CN113108940B - Temperature sensing system and device - Google Patents
Temperature sensing system and device Download PDFInfo
- Publication number
- CN113108940B CN113108940B CN202110404085.XA CN202110404085A CN113108940B CN 113108940 B CN113108940 B CN 113108940B CN 202110404085 A CN202110404085 A CN 202110404085A CN 113108940 B CN113108940 B CN 113108940B
- Authority
- CN
- China
- Prior art keywords
- optical fiber
- temperature
- hollow
- sensing
- interferometer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013307 optical fiber Substances 0.000 claims abstract description 90
- 230000000694 effects Effects 0.000 claims abstract description 18
- 230000004044 response Effects 0.000 claims abstract description 10
- 238000001228 spectrum Methods 0.000 claims description 68
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 57
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims description 57
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 57
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 claims description 56
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 claims description 56
- 239000000835 fiber Substances 0.000 claims description 44
- 230000003595 spectral effect Effects 0.000 claims description 14
- 230000006903 response to temperature Effects 0.000 claims description 3
- 230000035945 sensitivity Effects 0.000 abstract description 22
- 239000000243 solution Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- 238000009529 body temperature measurement Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 238000005253 cladding Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000001595 contractor effect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- -1 polydimethylsiloxane Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/32—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
本申请实施例提供一种温度传感系统及装置,属于光纤传感器技术领域。该温度传感系统包括:宽带光源、传感器和光谱仪均与光纤连接器连接,传感器包括互连的第一传感干涉计和第二传感干涉计,第一传感干涉计和第二传感干涉计对温度具有相反的温度响应,传感器基于第一传感干涉计和第二传感干涉计产生的游标效应感测温度。也就是说,传感器包括两个传感干涉计。且由于第一传感干涉计和第二传感干涉计对温度具有相反的温度响应,所以第一传感干涉计和第二传感干涉计能产生增强型的游标效应,有效提高了传感器的放大倍率,增大了传感器的灵敏度。
Embodiments of the present application provide a temperature sensing system and device, which belong to the technical field of optical fiber sensors. The temperature sensing system includes: a broadband light source, a sensor and a spectrometer are all connected with an optical fiber connector, the sensor includes a first sensing interferometer and a second sensing interferometer interconnected, the first sensing interferometer and the second sensing interferometer The interferometers have opposite temperature responses to temperature, and the sensor senses temperature based on a vernier effect produced by the first sensing interferometer and the second sensing interferometer. That is, the sensor includes two sensing interferometers. And because the first sensing interferometer and the second sensing interferometer have opposite temperature responses to temperature, the first sensing interferometer and the second sensing interferometer can produce an enhanced vernier effect, effectively improving the sensor's The magnification increases the sensitivity of the sensor.
Description
技术领域technical field
本申请实施例涉及光纤传感器技术领域,尤其涉及一种温度传感系统及装置。The embodiments of the present application relate to the technical field of optical fiber sensors, and in particular to a temperature sensing system and device.
背景技术Background technique
温度作为国际单位制七个基本物理量之一,在国民经济、国防建设和科学研究等领域中温度的准确测量具有举足轻重的作用。随着温度传感应用需求的提高,传统的温度传感器已经无法满足高精度的测量要求,而光纤温度传感器具有尺寸小、测量精度高、灵敏度高、抗电磁干扰强、电绝缘性好、温度范围大等诸多优点,在温度测量方面有着自身独特的优势,因此,对光纤温度传感器的研究显得尤为重要。As one of the seven basic physical quantities of the International System of Units, temperature plays an important role in the accurate measurement of temperature in the fields of national economy, national defense construction and scientific research. With the increasing demand for temperature sensing applications, traditional temperature sensors have been unable to meet the high-precision measurement requirements, while optical fiber temperature sensors have the advantages of small size, high measurement accuracy, high sensitivity, strong resistance to electromagnetic interference, good electrical insulation, and wide temperature range. It has its own unique advantages in temperature measurement, so the research on optical fiber temperature sensor is particularly important.
近年来,游标效应被广泛用于提高光纤温度传感器的灵敏度。通常,基于游标效应的光纤温度传感器包括一个参考干涉计和一个传感干涉计,其中只有传感干涉计对温度变化有响应,而参考干涉计对温度变化没有响应。这种光纤温度传感器只能产生常规游标效应。尽管相对于单个传感干涉计,该光纤温度传感器的灵敏度提高了1至2个数量级,但是在很多情况下仍然不能满足对高灵敏度温度检测的需求。In recent years, the vernier effect has been widely used to improve the sensitivity of fiber optic temperature sensors. Generally, a fiber optic temperature sensor based on the vernier effect includes a reference interferometer and a sensing interferometer, where only the sensing interferometer responds to temperature changes, while the reference interferometer does not respond to temperature changes. This fiber optic temperature sensor can only produce the conventional vernier effect. Although the sensitivity of the optical fiber temperature sensor is improved by 1 to 2 orders of magnitude compared with a single sensing interferometer, it still cannot meet the demand for high-sensitivity temperature detection in many cases.
发明内容Contents of the invention
鉴于上述问题,本申请实施例提供了一种温度传感系统及装置,克服了上述问题或者至少部分地解决了上述问题。In view of the above problems, embodiments of the present application provide a temperature sensing system and device, which overcome the above problems or at least partially solve the above problems.
