CN113105807A - Tantalum nitride reinforced polyether-ether-ketone composite coating and preparation method and application thereof - Google Patents

Tantalum nitride reinforced polyether-ether-ketone composite coating and preparation method and application thereof Download PDF

Info

Publication number
CN113105807A
CN113105807A CN202110330636.2A CN202110330636A CN113105807A CN 113105807 A CN113105807 A CN 113105807A CN 202110330636 A CN202110330636 A CN 202110330636A CN 113105807 A CN113105807 A CN 113105807A
Authority
CN
China
Prior art keywords
tantalum nitride
peek
composite coating
ether
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110330636.2A
Other languages
Chinese (zh)
Other versions
CN113105807B (en
Inventor
林志丹
曹琳
张鹏
黄素媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan University
Original Assignee
Jinan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan University filed Critical Jinan University
Priority to CN202110330636.2A priority Critical patent/CN113105807B/en
Publication of CN113105807A publication Critical patent/CN113105807A/en
Application granted granted Critical
Publication of CN113105807B publication Critical patent/CN113105807B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D161/00Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
    • C09D161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09D161/16Condensation polymers of aldehydes or ketones with phenols only of ketones with phenols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/446Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with other specific inorganic fillers other than those covered by A61L27/443 or A61L27/46
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/02Electrolytic coating other than with metals with organic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Composite Materials (AREA)
  • Materials For Medical Uses (AREA)

Abstract

The invention belongs to the technical field of biological materials, and particularly discloses a preparation method and application of a tantalum nitride reinforced polyether-ether-ketone composite coating. The method comprises the following steps: (1) uniformly mixing the chitosan solution and ethanol, sequentially adding PEEK powder and nano TaN to obtain a mixed solution, and performing ultrasonic dispersion to obtain a nano suspension; (2) putting cathode and anode electrode materials into the nano suspension solution obtained in the step (1); and introducing direct current, and depositing to obtain the tantalum nitride reinforced polyether-ether-ketone composite coating. The invention prepares PEEK coating on titanium and its alloy, stainless steel and other basal bodies by a cathodic electrodeposition method, and introduces tantalum nitride nano particles into PEEK material. The introduction of the tantalum nitride nano particles can enhance the osteogenic property of PEEK. The coating prepared by cathodic electrodeposition has short production time, simple equipment, low price and wide application prospect.

