CN113105597B - Preparation process of aliphatic water reducer - Google Patents
Preparation process of aliphatic water reducer Download PDFInfo
- Publication number
- CN113105597B CN113105597B CN202110369314.9A CN202110369314A CN113105597B CN 113105597 B CN113105597 B CN 113105597B CN 202110369314 A CN202110369314 A CN 202110369314A CN 113105597 B CN113105597 B CN 113105597B
- Authority
- CN
- China
- Prior art keywords
- aliphatic water
- reducing agent
- formaldehyde
- preparation process
- reactant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003638 chemical reducing agent Substances 0.000 title claims abstract description 87
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 85
- 125000001931 aliphatic group Chemical group 0.000 title claims abstract description 75
- 238000002360 preparation method Methods 0.000 title claims abstract description 24
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims abstract description 111
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 claims abstract description 66
- 238000006243 chemical reaction Methods 0.000 claims abstract description 57
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims abstract description 50
- 235000010265 sodium sulphite Nutrition 0.000 claims abstract description 33
- 239000000376 reactant Substances 0.000 claims abstract description 29
- 238000004321 preservation Methods 0.000 claims abstract description 14
- 238000002156 mixing Methods 0.000 claims abstract description 10
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 claims abstract description 8
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 23
- 239000004202 carbamide Substances 0.000 claims description 23
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 claims description 22
- 239000002994 raw material Substances 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 abstract description 19
- 238000006116 polymerization reaction Methods 0.000 description 27
- 238000006277 sulfonation reaction Methods 0.000 description 18
- 239000006185 dispersion Substances 0.000 description 15
- 238000001816 cooling Methods 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 11
- 239000000498 cooling water Substances 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- 239000004567 concrete Substances 0.000 description 8
- 239000004568 cement Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 230000009286 beneficial effect Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 238000006068 polycondensation reaction Methods 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 238000011056 performance test Methods 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 239000011398 Portland cement Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000011083 cement mortar Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000000402 conductometric titration Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- DGVVJWXRCWCCOD-UHFFFAOYSA-N naphthalene;hydrate Chemical compound O.C1=CC=CC2=CC=CC=C21 DGVVJWXRCWCCOD-UHFFFAOYSA-N 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 230000037048 polymerization activity Effects 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- NVBFHJWHLNUMCV-UHFFFAOYSA-N sulfamide Chemical compound NS(N)(=O)=O NVBFHJWHLNUMCV-UHFFFAOYSA-N 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G6/00—Condensation polymers of aldehydes or ketones only
- C08G6/02—Condensation polymers of aldehydes or ketones only of aldehydes with ketones
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/16—Sulfur-containing compounds
- C04B24/161—Macromolecular compounds comprising sulfonate or sulfate groups
- C04B24/166—Macromolecular compounds comprising sulfonate or sulfate groups obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/30—Water reducers, plasticisers, air-entrainers, flow improvers
- C04B2103/302—Water reducers
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Phenolic Resins Or Amino Resins (AREA)
Abstract
The application relates to the field of water reducing agents, in particular to a preparation process of an aliphatic water reducing agent and the aliphatic water reducing agent. The preparation process comprises the following steps: s1: dissolving sodium sulfite in water, adding acetone, fully mixing, then adding 18-22% of the total amount of formaldehyde, controlling the reaction temperature to be less than 45 ℃, and carrying out heat preservation reaction for 0.5-1 h to obtain a first reactant; s2: dripping 38-41% of the total amount of formaldehyde into the first reactant for 1-1.5 h, controlling the reaction temperature at 45-70 ℃, and carrying out heat preservation reaction for 0.5-1 h to obtain a second reactant; s3: and dropwise adding the rest formaldehyde into the second reactant for 1-1.5 h, controlling the reaction temperature at 70-97 ℃, keeping the temperature for 2-3 h after the dropwise adding is finished, and then reducing the temperature to 55-65 ℃ to obtain the aliphatic water reducing agent. The aliphatic water reducer prepared by the method has excellent dispersing performance.