根据本申请实施例的一个方面,提供了一种温度传感系统,该温度传感系统包括:宽带光源、光纤连接器、传感器和光谱仪;According to an aspect of an embodiment of the present application, a temperature sensing system is provided, and the temperature sensing system includes: a broadband light source, an optical fiber connector, a sensor, and a spectrometer;
所述宽带光源、所述传感器和所述光谱仪均与所述光纤连接器连接,所述传感器包括互连的第一传感干涉计和第二传感干涉计,所述第一传感干涉计和所述第二传感干涉计对温度具有相反的温度响应,所述传感器基于所述第一传感干涉计和所述第二传感干涉计产生的游标效应感测温度。The broadband light source, the sensor and the spectrometer are all connected to the fiber optic connector, the sensor includes a first sensing interferometer and a second sensing interferometer interconnected, the first sensing interferometer The sensor senses temperature based on a vernier effect produced by the first sensing interferometer and the second sensing interferometer having an opposite temperature response to temperature.
可选地,所述传感器包括:单模光纤、空芯光纤和PDMS;Optionally, the sensor includes: single-mode fiber, hollow-core fiber and PDMS;
所述单模光纤的第一端与所述光纤连接器连接,所述单模光纤的第二端与所述空芯光纤的第一端连接;The first end of the single-mode optical fiber is connected to the optical fiber connector, and the second end of the single-mode optical fiber is connected to the first end of the hollow-core optical fiber;
所述空芯光纤的第一端沿径向设置有与所述空芯光纤的轴向通孔连通的第一气孔,所述PDMS从所述第一气孔注入所述空芯光纤,在所述空芯光纤的第一端形成所述第一传感干涉计;The first end of the hollow-core optical fiber is radially provided with a first air hole communicating with the axial through hole of the hollow-core optical fiber, and the PDMS is injected into the hollow-core optical fiber through the first air hole. a first end of a hollow core fiber forms said first sensing interferometer;
所述PDMS从所述空芯光纤的第二端注入所述空芯光纤,在所述空芯光纤的第一端与第二端之间形成所述第二传感干涉计,所述第一传感干涉计的自由光谱范围是所述第二传感干涉计的自由光谱范围的预设倍数。The PDMS is injected into the hollow-core fiber from the second end of the hollow-core fiber, the second sensing interferometer is formed between the first end and the second end of the hollow-core fiber, and the first The free spectral range of the sensing interferometer is a preset multiple of the free spectral range of the second sensing interferometer.
可选地,所述预设倍数大于或等于0.9且小于或等于0.99。Optionally, the preset multiple is greater than or equal to 0.9 and less than or equal to 0.99.
可选地,所述预设倍数大于或等于1.01且小于或等于1.10。Optionally, the preset multiple is greater than or equal to 1.01 and less than or equal to 1.10.
可选地,所述空芯光纤的第二端的端面与所述空芯光纤的横截面之间具有夹角,所述夹角的度数不等于零。Optionally, there is an included angle between the end surface of the second end of the hollow-core optical fiber and the cross-section of the hollow-core optical fiber, and the degree of the included angle is not equal to zero.
可选地,所述夹角的度数大于或等于7度。Optionally, the degree of the included angle is greater than or equal to 7 degrees.
可选地,所述空芯光纤沿径向还设置有与所述轴向通孔连通的第二气孔,所述第二气孔与所述第二传感干涉计连通。Optionally, the hollow-core optical fiber is further provided with a second air hole communicating with the axial through hole in the radial direction, and the second air hole is communicating with the second sensing interferometer.
可选地,所述第一气孔与所述空芯光纤的第一端的端面之间的距离大于或等于10微米且小于或等于20微米。Optionally, the distance between the first air hole and the end face of the first end of the hollow-core optical fiber is greater than or equal to 10 microns and less than or equal to 20 microns.
可选地,所述光纤连接器包括光纤环形器或光纤耦合器。Optionally, the optical fiber connector includes an optical fiber circulator or an optical fiber coupler.
根据本申请实施例的另一方面,提供了一种装置,包括上面所述的温度传感系统。According to another aspect of the embodiments of the present application, a device is provided, including the above-mentioned temperature sensing system.
本申请实施例中,传感器包括互连的第一传感干涉计和第二传感干涉计。也就是说,传感器包括两个传感干涉计。且由于第一传感干涉计和第二传感干涉计对温度具有相反的温度响应,所以第一传感干涉计和第二传感干涉计能产生增强型的游标效应,有效提高了传感器的放大倍率,增大了传感器的灵敏度。In the embodiment of the present application, the sensor includes a first sensing interferometer and a second sensing interferometer interconnected. That is, the sensor includes two sensing interferometers. And because the first sensing interferometer and the second sensing interferometer have opposite temperature responses to temperature, the first sensing interferometer and the second sensing interferometer can produce an enhanced vernier effect, effectively improving the sensor's The magnification increases the sensitivity of the sensor.
上述说明仅是本申请实施例技术方案的概述,为了能够更清楚了解本申请实施例的技术手段,而可依照说明书的内容予以实施,并且为了让本申请实施例的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。The above description is only an overview of the technical solutions of the embodiments of the present application. In order to understand the technical means of the embodiments of the present application more clearly, it can be implemented according to the contents of the description, and in order to make the above and other purposes, features and characteristics of the embodiments of the present application The advantages can be more obvious and understandable, and the specific implementation manners of the present application are enumerated below.
附图说明Description of drawings
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present application, the following will briefly introduce the drawings that need to be used in the description of the embodiments. Obviously, the drawings in the following description are some embodiments of the present application. For Those of ordinary skill in the art can also obtain other drawings based on these drawings without making creative efforts.