Description

Tantalum nitride reinforced polyether-ether-ketone composite coating and preparation method and application thereof
Technical Field
The invention belongs to the technical field of biological materials, and particularly relates to a tantalum nitride reinforced polyether-ether-ketone composite coating, and a preparation method and application thereof.
Background
Titanium and its alloys in artificial joint replacement materials have excellent properties such as low density, high specific strength, good electrochemical corrosion resistance, relatively low elastic modulus and good biocompatibility. Has wide application in biomedical engineering. The high suitability of titanium alloys is due to a good balance of mechanical properties and good castability, plastic workability, heat treatability and weldability. The main drawbacks of all titanium alloys are poor wear resistance, high coefficient of friction (COF) and relatively low hardness. When the porous material is applied to a joint abrasion structure, ion dissolution and stress shielding are easily caused, and the osteolysis implantation fails. The ideal artificial joint should meet the requirements of wear resistance and body fluid corrosion resistance on the basis of certain mechanical support.
The polyether-ether-ketone has excellent toughness and rigidity, good thermochemical stability and good tribological performance. However, pure PEEK is insufficient in mechanical strength when used as a weighing structure in a human body, and thus needs to be improved to improve mechanical strength.
Disclosure of Invention
In order to overcome the defects of the prior art, the invention mainly aims to provide a preparation method of a tantalum nitride reinforced polyether-ether-ketone composite coating.
The invention also aims to provide the tantalum nitride reinforced polyether-ether-ketone composite coating prepared by the method.
The invention further aims to provide application of the tantalum nitride reinforced polyether-ether-ketone composite coating in preparation of bone materials.
The purpose of the invention is realized by the following scheme:
a preparation method of a tantalum nitride reinforced polyether-ether-ketone composite coating comprises the following steps:
(1) uniformly mixing the chitosan solution and ethanol, sequentially adding PEEK powder and nano TaN to obtain a mixed solution, and performing ultrasonic dispersion to obtain a nano suspension;
(2) putting cathode and anode electrode materials into the nano suspension solution obtained in the step (1); and introducing direct current, and depositing to obtain the tantalum nitride reinforced polyether-ether-ketone composite coating.
Step (1), ethanol: the volume ratio of the chitosan solution is 1-2: 2-1;
the concentration of the chitosan solution in the step (1) is 0.5-0.1 wt%.
The PEEK content in the mixed solution in the step (1) is 1-4 wt%; the addition amount of the TaN is 0.01-3 wt%, and the preferable addition amount is 0.1 wt%. .
The particle size of the PEEK in the mixed solution in the step (1) is 20-30 μm; the particle size of the TaN is 250-270 nm, preferably 260 nm.
The cathode material in the step (2) is titanium alloy, pure titanium or stainless steel; preferably, before the cathode material is used, the cathode material is cleaned, specifically, the surface is subjected to sand blasting to form a rough surface, and the rough surface is cleaned by absolute ethyl alcohol and acetone. The anode material is a common inert electrode, and is preferably graphite or platinum sheet.
The voltage of the direct current in the step (2) is 10-30V, preferably 30V; the current density is 0.01-0.5A/cm2Preferably 0.01 to 0.05A/cm2. The distance between the electrodes is 1-3cm, preferably 1 cm; the deposition time is 1-5 min.
The tantalum nitride reinforced polyether-ether-ketone composite coating is prepared by the method.
The tantalum nitride reinforced polyether-ether-ketone composite coating is applied to the preparation of an osteogenic material.
Compared with the prior art, the invention has the following advantages and beneficial effects:
the invention prepares PEEK coating on titanium and its alloy, stainless steel and other basal bodies by a cathodic electrodeposition method, and introduces tantalum nitride nano particles into PEEK material. The introduction of the tantalum nitride nano particles can improve the wear resistance and hardness of the titanium alloy and enhance the osteogenic property of PEEK. The coating prepared by cathodic electrodeposition has short production time, simple equipment, low price and wide application prospect.
Drawings
FIG. 1 is a TEM image of the coating obtained in example 5.
In FIG. 2, (a) and (b) are SEM images of the coating obtained in example 5, and (c) is an element distribution diagram.
Detailed Description
The present invention will be described in further detail with reference to examples and drawings, but the embodiments of the present invention are not limited thereto.
The reagents used in the examples are commercially available without specific reference.
The tantalum nitride reinforced polyetheretherketone composite coatings of examples 1-11 were prepared by the following method:
(1) chitosan solution: mixing 0.5g of chitosan, 5mL of glacial acetic acid and 500mL of deionized water;
(2) uniformly mixing the 50mL of chitosan solution with 50mL of ethanol, and then adding 1-5 g of PEEK powder (20-30 microns) and 0.01-0.2 g of nano tantalum nitride (260nm) to obtain a mixed solution;
(3) and (3) ultrasonically dispersing the mixed solution obtained in the step (2) for 20min, and stirring and dissolving for 7h to obtain a nano suspension solution.
(4) Cathode (pure titanium) and anode (Pt) electrode materials are put into the nano suspension solution obtained in the step (3), and the electrode distance is 1-2 cm; introducing direct current, applying voltage of 30V and current density of 0.01-0.5A/cm2And depositing for 1-5min to obtain the tantalum nitride reinforced polyether-ether-ketone composite coating.
TABLE 1 Condition parameters of examples 1-11 and properties of the coatings obtained
Figure BDA0002994362920000031
Figure BDA0002994362920000041
TaN is a nanoparticle with different sizes and irregular shapes, and has stronger hardness and extremely high stability. In the deposition solution, PEEK and TaN are respectively wrapped by chitosan and adsorbed together, and the deposition process belongs to respective deposition (shown in figure 1). As shown in the table, the friction coefficient is obviously reduced (the contact force of materials is reduced due to the effect of rolling and sliding in the friction process) after the TaN is added, the wear rate is obviously reduced, and the wear depth is reduced. And because the nano particles are added into the PEEK matrix, the crystallization property of the PEEK can be improved when the composite material is formed by sintering, so that the overall properties of the material are changed, for example, the hardness is improved. As for scratch resistance, since the PEEK material is uniformly distributed (electrodeposition can be uniformly distributed, as shown in fig. 2), the hardness of the PEEK material is also improved, and stress can be dispersed during the scratch process to protect the PEEK material.
The above embodiments are preferred embodiments of the present invention, but the present invention is not limited to the above embodiments, and any other changes, modifications, substitutions, combinations, and simplifications which do not depart from the spirit and principle of the present invention should be construed as equivalents thereof, and all such changes, modifications, substitutions, combinations, and simplifications are intended to be included in the scope of the present invention.