Description
Technical Field
The application relates to the field of water reducing agents, in particular to a preparation process of an aliphatic water reducing agent and the aliphatic water reducing agent.
Background
The aliphatic water reducing agent is a polycondensate prepared from acetone, formaldehyde and sodium sulfite as raw materials, and compared with a common naphthalene water reducing agent, the aliphatic water reducing agent has the advantages of simple production process, no residue, high saturated doping amount and more outstanding water reducing performance.
HSO generated by sodium sulfite after hydrolysis 3 - With OH - ,OH - The catalyst is used for catalyzing the polymerization of formaldehyde and acetone, so that the reaction rate is improved; HSO 3 - The sulfonated polymer is used as a sulfonating agent to promote the sulfonation of the polymer so as to improve the water reducing performance of the water reducing agent product. However at OH - Under the catalysis of the formaldehyde and acetone, the polymerization speed of the formaldehyde and the acetone is high, the reaction is difficult to control, the molecular weight of the water reducing agent product is easy to reduce, and the dispersion performance is easy to reduce.
Content of application
In order to solve the problems of low molecular weight and poor dispersing performance of the aliphatic water reducing agent caused by excessively high polymerization speed of the aliphatic water reducing agent, the application provides a preparation process of the aliphatic water reducing agent and the aliphatic water reducing agent.
In a first aspect, the preparation process of the aliphatic water reducer provided by the application adopts the following technical scheme: a preparation process of an aliphatic water reducing agent comprises the following steps:
s1: dissolving sodium sulfite in water, adding acetone, fully mixing, then adding 18-22% of the total amount of formaldehyde, controlling the reaction temperature to be less than 45 ℃, and carrying out heat preservation reaction for 0.5-1 h to obtain a first reactant;
s2: dripping 38-41% of the total amount of formaldehyde into the first reactant for 1-1.5 h, controlling the reaction temperature at 45-70 ℃, and carrying out heat preservation reaction for 0.5-1 h to obtain a second reactant;
s3: and (3) dropwise adding the residual formaldehyde into the second reactant for 1-1.5 h, controlling the reaction temperature at 70-97 ℃, keeping the temperature for 2-3 h after the dropwise adding is finished, and then reducing the temperature to 55-65 ℃ to obtain the aliphatic water reducer.
At OH - Under the catalytic action of the catalyst, if all formaldehyde and acetone are directly mixed and reacted, the polymerization rate is too high, the temperature rise is too high, the polymerization time is short, and the prepared polymer is promoted to have lower relative molecular weight, so that the dispersion effect is reduced. Through adding formaldehyde for the cubic in this application to carry out corresponding control to the reaction temperature in the polymerization process, can effectual reduction acetone and formaldehyde's polymerization rate, make polymer molecular weight can be linear growth, and the stable polymerization becomes macromolecular structure, the dispersion properties of the aliphatic water-reducing agent that the guarantee finally made.
Preferably, the aliphatic water reducing agent is obtained by polymerizing the following raw materials in parts by mass:
acetone: 9-12 parts;
formaldehyde: 26-30 parts;
sodium sulfite: 8-15 parts;
water: 10 to 20 portions.
In the polymerization reaction, if the formaldehyde is excessive, the molecular weight of the polycondensate is easily too high, and the polycondensate is easily intertwined with each other during concrete mixing, so that the adsorption of the polycondensate on the surface of cement particles is influenced, and the dispersibility is reduced; if the amount of formaldehyde is too low, it tends to result in a polycondensate having too low a molecular weight, poor steric hindrance on the cement particles due to its adsorption in surface seconds, and a deterioration in dispersibility. Therefore, the aliphatic water reducing agent with relatively excellent molecular weight can be prepared by adopting a proper proportion so as to ensure the dispersing performance of the aliphatic water reducing agent.
