetocrystalline anisotropy energy from Barkhausen noise measurements in API 5L steels
Venkatachalapathi et al. Characterization of fatigued steel states with metal magnetic memory method
Skarlatos et al. Modelling the IMPOC response for different steel strips
CN112461916B (zh) 一种磁性薄膜特性指标的磁巴克豪森噪声检测和反演方法
CN113109422A (zh) 磁晶各向异性能的磁巴克豪森噪声表征方法
Xu et al. Preparation and magnetic properties of gradient diameter FeCoNi alloys nanowires arrays
Wu et al. A rock magnetic record of Asian cooling and aridification processes during 1.95-0.40 Ma in the southeastern Chinese Loess Plateau

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210713