Claims (10)

1. A preparation method of a tantalum nitride reinforced polyether-ether-ketone composite coating is characterized by comprising the following steps:
(1) uniformly mixing the chitosan solution and ethanol, sequentially adding PEEK powder and nano TaN to obtain a mixed solution, and performing ultrasonic dispersion to obtain a nano suspension;
(2) putting cathode and anode electrode materials into the nano suspension solution obtained in the step (1); and introducing direct current, and depositing to obtain the tantalum nitride reinforced polyether-ether-ketone composite coating.
2. The method of claim 1, wherein: the PEEK content in the mixed solution in the step (1) is 1-4 wt%; the additive amount of the TaN is 0.01-3 wt%.
3. The production method according to claim 1 or 2, characterized in that: the concentration of the chitosan solution in the step (1) is 0.5-0.1 wt%.
4. The method of claim 1, wherein: step (1), ethanol: the volume ratio of the chitosan solution is 1-2: 2 to 1.
5. The method of claim 1, wherein: the particle size of the PEEK in the mixed solution in the step (1) is 20-30 μm; the TaN particle size is 250-270 nm.
6. The method of claim 1, wherein: the voltage of the direct current in the step (2) is 10-30V; controlling the current to be 0.01-0.5A/cm2(ii) a The distance between the electrodes in the step (2) is 1-3 cm.
7. The method of claim 1, wherein: the deposition time is 1-5 min.
8. The method of claim 1, wherein: the cathode material in the step (2) is titanium alloy, pure titanium or stainless steel; the anode material is a commonly used inert electrode.
9. A tantalum nitride reinforced polyetheretherketone composite coating prepared by the method of any one of claims 1 to 8.
10. Use of a tantalum nitride reinforced polyetheretherketone composite coating according to claim 9 in the preparation of an osteogenic material.
CN202110330636.2A 2021-03-26 2021-03-26 Tantalum nitride reinforced polyether-ether-ketone composite coating and preparation method and application thereof Active CN113105807B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110330636.2A CN113105807B (en) 2021-03-26 2021-03-26 Tantalum nitride reinforced polyether-ether-ketone composite coating and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110330636.2A CN113105807B (en) 2021-03-26 2021-03-26 Tantalum nitride reinforced polyether-ether-ketone composite coating and preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN113105807A true CN113105807A (en) 2021-07-13
CN113105807B CN113105807B (en) 2022-05-20