Preferably, only 30 to 45% of the total amount of sodium sulfite is added in step S1, and the remaining sodium sulfite is added prior to the addition of formaldehyde in step S2.
Sodium sulfite is added in sections, so that the polymerization rate can be effectively reduced, the polymerization time is prolonged, and the aliphatic water reducing agent with better dispersibility is prepared; meanwhile, the sulfonation degree of the polymer is improved, and the dispersibility of the aliphatic water reducing agent is further improved.
Preferably, the raw material of the aliphatic water reducing agent further comprises 13-18 parts by mass of sulfamic acid and 10-13 parts by mass of urea; and the sulfamic acid and the urea are dripped in the step S2 or the step S2.
In the polymerization, if sodium sulfite is added in excess, OH obtained by hydrolysis - The polymerization activity is higher, and the polymerization speed is easy to be too high; if the sodium sulfite content is too low, HSO obtained by hydrolysis 3 - Less, affects the degree of sulfonation of the polymer. Comprehensively considered, the low sodium sulfite addition amount is adopted, the aminosulfone is used as a sulfonating agent, the urea is used as a catalyst, the sulfonation degree of the polymer is further improved, and the dispersing performance of the aliphatic water reducing agent is remarkably improved on the premise of ensuring the molecular weight of the polymer.
Preferably, the sulfamic acid and the urea are dripped in the step S2, and the dripping time is 1-1.5 h.
According to the method, sulfamic acid and urea are added into the step S2, and because the reaction sites of sulfonation and polycondensation have a competitive relationship, the rate of polycondensation can be reduced through sulfonation reaction, so that the method is favorable for finally forming the stable aliphatic water reducing agent with high dispersion performance.
Preferably, when the reaction temperature is 60-66 ℃, sulfamic acid and urea are added dropwise.
The polymerization reaction is an exothermic reaction, the temperature can rise after the formaldehyde is dripped, and the sulfonation reaction is favorably carried out when the system temperature reaches 65-70 ℃, so that the effect of inhibiting the polycondensation process is achieved.
Preferably, in step S1, acetone is added at a rotation speed of 70-90 rpm, and the stirring time is 30-45 min.
Under the condition of stirring, acetone can be hydrolyzed with sodium sulfite to generate HSO 3 - Fully reacting to obtain the sulfonated substance of acetone, thereby being beneficial to improving the sulfonation degree of the final polymerization product and obtaining the aliphatic water reducing agent with high dispersibility.
Preferably, the mass ratio of the acetone, the formaldehyde and the sodium sulfite is 1.85.
Experiments show that the aliphatic water reducer prepared according to the proportion has good adaptability to concrete and has outstanding dispersing performance.
In a second aspect, the present application provides an aliphatic water reducing agent, which adopts the following technical scheme:
the aliphatic water reducing agent is prepared by any one of the preparation processes.
By adopting the preparation process, the aliphatic water reducing agent with more excellent molecular weight and sulfonation degree can be prepared, so that the aliphatic water reducing agent has higher dispersion performance.
In summary, the present application has the following beneficial effects:
1. according to the preparation process, the formaldehyde raw material is added successively, and the temperature of each reaction stage is controlled, so that the polymerization speed is effectively reduced, the reaction time is prolonged, and the molecular weight and the dispersion property of the aliphatic water reducing agent are improved.
2. According to the preparation process, the sodium sulfite is added gradually, so that the sulfonation degree of the aliphatic water reducing agent is effectively improved and the dispersion performance of the aliphatic water reducing agent is enhanced on the premise of ensuring the polymerization reaction process.
3. According to the preparation process, sulfamic acid and urea are adopted, so that the polymerization rate is effectively inhibited on the premise of early improving the sulfonation degree of a polymerization product, and the dispersion effect of the aliphatic water reducing agent is finally improved.
Detailed Description
The present application will be described in further detail with reference to examples.
Examples
Example 1, an aliphatic water reducing agent, the selection of each raw material component and the corresponding content of each raw material component are shown in table 1, and the aliphatic water reducing agent is prepared according to the following steps:
s1: dissolving 40% of the total amount of sodium sulfite in water, then adding acetone and fully mixing under the condition of the rotating speed of 80rpm, stirring for 30min, adding 21% of the total amount of formaldehyde, raising the temperature of a reaction system to 45 ℃, and carrying out heat preservation reaction for 0.5h to obtain a first reactant;
s2: adding the rest sodium sulfite into the second reactant, stirring uniformly, dropwise adding 40% of the total amount of formaldehyde for 1.5h, and controlling the temperature of a reaction system by cooling water circulation in the dropwise adding process; meanwhile, in the dropping process, when the temperature of the reaction system reaches 63 ℃, sulfamic acid and urea are dropped into the system, the dropping time is 30min, and after the dropping is finished, the temperature of the reaction system is raised to 70 ℃; keeping the temperature and reacting for 0.5h to obtain a second reactant;
s3: dropwise adding the rest formaldehyde into the second reactant for 1.5h, controlling the temperature of a reaction system through cooling water circulation in the dropwise adding process, and heating the reaction system to 97 ℃ after dropwise adding is finished; and (3) preserving the heat for reacting for 3 hours, and then cooling to 60 ℃ to obtain the aliphatic water reducer.
Examples 2 to 5, an aliphatic water-reducing agent, were different from example 1 in that the selection of each raw material component and the corresponding content thereof are shown in table 1.
Table 1 selection of the feed components and their respective amounts (kg) for examples 1 to 5
TABLE 2 manufacturer model information of each raw material component
Example 6, an aliphatic water-reducing agent, different from example 1, was prepared by the following steps:
s1: dissolving sodium sulfite in water, adding acetone under the condition of the rotation speed of 80rpm, fully mixing, then adding 21 percent of the total amount of formaldehyde, heating a reaction system to 45 ℃, and carrying out heat preservation reaction for 0.5h to obtain a first reactant;
s2: dripping 40% of the total amount of formaldehyde into the first reactant for 1.5h, circularly cooling by cooling water in the dripping process, after finishing dripping, heating the reaction system to 70 ℃, and carrying out heat preservation reaction for 0.5h to obtain a second reactant;
s3: and (3) dropwise adding the residual formaldehyde into the second reactant for 1.5h, circularly cooling by cooling water in the dropwise adding process, heating the reaction system to 97 ℃ after dropwise adding is finished, carrying out heat preservation reaction for 3h, and then cooling to 60 ℃ to obtain the aliphatic water reducer.
Example 7, an aliphatic water-reducing agent, differs from example 1 in that sodium sulfite is added in its entirety in step S1, and the operation of step S1 is as follows: dissolving all sodium sulfite in water, then adding acetone and fully mixing under the condition of the rotation speed of 80rpm, stirring for 30min, adding 21% of the total amount of formaldehyde, heating the reaction system to 45 ℃, keeping the temperature and reacting for 0.5h, and reacting to obtain a first reactant.
Example 8, an aliphatic water-reducing agent, different from example 1, was prepared by dropping sulfamic acid and urea in step S3, as follows:
s1: dissolving 40% of the total amount of sodium sulfite in water, then adding acetone and fully mixing under the condition of the rotating speed of 80rpm, stirring for 30min, adding 21% of the total amount of formaldehyde, heating a reaction system to 45 ℃, and carrying out heat preservation reaction for 0.5h to obtain a first reactant;
s2: adding the rest sodium sulfite into a second reactant, stirring uniformly, dropwise adding 40% of the total amount of formaldehyde for 1.5h, circularly cooling by cooling water in the dropwise adding process, heating the reaction system to 70 ℃ after dropwise adding, and carrying out heat preservation reaction for 0.5h to obtain a second reactant;
s3: dropwise adding the rest formaldehyde into the second reactant for 1.5h, and circularly cooling by cooling water in the dropwise adding process; and after the formaldehyde is dropwise added, dropwise adding sulfamic acid and urea into the system for 30min, after the dropwise adding, heating the reaction system to 97 ℃, keeping the temperature for reaction for 3h, and then cooling to 55 ℃ to obtain the aliphatic water reducer.
Example 9, an aliphatic water-reducing agent, which is different from example 1 in that sulfamic acid and urea are not added dropwise in the preparation process, and the operation of step S2 is as follows: adding the rest sodium sulfite into a second reactant, stirring uniformly, dropwise adding 40% of the total amount of formaldehyde for 1.5h, circularly cooling by cooling water in the dropwise adding process, heating a reaction system to 70 ℃ after dropwise adding, and carrying out heat preservation reaction for 0.5h to obtain a second reactant;
example 10, an aliphatic water-reducing agent, which is different from example 1 in that, in step S2, when the temperature of the reaction system is 70 ℃ after the addition of formaldehyde is completed, sulfamic acid and urea are added dropwise.
Example 11, an aliphatic water-reducing agent, differs from example 1 in that in step S2, sulfamic acid and urea are added dropwise when the reaction system temperature is 55 ℃.
Comparative example
Comparative example 1, an aliphatic water-reducing agent, differs from example 6 in that it is prepared by the following steps:
step 1: dissolving sodium sulfite in water, adding acetone under the condition of the rotation speed of 80rpm, fully mixing, then adding 21 percent of the total amount of formaldehyde, heating a reaction system to 45 ℃, and carrying out heat preservation reaction for 0.5h to obtain a first reactant;
step 2: dropwise adding the rest formaldehyde into the first reactant for 4h, and circularly cooling by cooling water in the reaction process to ensure that the temperature of a reaction system is not more than 97 ℃; after the dropwise addition, heating to 97 ℃, keeping the temperature for reacting for 3 hours, and cooling to 60 ℃ after the reaction is completed to obtain the aliphatic water reducer.
Comparative example 2, an aliphatic water-reducing agent, differs from example 6 in that it is prepared by the following steps: dissolving sodium sulfite in water, adding acetone under the condition of the rotating speed of 80rpm, fully mixing, then beginning to dropwise add formaldehyde for 5 hours, and circularly cooling by cooling water in the reaction process to ensure that the temperature of a reaction system does not exceed 97 ℃; after the dropwise addition, heating to 97 ℃, keeping the temperature for reacting for 3 hours, and cooling to 60 ℃ after the reaction is completed to obtain the aliphatic water reducer.
Comparative example 3 aliphatic water reducer from southbound tomb petrochemicals.
Performance test
Test 1: aliphatic water reducing agent dispersion performance test
Test samples: aliphatic water reducing agents prepared in examples 1 to 11 and comparative examples 1 to 3.
The test method comprises the following steps: at 10 kg: 3.9 kg: 12.9 kg: 28.8 kg of cement, water, sand and macadam are mixed, 0.05 kg of a test sample (an aliphatic water reducing agent) is added, and after the mixture is uniformly mixed, the 28 kg of compressive strength is measured. The determination method is determined according to GB/T17671-1999 cement mortar strength test method, and the test results are shown in Table 3.
Test raw materials: the cement is composite portland cement (P.O42.5); the average grain diameter of the sand is 0.3mm, and the fineness modulus is 3; the crushed stone is natural crushed stone with 5-20 mm continuous gradation; the sand is medium sand, the fineness modulus is 2.6, the apparent density is 2650kg/m < 3 >, and the mud content is less than 1.0%.
Test 2: aliphatic water reducing agent sulfonation degree test
Test samples: aliphatic water reducing agents prepared in examples 1 to 11 and comparative examples 1 to 3.
The test method comprises the following steps: the test was carried out according to the conductometric titration method of SY/T5242-1991, method for measuring sulfo content in treating agent for drilling fluid, and the test results are shown in Table 3.
TABLE 3 aliphatic water-reducing agent dispersion and sulfonation degree test results
And (3) analyzing test results:
(1) Combining 1-11 with comparative examples 1-3 and combining table 3, it can be seen that the dispersibility of the aliphatic water reducing agent can be improved by adopting the preparation process of adding formaldehyde by stages and controlling the reaction temperature of each stage, thereby enhancing the strength performance of the concrete. The reason for this may be that the staged addition facilitates control of the polymerization rate of formaldehyde and acetone, and prolongs the polymerization time to obtain an aliphatic water-reducing agent with a large molecular weight, which is adsorbed on the surface of cement particles to form a water-reducing agent layer, thereby achieving dispersion of the cement particles through electrostatic repulsion and space resistance, effectively reducing the flocculation structure, improving fluidity, promoting the hydration process of the cement particles, and improving the strength of the concrete.
The aliphatic water reducer prepared by the preparation method has a large molecular weight, and can generate stronger and more stable electrostatic repulsion and steric hindrance effects, so that the strength performance of concrete is promoted to be improved.
(2) By combining the examples 1 and 4 to 5 and combining the table 3, the aliphatic water reducing agent prepared by using the mass ratio of acetone, formaldehyde and sodium sulfite as 1.85. The reason for this may be that the appropriate proportions result in a water reducing agent product of appropriate molecular weight.
(3) By combining the embodiment 1 and the embodiment 7 and combining the table 3, it can be seen that the preparation process adopts a mode of adding sodium sulfite in stages, which is beneficial to improving the dispersing performance of the water reducing agent, thereby promoting the increase of the strength performance of the concrete. The reason for this is probably that sodium sulfite is added in sections, which can reduce the polymerization rate, prolong the polymerization time, and prepare the aliphatic water reducing agent with larger molecular weight and better dispersibility; meanwhile, the method is beneficial to the full implementation of sulfonation reaction, and the aim of improving the dispersibility is fulfilled.
(4) As can be seen by combining example 1 with examples 8 to 9 and table 3, in example 1, sulfamic acid and urea were added in step S2, in example 8, sulfamic acid and urea were added in step S3, and in example 9, sulfamic acid and urea were not added; the strength performance and the sulfonation degree of the concrete prepared by the embodiment 1 are higher than those of the concrete prepared by the embodiment 8 and the embodiment 9. Therefore, the addition of sulfamic acid and urea in step S2 is beneficial to improving the dispersing performance of the water reducing agent.
The reason may be that the sulfonation degree of the polymer can be effectively improved by using sulfamic acid as a sulfonating agent and urea as a catalyst; compared with sodium sulfite, the method does not introduce OH - Leading to the rapid increase of the polymerization rate, and obviously improving the sulfonation degree of the aliphatic water reducing agent on the premise of preparing the aliphatic reducing agent with larger molecular weight, thereby achieving the purpose of improving the dispersion performance. In addition, compared with the addition in the step S3, the addition in the step S2 can also inhibit the polymerization rate, prolong the polymerization time and further improve the dispersion performance of the water reducing agent product.
(5) By combining the example 1 with the examples 10 to 11 and combining the table 3, it can be seen that in the step S2, when the temperature of the reaction system reaches 65 to 70 ℃, sulfamic acid and urea are added, which is beneficial to improving the dispersion water-reducing performance of the water reducing agent product. The reason for this may be that under such temperature conditions, the sulfonation reaction is facilitated, and the polymerization reaction is inhibited from proceeding, thereby improving the dispersion of the water-reducing agent product.
The present embodiment is only for explaining the present application, and it is not limited to the present application, and those skilled in the art can make modifications of the present embodiment without inventive contribution as needed after reading the present specification, but all of them are protected by patent law within the scope of the claims of the present application.
Claims (7)
1. A preparation process of an aliphatic water reducing agent is characterized by comprising the following steps:
s1: dissolving sodium sulfite in water, adding acetone, fully mixing, then adding 18-22% of the total amount of formaldehyde, controlling the reaction temperature to be less than 45 ℃, and carrying out heat preservation reaction for 0.5-1 h to obtain a first reactant;
s2: dripping 38-41% of the total amount of formaldehyde into the first reactant for 1-1.5 h, controlling the reaction temperature at 45-70 ℃, and carrying out heat preservation reaction for 0.5-1 h to obtain a second reactant; in the step S2, sulfamic acid and urea are also dripped;
s3: dropwise adding the rest formaldehyde into the second reactant for 1-1.5 h, controlling the reaction temperature at 70-97 ℃, keeping the temperature for 2-3 h after dropwise adding is finished, and then reducing the temperature to 55-65 ℃ to obtain the aliphatic water reducing agent;
the aliphatic water reducer comprises the following raw materials:
acetone: 9-12 parts;
formaldehyde: 26-30 parts;
sodium sulfite: 8-15 parts;
sulfamic acid: 13-18 parts;
urea: 10-13 parts;
water: 10 to 20 portions.
2. The preparation process of the aliphatic water reducer according to claim 1, wherein only 30-45% of the total amount of sodium sulfite is added in step S1, and the rest sodium sulfite is added in step S2 before formaldehyde.
3. The preparation process of the aliphatic water reducer according to claim 1, wherein the sulfamic acid and the urea are added dropwise in step S2 for 1-1.5 hours.
4. The preparation process of the aliphatic water reducer according to claim 3, wherein when the reaction temperature is 60-66 ℃, sulfamic acid and urea are added dropwise.
5. The preparation process of the aliphatic water reducer according to claim 1, wherein in step S1, acetone is added at a rotation speed of 70-90 rpm, and the stirring time is 30-45 min.
6. The preparation process of the aliphatic water reducer according to claim 1, wherein the mass ratio of acetone, formaldehyde and sodium sulfite is 1.
7. An aliphatic water reducing agent, which is characterized by being prepared by the preparation process of any one of claims 1 to 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110369314.9A CN113105597B (en) | 2021-04-06 | 2021-04-06 | Preparation process of aliphatic water reducer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110369314.9A CN113105597B (en) | 2021-04-06 | 2021-04-06 | Preparation process of aliphatic water reducer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113105597A CN113105597A (en) | 2021-07-13 |
CN113105597B true CN113105597B (en) | 2022-11-29 |
Family
ID=76714188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110369314.9A Expired - Fee Related CN113105597B (en) | 2021-04-06 | 2021-04-06 | Preparation process of aliphatic water reducer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113105597B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1088592A (en) * | 1993-12-13 | 1994-06-29 | 华南理工大学 | Compound sulfonated carbamide-resin and its production and use |
CN1528699A (en) * | 2003-10-20 | 2004-09-15 | 杭州建筑构件有限公司 | Efficient water reducing agent of amino-sulfonic acid and manufacturing process thereof |
CN101531479A (en) * | 2009-04-03 | 2009-09-16 | 南京瑞迪高新技术公司 | Method for preparing low cost aliphatic high efficiency water reducing agent |
CN102992681A (en) * | 2012-08-21 | 2013-03-27 | 江苏百瑞吉新材料有限公司 | Production method of high-efficiency aliphatic water-reducing agent |
CN103193411A (en) * | 2013-04-03 | 2013-07-10 | 上海固佳化工科技有限公司 | Modified aliphatic high-efficiency water reducing agent prepared from CLT acid production wastewater as raw material and preparation method of water reducing agent |
CN111056760A (en) * | 2019-12-21 | 2020-04-24 | 浙江吉盛化学建材有限公司 | Aliphatic water reducer prepared from aminobenzenesulfonic acid wastewater and synthesis process thereof |
-
2021
- 2021-04-06 CN CN202110369314.9A patent/CN113105597B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1088592A (en) * | 1993-12-13 | 1994-06-29 | 华南理工大学 | Compound sulfonated carbamide-resin and its production and use |
CN1528699A (en) * | 2003-10-20 | 2004-09-15 | 杭州建筑构件有限公司 | Efficient water reducing agent of amino-sulfonic acid and manufacturing process thereof |
CN101531479A (en) * | 2009-04-03 | 2009-09-16 | 南京瑞迪高新技术公司 | Method for preparing low cost aliphatic high efficiency water reducing agent |
CN102992681A (en) * | 2012-08-21 | 2013-03-27 | 江苏百瑞吉新材料有限公司 | Production method of high-efficiency aliphatic water-reducing agent |
CN103193411A (en) * | 2013-04-03 | 2013-07-10 | 上海固佳化工科技有限公司 | Modified aliphatic high-efficiency water reducing agent prepared from CLT acid production wastewater as raw material and preparation method of water reducing agent |
CN111056760A (en) * | 2019-12-21 | 2020-04-24 | 浙江吉盛化学建材有限公司 | Aliphatic water reducer prepared from aminobenzenesulfonic acid wastewater and synthesis process thereof |
Non-Patent Citations (1)
Title |
---|
不同方法改性氨基磺酸系高效减水剂的研究;陈国新等;《新型建筑材料》;20070525;第31-33页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113105597A (en) | 2021-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113929342B (en) | Microcapsule type polycarboxylic acid superplasticizer and preparation method thereof | |
CN110228960A (en) | A kind of steel-making slag powder activation-digestion agent, steel-making slag powder method of modifying and application | |
CN108456287A (en) | A kind of preparation method of low cost polycarboxylate water-reducer | |
CN109535319A (en) | A kind of environmentally friendly drying strengthening agent and preparation method thereof | |
CN113105597B (en) | Preparation process of aliphatic water reducer | |
CN109704619B (en) | Sulfamate high-efficiency water reducing agent and preparation process thereof | |
CN114437299A (en) | Anti-mud polycarboxylate superplasticizer mother liquor | |
CN114044856A (en) | Mud-blocking type polycarboxylate superplasticizer and preparation method thereof | |
CN117510124A (en) | Curing-free reinforcing agent for permeable concrete and preparation method and application thereof | |
JP6905795B2 (en) | Sprayed concrete composition and its manufacturing method | |
CN117303784A (en) | Composite alcohol amine ester type concrete glue reducing agent and preparation method and application thereof | |
CN114920890B (en) | Viscosity-reducing additive and preparation method and application thereof | |
CN116239729A (en) | Low-sensitivity concrete slump retaining agent and preparation method thereof | |
CN114875494B (en) | Hyperbranched three-dimensional structure calcium carbonate whisker and preparation method and application thereof | |
CN113060971B (en) | Composite efficient slag powder grinding aid and preparation method thereof | |
CN113072320A (en) | Water-retaining polycarboxylate superplasticizer and preparation method thereof | |
CN108147703A (en) | A kind of cement water reducing agent and preparation method of antibacterial thickening | |
CN111875767A (en) | Water-based organic silicon gel reducing agent and application thereof | |
CN108911573A (en) | Steel fiber reinforced concrete special additive | |
CN114455878B (en) | High-dispersity slow-release calcium-aluminum-based chloride ion curing agent and preparation method thereof | |
CN110642563A (en) | Dry powder mortar for pavement and preparation process thereof | |
CN115572095B (en) | Rheological agent and preparation method and application thereof | |
CN110591669B (en) | Diluent silicon ether polymer for drilling fluid | |
CN114394813B (en) | Anti-freezing super-sulfur cement concrete and preparation method thereof | |
CN107879656A (en) | A kind of new concrete water-keeping material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20221129 |