图1为本申请实施例提供的一种温度传感系统的结构示意图;FIG. 1 is a schematic structural diagram of a temperature sensing system provided in an embodiment of the present application;
图2为本申请实施例提供的一种温度对干涉谱影响的示意图;Figure 2 is a schematic diagram of the influence of temperature on the interference spectrum provided by the embodiment of the present application;
图3为本申请实施例提供的一种传感器的结构示意图;FIG. 3 is a schematic structural diagram of a sensor provided in an embodiment of the present application;
图4为本申请实施例提供的一种级联干涉谱示意图;FIG. 4 is a schematic diagram of a cascaded interference spectrum provided by an embodiment of the present application;
图5为本申请实施例提供的一种温度对级联干涉谱影响的示意图。FIG. 5 is a schematic diagram of an effect of temperature on cascade interference spectrum provided by an embodiment of the present application.
附图标记:Reference signs:
1:宽带光源,2:光纤连接器,3:传感器,4:光谱仪,31:单模光纤,32:空芯光纤,33:PDMS,321:第一气孔,322:PDMS腔,323:空气腔,324:第二气孔,M1:第一反射界面,M2:第二反射界面,M3:第三反射界面,P1:第一干涉谱,P2:第二干涉谱,P3:并联干涉谱,P4:包络谱,α:夹角,R:入射光,F1:第一反射光,F2:第二反射光,F3:第三反射光。1: broadband light source, 2: fiber optic connector, 3: sensor, 4: spectrometer, 31: single-mode fiber, 32: hollow-core fiber, 33: PDMS, 321: first air hole, 322: PDMS cavity, 323: air cavity , 324: second air hole, M1: first reflection interface, M2: second reflection interface, M3: third reflection interface, P1: first interference spectrum, P2: second interference spectrum, P3: parallel interference spectrum, P4: Envelope spectrum, α: included angle, R: incident light, F1: first reflected light, F2: second reflected light, F3: third reflected light.
具体实施方式detailed description
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present application clearer, the technical solutions in the embodiments of the present application will be clearly and completely described below in conjunction with the drawings in the embodiments of the present application. Obviously, the described embodiments It is a part of the embodiments of this application, not all of them. Based on the embodiments in this application, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of this application.
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by those skilled in the technical field of the application; the terms used herein in the description of the application are only to describe specific embodiments purpose, and is not intended to limit the application.
本申请的说明书和权利要求书及附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖而不排除其它的内容。单词“一”或“一个”并不排除存在多个。The terms "comprising" and "having" and any variations thereof in the specification, claims and descriptions of the drawings of this application are intended to cover but not exclude other contents. The word "a" or "an" does not exclude the presence of a plurality.
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语“实施例”并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。Reference herein to an "embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application. The appearances of the phrase "an embodiment" in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It is understood explicitly and implicitly by those skilled in the art that the embodiments described herein can be combined with other embodiments.
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。The term "and/or" in this article is just an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B can mean: A exists alone, A and B exist simultaneously, and there exists alone B these three situations. In addition, the character "/" in this article generally indicates that the contextual objects are an "or" relationship.
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的温度传感系统的具体结构进行限定。例如,在本申请的描述中,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“上”、“下”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。The orientation words appearing in the following description are all directions shown in the figure, and do not limit the specific structure of the temperature sensing system of the present application. For example, in the description of this application, the terms "central", "longitudinal", "transverse", "length", "width", "upper", "lower", "inner", "outer", "clockwise" , "counterclockwise", "axial", "radial", "circumferential", etc. indicate the orientation or positional relationship based on the orientation or positional relationship shown in the drawings, and are only for the convenience of describing the application and simplifying the description. It is not intended to indicate or imply that the device or element referred to must have a particular orientation, be constructed, or operate in a particular orientation, and thus should not be construed as limiting the application.
此外,本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序,可以明示或者隐含地包括一个或者更多个该特征。In addition, the terms "first" and "second" in the specification and claims of the present application or the above drawings are used to distinguish different objects, not to describe a specific order, and may explicitly or implicitly include a or more of this feature.
在本申请的描述中,除非另有说明,“多个”的含义是指两个以上(包括两个),同理,“多组”指的是两组以上(包括两组)。In the description of the present application, unless otherwise specified, "multiple" means more than two (including two), and similarly, "multiple groups" means more than two (including two).
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,机械结构的“相连”或“连接”可以是指物理上的连接,例如,物理上的连接可以是固定连接,例如通过固定件固定连接,例如通过螺丝、螺栓或其它固定件固定连接;物理上的连接也可以是可拆卸连接,例如相互卡接或卡合连接;物理上的连接也可以是一体地连接,例如,焊接、粘接或一体成型形成连接进行连接。电路结构的“相连”或“连接”除了可以是指物理上的连接,还可以是指电连接或信号连接,例如,可以是直接相连,即物理连接,也可以通过中间至少一个元件间接相连,只要达到电路相通即可,还可以是两个元件内部的连通;信号连接除了可以通过电路进行信号连接外,也可以是指通过媒体介质进行信号连接,例如,无线电波。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。In the description of this application, it should be noted that, unless otherwise clearly specified and limited, the terms "installation", "connection" and "connection" should be interpreted in a broad sense, for example, "connection" or "connection" of mechanical structures It may refer to a physical connection, for example, a physical connection may be a fixed connection, such as a fixed connection through a fixture, such as a fixed connection through screws, bolts or other fasteners; a physical connection may also be a detachable connection, such as Mutual clamping or clamping connection; the physical connection may also be an integral connection, for example, welding, bonding or integrally formed connection for connection. The "connection" or "connection" of the circuit structure may not only refer to a physical connection, but also an electrical connection or a signal connection, for example, it may be a direct connection, that is, a physical connection, or an indirect connection through at least one intermediate component, As long as the circuit is connected, it can also be the internal connection of two components; besides the signal connection through the circuit, the signal connection can also refer to the signal connection through the media medium, for example, radio waves. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application in specific situations.
图1为本申请实施例提供的一种温度传感系统的结构示意图,如图1所示(图1中箭头代表光信号的传输方向),该温度传感系统包括:宽带光源1、光纤连接器2、传感器3和光谱仪4。宽带光源1、传感器3和光谱仪4均与光纤连接器2连接,传感器3包括互连的第一传感干涉计和第二传感干涉计,第一传感干涉计和第二传感干涉计对温度具有相反的温度响应,传感器3基于第一传感干涉计和第二传感干涉计产生的游标效应感测温度。Fig. 1 is a schematic structural diagram of a temperature sensing system provided by the embodiment of the present application, as shown in Fig. 1 (the arrow in Fig. 1 represents the transmission direction of the optical signal), the temperature sensing system includes: a
需要说明的是,宽带光源1用于提供光源,且宽带光源1可以提供任一波长的光,例如,可以提供波长为1200nm(纳米)至1600nm的光。It should be noted that the
另外,光纤连接器2用于连接光纤器件,光纤连接器2可以是光纤环形器和光纤耦合器中的任意一种。光纤连接器2还可以传输光,宽带光源1发出的入射光R经过光纤连接器2进入传感器3,从传感器3反射回来的光经过光纤连接器2进入光谱仪4,光谱仪4接收传感器3反射回来的光并基于该反射回来的光测出传感器3的干涉谱。In addition, the optical fiber connector 2 is used for connecting optical fiber devices, and the optical fiber connector 2 may be any one of an optical fiber circulator and an optical fiber coupler. The optical fiber connector 2 can also transmit light. The incident light R emitted by the
其中,为了保证光传输的单方向性,还可以在宽带光源1与光纤连接器2之间设置光纤隔离器,从而宽带光源1发出的光可以经过光纤隔离器进入光纤连接器2,但不能从光纤隔离器返回至宽带光源1,从而不会对宽带光源1造成损害。Among them, in order to ensure the unidirectionality of optical transmission, an optical fiber isolator can also be set between the
图2为本申请实施例提供的一种温度对干涉谱影响的示意图,如图2(a)所示,第一传感干涉计传回的反射光形成的第一干涉谱P1随着温度的变化会发生平移,可见第一传感干涉计对温度有响应。如图2(b)所示,第二传感干涉计传回的反射光形成的第二干涉谱P2随着温度的变化也会发生平移,可见第二传感干涉计对温度也有响应。也就是说,第一传感干涉计和第二传感干涉计对温度均有响应。并且,随着温度的升高,如图2(a)所示,第一干涉谱P1向左平移(即,发生蓝移),如图2(b)所示,第二干涉谱P2向右平移(即,发生红移),可见,随着温度的升高,第一干涉谱P1和第二干涉谱P2向相反的方向平移。也就是说,第一传感干涉计和第二传感干涉计对温度具有相反的温度响应。值得指出的是,图2仅是一种示例,第一传感干涉计和第二传感干涉计对温度具有相反的温度响应,也可以是随着温度的升高,第一干涉谱P1发生红移,第二干涉谱P2发生蓝移,本申请实施例对此不作限定。Figure 2 is a schematic diagram of the influence of temperature on the interference spectrum provided by the embodiment of the present application. As shown in Figure 2(a), the first interference spectrum P1 formed by the reflected light returned by the first sensing interferometer increases with the The changes are translated and it can be seen that the first sensing interferometer is responsive to temperature. As shown in FIG. 2( b ), the second interference spectrum P2 formed by the reflected light returned by the second sensing interferometer also shifts as the temperature changes. It can be seen that the second sensing interferometer also responds to temperature. That is, both the first sensing interferometer and the second sensing interferometer are responsive to temperature. And, as the temperature increases, as shown in Figure 2(a), the first interference spectrum P1 shifts to the left (that is, blue shifts), as shown in Figure 2(b), the second interference spectrum P2 moves to the right Translation (that is, red shift occurs), it can be seen that as the temperature increases, the first interference spectrum P1 and the second interference spectrum P2 translate in opposite directions. That is, the first sensing interferometer and the second sensing interferometer have opposite temperature responses to temperature. It is worth pointing out that Fig. 2 is only an example, the first sensing interferometer and the second sensing interferometer have opposite temperature responses to temperature, it may also be that as the temperature increases, the first interference spectrum P1 occurs red shift, the second interference spectrum P2 is blue shifted, which is not limited in this embodiment of the present application.
本申请实施例中,传感器3包括互连的第一传感干涉计和第二传感干涉计。也就是说,传感器3包括两个传感干涉计。且由于第一传感干涉计和第二传感干涉计对温度具有相反的温度响应,所以第一传感干涉计和第二传感干涉计能产生增强型的游标效应,有效提高了传感器3的放大倍率,增大了传感器3的灵敏度。In the embodiment of the present application, the
在一些实施例中,如图3所示,该传感器3包括:单模光纤31、空芯光纤32和PDMS33;In some embodiments, as shown in FIG. 3 , the
所述单模光纤31的第一端与所述光纤连接器2连接,所述单模光纤31的第二端与所述空芯光纤32的第一端连接。所述空芯光纤32的第一端沿径向设置有与所述空芯光纤32的轴向通孔连通的第一气孔321,所述PDMS33从所述第一气孔321注入所述空芯光纤32,在所述空芯光纤32的第一端形成所述第一传感干涉计;所述PDMS33从所述空芯光纤32的第二端注入所述空芯光纤32,在所述空芯光纤32的第一端与第二端之间形成所述第二传感干涉计,所述第一传感干涉计的自由光谱范围是所述第二传感干涉计的自由光谱范围的预设倍数。A first end of the single-
需要说明的是,单模光纤31包括光纤纤芯和光纤包层,光纤包层包裹在光纤纤芯的外侧。单模光纤31的直径可以是125μm(微米),单模光纤31的纤芯直接可以是10μm。空芯光纤32的外径可以是125μm,内径(即,轴向通孔的孔径)可以是50至70μm。本申请实施例对此不作限定。It should be noted that the single-mode
另外,第一气孔321用作向空芯光纤32的第一端注入PDMS33的注流通道。为了保证向空芯光纤32的第一端注入PDMS33时没有气泡产生,以形成良好的第一传感干涉计(即,PDMS腔322。后续描述将统一使用PDMS腔322),第一气孔321可以设置在空芯光纤32的第一端的侧壁上,且可以尽可能地靠近空芯光纤32的第一端的端面设置。也就是说,第一气孔321与空芯光纤32的第一端的端面之间的距离可以尽可能的小,例如,该距离可以大于或等于10μm且小于或等于20μm。另外,第一气孔321的孔径可以根据PDMS腔322的腔长设置,例如,第一气孔321的孔径可以大于或等于5μm,且小于或等于20μm。本申请实施例对此不作限定。In addition, the
另外,PDMS33是聚二甲基硅氧烷,是一种非常出色的热敏材料,具有明显的热胀冷缩效应。PDMS33在刚配置好后的一段时间内呈液态,加热后会凝固为无色透明的固体。另外,PDMS33具有很好的透光性和折光性,以及良好的粘接性和化学惰性,非常适合与光纤相结合,来进行高灵敏度温度测量。In addition, PDMS33 is polydimethylsiloxane, which is an excellent heat-sensitive material with obvious thermal expansion and contraction effects. PDMS33 is in a liquid state for a period of time after it has been prepared, and will solidify into a colorless and transparent solid after heating. In addition, PDMS33 has good light transmission and refraction, good adhesion and chemical inertness, and is very suitable for combining with optical fiber for high-sensitivity temperature measurement.
将第一段PDMS33填充至空芯光纤32的第一端,可以在空芯光纤32的第一端形成PDMS腔322(该PDMS腔322为法布里-珀罗传感干涉计),从而在单模光纤31的第二端与PDMS腔322之间形成了第一反射界面M1。将第二段PDMS33填充至空芯光纤32的第二端时,会将空芯光纤32中的空气挤压并限制在空芯光纤32的第一端与第二端之间,形成空气腔323(即,第二传感干涉计。后续描述将统一使用空气腔323。该空气腔323也为法布里-珀罗传感干涉计),从而在PDMS腔322与空气腔323之间形成了第二反射界面M2,在空气腔323与第二段PDMS33之间形成了第三反射面M3。Filling the first section of PDMS33 to the first end of the hollow-
也就是说,该传感器3中,空芯光纤32的两端分别为一段PDMS33,这两段PDMS33之间夹了一段空气腔323。当温度升高时,这两段PDMS33发生热膨胀,会同时向中间挤压空气腔323,减小空气腔323的腔长,光程变小,当温度降低时,这两段PDMS33发生收缩,从而中间的空气腔323的腔长会增大,光程变大,进一步增大了空气腔323的温度响应灵敏度,继而增大了增强型游标效应的放大倍率。That is to say, in the
基于本申请实施例提供的传感器3,进入单模光纤31的入射光R中的一部分在第一反射界面M1处反射回单模光纤31,产生第一反射光F1,剩余部分透过第一反射界面M1进入PDMS腔322。透过第一反射界面M1进入PDMS腔322的光中的一部分在第二反射界面M2处反射回PDMS腔322,产生第二反射光F2,剩余部分透过第二反射界面M2进入空气腔323。透过第二反射界面M2进入空气腔323的光中的大部分光在第三反射界面M3处反射回空气腔323,产生第三反射光F3,剩余很小部分光透过第三反射界面M3进入第二段PDMS33。光谱仪4基于第一反射光F1和第二反射光F2测得第一干涉谱P1,基于第三反射光F3和第一反射光F1测得第二干涉谱P2。光谱仪4还可以基于第一干涉谱P1和第二干涉谱P2测得并联干涉谱P3。Based on the
进一步地,为了避免透过第三反射界面M3进入第二段PDMS33的光从空芯光纤32的第二端的端面反射回第二段PDMS33,继而进入空气腔323,如图3所示,空芯光纤32的第二端的端面可以设置成斜面,且与空芯光纤32的横截面之间可以具有夹角α,且该夹角α的度数不等于零。当该夹角α设置地合适,空芯光纤32的第二端的端面将不会有光反射回来。Further, in order to avoid the light entering the second section of PDMS33 through the third reflection interface M3 from being reflected back to the second section of PDMS33 from the end face of the second end of the hollow-core
其中,空芯光纤32的第二端的端面与空芯光纤32的横截面之间的夹角α可以根据光的传输原理设置,且该夹角α的度数可以是大于或等于7度的任一数值,例如,夹角α的度数可以是8度、10度等,本申请实施例对此不作限定。Wherein, the angle α between the end face of the second end of the hollow-
在一些实施例中,为了便于从空芯光纤32的第二端注入PDMS33,以及便于调整空气腔323的腔长,空芯光纤32沿径向还可以设置有与轴向通孔连通的第二气孔324,且该第二气孔324与空气腔323连通。其中,第二气孔324的孔径可以根据空气腔323的腔长设置,例如,第二气孔324的孔径可以大于或等于5μm,且小于或等于20μm。第二气孔324的孔径可以与第一气孔321的孔径相同,也可以不相同,本申请实施例对此不作限定。In some embodiments, in order to inject
第二气孔324设置在空芯光纤32的第一端与第二端之间,且与空气腔323连通,一方面,当从空芯光纤32的第二端注入PDMS33时,第一端和第二端之间的部分空气会从第二气孔324排出,从而便于PDMS33的注入。另一方面,将第一端和第二端之间的部分空气从第二气孔324排出,可以减小空气腔323的腔长。当需要增大空气腔323的腔长时,还可以从第二气孔324向空气腔323注入空气。也就是说,通过从第二气孔324排气或注气可以很方便地调整空气腔323的腔长。The
在制备本申请实施例提供的传感器3时,可以先将单模光纤31的第二端与空芯光纤32的第一端熔接,形成第一反射界面M1,再切割空芯光纤32,使得空芯光纤32的腔长达到第一预设腔长,且使得空芯光纤32的第二端的端面与横截面之间具有夹角α。然后,利用飞秒激光在空芯光纤32的第一端沿径向打第一气孔321,使该第一气孔321与空芯光纤32的轴向通孔连通。利用飞秒激光在空芯光纤32的第一端与第二端之间沿径向打第二气孔324,使该第二气孔324与空芯光纤32的轴向通孔连通。之后,利用毛细现象,将液态PDMS33从第一气孔321注入空芯光纤32的第一端,注入过程保证靠近单模光纤31的一端没有气泡产生,从而形成一定腔长的PDMS腔322(第一段PDMS33)。再利用毛细现象,将液态PDMS33从空芯光纤32的第二端缓慢注入,形成第二段PDMS33,并在空芯光纤32的第一端与第二端之间形成一定腔长的空气腔323。最后,加热PDMS33,使其固化。When preparing the
其中,第一预设腔长可以是1至2mm(毫米)。另外,PDMS腔322的腔长可以是100至150μm,空气腔323的腔长可以是PDMS腔322的腔长的预设倍数,例如,空气腔323的腔长可以是PDMS腔322的腔长的1.4倍,这样,可以保证空气腔323的光程是PDMS腔322的光程的预设倍数,从而保证PDMS腔322的自由光谱范围是空气腔323的自由光谱范围的预设倍数,且PDMS腔322的自由光谱范围和空气腔323的自由光谱范围接近但不相等,从而有增强型的游标效应。示例性地,预设倍数可以是大于或等于0.9且小于或等于0.99,也可以是大于或等于1.01且小于或等于1.10,本申请实施例对此不作限定。Wherein, the length of the first preset cavity may be 1 to 2 mm (millimeter). In addition, the cavity length of the
另外,在将液态PDMS33注入空芯光纤32的第一端时,可以通过光谱仪4实时监测第一干涉谱P1(即,单个PDMS腔322的干涉谱)(如图2(a)中的曲线),根据第一干涉谱P1可确定当前PDMS腔322的腔长达到了多少,当确定PDMS腔322的腔长达到100至150μm时,停止向第一端注入PDMS33。同理,在将液态PDMS33注入空芯光纤32的第二端时,可以通过光谱仪4实时监测第二干涉谱P2(即,单个空气腔323的干涉谱)(如图2(b)中的曲线),根据第二干涉谱P2可确定当前空气腔323的腔长达到了多少,当确定空气腔323的腔长是PDMS腔322的腔长的预设倍数时,停止向第二端注入PDMS33。In addition, when the liquid PDMS33 is injected into the first end of the hollow-core
其中,第一干涉谱P1和第二干涉谱P2可以通过如下第一表达式表示:Wherein, the first interference spectrum P1 and the second interference spectrum P2 can be represented by the following first expression:
其中,I1(λ)是第一干涉谱P1的强度,I2(λ)是第二干涉谱P2的强度,A是第一反射光F1的振幅,B是第二反射光F2的振幅,C是第三反射光F3的振幅,n1是PDMS33的折射率,大约为1.4,n2是空气的折射率,大约为1.0,L1是PDMS腔322的腔长,L2是空气腔323的腔长,λ是入射光R的波长。Wherein, I 1 (λ) is the intensity of the first interference spectrum P1, I 2 (λ) is the intensity of the second interference spectrum P2, A is the amplitude of the first reflected light F1, B is the amplitude of the second reflected light F2, C is the amplitude of the third reflected light F3, n 1 is the refractive index of PDMS33, about 1.4, n 2 is the refractive index of air, about 1.0, L 1 is the cavity length of the
在测得第一干涉谱P1和第二干涉谱P2之后,光谱仪4可以将第一干涉谱P1和第二干涉谱P2进行叠加,形成并联干涉谱P3(即,空气腔323和PDMS腔322构成并联结构后产生的并联干涉谱P3)(如图4中上部分的曲线)。其中,并联干涉谱P3可以通过如下第二表达式表示:After measuring the first interference spectrum P1 and the second interference spectrum P2, the spectrometer 4 can superimpose the first interference spectrum P1 and the second interference spectrum P2 to form a parallel interference spectrum P3 (that is, the
Iall(λ)=I1(λ)+I2(λ)I all (λ)=I 1 (λ)+I 2 (λ)
其中,Iall(λ)是并联干涉谱P3的强度。Among them, I all (λ) is the intensity of the parallel interference spectrum P3.
由于PDMS腔322的自由光谱范围是空气腔323的自由光谱范围的预设倍数,即,PDMS腔322的自由光谱范围和空气腔323的自由光谱范围接近但不相等,所以由空气腔323和PDMS腔322构成的并联双腔产生的干涉谱(即,并联干涉谱P3)会产生包络现象(即,游标效应)。图4中下部分的曲线即为并联干涉谱P3产生的包络谱P4(即,并联干涉谱P3的每个波谷的连线),该包络谱P4可以通过如下第三表达式表示:Since the free spectral range of the
其中,Ienvelope(λ)是包络谱P4的强度,E是包络谱P4的振幅,M是常规游标效应的放大倍率。Among them, I envelope (λ) is the intensity of the envelope spectrum P4, E is the amplitude of the envelope spectrum P4, and M is the magnification of the conventional vernier effect.
在一些实施例中,当温度发生变化时,PDMS33的折射率发生变化,PDMS腔322的腔长也发生变化,基于此,可以根据如下公式一确定PDMS腔322的灵敏度:In some embodiments, when the temperature changes, the refractive index of the
其中,S1是PDMS腔322的灵敏度,α是PDMS33的热光系数,其值约为-5.0×10-4/℃,β是PDMS33的热膨胀系数,其值约为9.6×10-4/℃,λm1是第一干涉谱P1中第m1个峰对应的波长。需要说明的是,第一干涉谱P1具有N个波峰,N是大于0的整数,m1是大于0且小于或等于N的整数。Among them, S 1 is the sensitivity of the
另外,当温度升高时,第一段PDMS33和第二段PDMS33会膨胀,从而会挤压空气腔323使空气腔323的腔长变短,当温度降低时,第一段PDMS33和第二段PDMS33会收缩,从而空气腔323的腔长会变长。基于此,可以根据如下公式二确定空气腔323的灵敏度:In addition, when the temperature rises, the first section of PDMS33 and the second section of PDMS33 will expand, thereby squeezing the
其中,S2是空气腔323的灵敏度,L1是PDMS腔322的腔长,L2是空气腔323的腔长,L3是第二段PDMS33的长度,λm2是第二干涉谱P2中第m2个峰对应的波长。需要说明的是,第二干涉谱P2也具有N个波峰,N是大于0的整数,m2是大于0且小于或等于N的整数。值得注意的是,λm1和λm2可以相等,也可以不相等,当两者不相等时,为了使得PDMS腔322的灵敏度与空气腔323的灵敏度具有可比性,两者的差值可以尽可能的小。Wherein, S 2 is the sensitivity of the
由公式二可知,增大PDMS腔322的腔长和第二段PDMS33的长度,均会提高空气腔323的灵敏度。但由于增大PDMS腔322的腔长,会增大光在PDMS腔322中传输带来的损耗,从而降低反射光的强度,影响第一干涉谱P1的强度,因此PDMS腔322的腔长不宜过大。而增大第二段PDMS33的长度,可以避免光从空芯光纤32的第二端的端面反射回来,也不会影响有效反射光的传输,因此,可以通过适当增大第二段PDMS33的长度来提高空气腔323的灵敏度。It can be known from formula 2 that increasing the cavity length of the
由公式一和公式二可知,S1>0,S2<0,进一步表明当温度变化时,第一干涉谱P1和第二干涉谱P2的频移方向相反,PDMS腔322和空气腔323对温度具有相反的温度响应。From
最后,可以通过如下公式三确定温度传感器3的灵敏度:Finally, the sensitivity of the
其中,M1'是温度传感器3的灵敏度相对于单个PDMS腔322的灵敏度的放大倍率,M2'是温度传感器3的灵敏度相对于单个空气腔323的灵敏度的放大倍率。M1'和M2'可以通过如下公式四表示:Wherein, M 1 ′ is the magnification of the sensitivity of the
其中,M是温度传感器3的常规游标效应的放大倍率。Where M is the magnification of the conventional vernier effect of the
根据公式三和公式四可以看出,相对于单个PDMS腔322和单个空气腔323,该温度传感器3的放大倍率分别为M1'和M2',且M1'和M2'明显大于温度传感器3的常规放大倍率M,因此,本申请实施例提供的温度传感器3的灵敏度明显大于单个PDMS腔322和单个空气腔323的灵敏度。可见,本申请实施例提供的温度传感器3实现了增强型的游标效应。结合图2和图5可以看出,当温度由30℃变化到31℃时,第一干涉谱P1和第二干涉谱P2的移动量均很小,而包络谱P4的移动量很大,也即,包络谱P4的平移量远大于第一干涉谱P1和第二干涉谱P2的平移量。According to formula three and four, it can be seen that relative to a
在一些实施例中,本申请还提供了一种装置,该装置包括前述实施例的温度传感系统,其中传感器3用于测温。In some embodiments, the present application also provides a device, which includes the temperature sensing system of the foregoing embodiments, wherein the
综上所述,本申请实施例中,传感器3包括互连的第一传感干涉计和第二传感干涉计。也就是说,传感器3包括两个传感干涉计。且由于第一传感干涉计和第二传感干涉计对温度具有相反的温度响应,所以第一传感干涉计和第二传感干涉计能产生增强型的游标效应,有效提高了传感器3的放大倍率,增大了传感器3的灵敏度。To sum up, in the embodiment of the present application, the
本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。Those skilled in the art will understand that although some embodiments herein include certain features included in other embodiments but not others, combinations of features from different embodiments are meant to be within the scope of the application and form different examples. For example, in the claims, any one of the claimed embodiments can be used in any combination.
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。As mentioned above, the above embodiments are only used to illustrate the technical solutions of the present application, and are not intended to limit them; although the present application has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still understand the foregoing The technical solutions described in each embodiment are modified, or some of the technical features are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the various embodiments of the application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110404085.XA CN113108940B (en) | 2021-04-15 | 2021-04-15 | Temperature sensing system and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110404085.XA CN113108940B (en) | 2021-04-15 | 2021-04-15 | Temperature sensing system and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113108940A CN113108940A (en) | 2021-07-13 |
CN113108940B true CN113108940B (en) | 2022-12-27 |
Family
ID=76717035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110404085.XA Active CN113108940B (en) | 2021-04-15 | 2021-04-15 | Temperature sensing system and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113108940B (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN207937363U (en) * | 2018-02-11 | 2018-10-02 | 鞍山峰澜科技有限公司 | It is a kind of based on cursor effect can simultaneously measuring temperature and hydrogen fibre optical sensor |
CN108844656B (en) * | 2018-08-02 | 2019-07-09 | 华中科技大学 | Optical fiber temperature sensing probe and demodulation method |
CN111220188B (en) * | 2020-01-17 | 2022-05-24 | 广州大学 | Ultra-sensitive refractive index sensor based on cascade optical fiber displacement to enhance vernier effect |
-
2021
- 2021-04-15 CN CN202110404085.XA patent/CN113108940B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113108940A (en) | 2021-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113008406B (en) | High Precision Temperature Sensor Based on Enhanced Vernier Effect | |
CN112924048B (en) | High-sensitivity temperature sensor based on PDMS double-cavity parallel connection | |
CN113029381B (en) | High Precision Temperature Sensor Based on Quartz Tube Encapsulating PDMS Cavity and Air Cavity | |
CN206618529U (en) | A kind of simple reflective interference-type optical fiber baroceptor | |
CN107607217A (en) | Temperature, pressure integrated sensing device and measuring method based on high double-refraction photon crystal fiber surface plasma resonance | |
WO2022160822A1 (en) | High-sensitivity high-temperature sensor based on suspended optical fiber dislocation fusion splicing | |
CN110319786A (en) | A kind of strain sensing Fabry-Perot interferometer and the strain sensing method based on the interferometer | |
CN206974565U (en) | The biparameter sensor that a kind of temperature based on Selective filling photonic crystal fiber measures simultaneously with stress | |
CN210221338U (en) | Optical fiber high-temperature sensor based on parallel vernier effect | |
CN111443312B (en) | High-sensitivity magnetic field sensor for 3D printing by utilizing two-photon femtosecond laser direct writing technology and manufacturing method thereof | |
CN102435348B (en) | Temperature sensor and distributed temperature sensing network based on high-Q optical microcavity | |
CN104897302A (en) | Temperature sensor of photonic crystal optical fiber Michelson interferometer based on corrosion processing | |
CN108195493A (en) | One kind is based on PCF Mach-Zehnder interferometers(MZI)Highly sensitive stress sensing device | |
CN112666503A (en) | Parallel double-M-Z optical fiber magnetic sensing device and manufacturing method thereof | |
CN112326060A (en) | A highly sensitive parallel dual F-P cavity optical fiber temperature sensing device | |
CN204807233U (en) | Temperature sensor of photonic crystal optic fibre michelson interferometer based on corrosion treatment | |
CN104345046A (en) | Optical fiber interferometer, optical fiber sensor and production method thereof | |
Zhang et al. | A Fabry-Perot temperature sensor sealed with thermo-sensitive polymer | |
CN113108940B (en) | Temperature sensing system and device | |
CN113418627B (en) | Temperature sensor, temperature sensing system and device | |
Feng et al. | Intensity-modulated liquid-level and temperature sensor based on cascaded air bubble and fiber Bragg grating interferometer | |
CN212721825U (en) | Optical fiber temperature sensor based on temperature sensitive material modulation FP cavity | |
US11781923B1 (en) | Temperature sensor based on twin hole optical fiber | |
CN115435923B (en) | Optical fiber sensing head and temperature sensor | |
CN210005129U (en) | A fusion-free F-P cavity optical fiber temperature sensing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Yang Yuqiang Inventor after: Gao Jiale Inventor after: Mou Xiaoguang Inventor after: Shi Wenqing Inventor after: Wang Ji Inventor after: Liu Mingxin Inventor before: Yang Yuqiang Inventor before: Mou Xiaoguang Inventor before: Shi Wenqing Inventor before: Wang Ji Inventor before: Liu Mingxin |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
OL01 | Intention to license declared | ||
OL01 | Intention to license declared |