Family

ID=76712645

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110330636.2A Active CN113105807B (en) 2021-03-26 2021-03-26 Tantalum nitride reinforced polyether-ether-ketone composite coating and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN113105807B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103614699A (en) * 2013-12-16 2014-03-05 中国科学院上海硅酸盐研究所 Method for modifying surface of polyetheretherketone by injecting tantalum ion and modified polyetheretherketone material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103614699A (en) * 2013-12-16 2014-03-05 中国科学院上海硅酸盐研究所 Method for modifying surface of polyetheretherketone by injecting tantalum ion and modified polyetheretherketone material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOMASZ MOSKALEWICZ,ET AL.: "Electrophoretic deposition and microstructure development of Si3N4/polyetheretherketone coatings on titanium alloy", 《SURFACE & COATINGS TECHNOLOGY》 *

Also Published As

Publication number Publication date
CN113105807B (en) 2022-05-20

Similar Documents

Publication Publication Date Title
CN105274603B (en) Composite modified coating of magnesium or Mg alloy surface carbon nanotubes and preparation method thereof
Lin et al. Electrophoretic deposition of HA/MWNTs composite coating for biomaterial applications
Saadati et al. Electrochemical characterization of electrophoretically deposited hydroxyapatite/chitosan/graphene oxide composite coating on Mg substrate
Dubey et al. Mg-3Zn/HA biodegradable composites synthesized via spark plasma sintering for temporary orthopedic implants
Bai et al. Formation of bioceramic coatings containing hydroxyapatite on the titanium substrate by micro‐arc oxidation coupled with electrophoretic deposition
Zeng et al. Preparation and characterization of electrodeposited Ni-CeO2 nanocomposite coatings with high current density
Laska et al. Parameters of the electrophoretic deposition process and its influence on the morphology of hydroxyapatite coatings. Review
CN101333673B (en) Electrolytic solution for preparing nano ceramic coatings by micro-arc oxidation
Bai et al. Fabrication and characterization of gold nanoparticle-loaded TiO 2 nanotube arrays for medical implants
CN113105807B (en) Tantalum nitride reinforced polyether-ether-ketone composite coating and preparation method and application thereof
Qu et al. Fabrication of Ni-CeO2 nanocomposite coatings synthesised via a modified sediment Co-deposition process
Chen et al. Electrodeposition and corrosion performance of Ni-Co alloys with different cobalt contents
CN113106520B (en) Tantalum carbide reinforced polyether-ether-ketone composite coating and preparation method and application thereof
CN112961565B (en) Tantalum-reinforced polyether-ether-ketone composite coating and preparation method and application thereof
Isfahani et al. Electrophoretic deposition of Ni/SiO2 nanocomposite coating: fabrication process and tribological and corrosion properties
Guo et al. Pulse plating of copper-ZrB2 composite coatings
CN111424303B (en) SiC nano-silver composite electrodeposition coating and preparation method and application thereof
Kim et al. Electro-deposition of oxide-dispersed nickel composites and the behavior of their mechanical properties
Abdel-Fattah et al. Nanoscale surface pretreatment of biomedical Co–Cr alloy
RU2675611C1 (en) Method of obtaining nano doubled copper film modified by graphen
Ni et al. Improved Surface Properties for Nanotube Growth on Selective Laser Melted Porous Ti6Al4V Alloy via Chemical Etching
CN1243131C (en) Composite low temperature fused-salt and electrodepositing process to prepare hydroxyapatite coating
CN111663166B (en) Silicon nitride nano-silver composite electrodeposition coating and preparation method and application thereof
Yang et al. Degradation behavior, cytotoxicity, hemolysis of partially unzipped carbon nanotubes/zinc composites as potential biodegradable bone implants
CN108048892A (en) A kind of Antibacterial using magnesium/magnesium alloy as matrix is surface-treated preparation method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Cao Lin

Inventor after: Lin Zhidan

Inventor after: Zhang Peng

Inventor after: Huang Suyuan

Inventor before: Lin Zhidan

Inventor before: Cao Lin

Inventor before: Zhang Peng

Inventor before: Huang Suyuan

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant