CN113100234A - 迷迭香酸在提高植物高温抗性中的应用 - Google Patents
迷迭香酸在提高植物高温抗性中的应用 Download PDFInfo
- Publication number
- CN113100234A CN113100234A CN202110335936.XA CN202110335936A CN113100234A CN 113100234 A CN113100234 A CN 113100234A CN 202110335936 A CN202110335936 A CN 202110335936A CN 113100234 A CN113100234 A CN 113100234A
- Authority
- CN
- China
- Prior art keywords
- plants
- rosmarinic acid
- preparation
- tomato
- high temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N37/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
- A01N37/36—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids
- A01N37/38—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids having at least one oxygen or sulfur atom attached to an aromatic ring system
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Dentistry (AREA)
- Pest Control & Pesticides (AREA)
- Plant Pathology (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Agronomy & Crop Science (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Cultivation Of Plants (AREA)
- Peptides Or Proteins (AREA)
Abstract
本发明公开了迷迭香酸在提高植物高温抗性中的应用。本发明发现迷迭香酸具有诱导植物的抗氧化酶活性,降低植物体内氧化蛋白和H2O2积累,从而提高植物对高温胁迫的抗性。
Description
技术领域
本发明涉及植物化学保护技术领域,尤其涉及迷迭香酸在提高植物高温抗性中的应用。
背景技术
番茄(Solanum lycopersicum L.)是原产于中南美洲的茄科番茄属的园艺作物,现作为食用水果或蔬菜被全球性广泛栽培,同时亦是开花植物的模式生物之一。番茄栽培最适应温度范围为20~25℃;但是,我国陆地因自然环境多变和设施环境可控性差等因素,番茄在夏季生产中的温度往往会超过其最适应温度,达到35~40℃,有时在相对密闭的设施栽培环境中甚至达到40℃以上的极端高温。
高温会抑制番茄的光合作用,加速失水,阻滞细胞分化生长,严重影响植株生长、花芽分化和果实发育,是番茄生产中产量和品质提高的重要限制因素。解析番茄对高温响应与调控机制进而改良番茄耐热性,不仅具有重要的科学意义,还对缓解或解决园艺作物应对高温逆境危害,提高产量品质,保障周年均衡供应等起到积极的影响。
迷迭香酸(Rosmarinic acid),化学名为[R(E)-α-[[3-(3,4-二羟基苯基)-1-氧代-2-丙烯基]氧基]-3,4-二羟基苯丙烷,分子式为C18H16O8,分子量360.33g mol-1,化学式为:
迷迭香酸是广泛存在于植物体内水溶性的天然酚酸类化合物,其在植物体中干物质含量占比可高达19%,被美国FDA认定为“公共安全食品”产品。体外化学试验表明,迷迭香酸具有较高的抗氧化活性,其抗氧化性强于咖啡酸、绿原酸和叶酸等。迷迭香酸的抗氧化活性体现在两个苯环间的邻羟基氢原子的脱落,进而形成半醌和醌结构。药理学研究中表明,迷迭香酸具有抑菌、抗炎症、抗过敏、预防阿尔兹海默症和癌症等多重的功效(Nadeem M等“Therapeutic potential of rosmarinic acid:a comprehensive review”AppliedSciences 2017 9:3139)。
然而,迷迭香酸在植物中的研究鲜有报道,目前已知植物可分泌迷迭香酸调控根系细菌群体感应(Corral-Lugo等“Rosmarinic acid is a homoserine lactone mimicproduced by plants that activates a bacterial quorum-sensing regulator”Science Signaling 2016 9pp.ra1)。
发明内容
本发明发现迷迭香酸具有诱导植物的抗氧化酶活性,降低植物体内氧化蛋白和H2O2积累,从而提高植物对高温胁迫的抗性。
基于以上发现,本发明提供了迷迭香酸在提高植物高温抗性中的新用途
所述的植物具体可以为番茄。
本发明还提供了一种制剂,该制剂的有效成分为迷迭香酸;外源应用该制剂能显著提高植物对高温胁迫的抗性。
迷迭香酸为一类多酚酸类物质。经试验发现,高温条件(45℃)下外源处理迷迭香酸可诱导植物抗坏血酸过氧化物酶(Ascorbate peroxidase,APX)、过氧化氢酶(Catalase,CAT)、谷胱甘肽还原酶(Glutathione reductase,GR)和脱氢抗坏血酸还原酶(Dehydroascorbate reductase,DHAR)等抗氧化酶活性,减少氧化蛋白和H2O2的积累,从而提高植物对高温胁迫的抗性。
本发明还提供了迷迭香酸在制备提高植物高温抗性的制剂中的应用。
具体的,所述植物为番茄。
本发明还提供了所述的制剂,以1L计,包括以下组分:迷迭香酸18-36g;表面活性剂0.03-0.05L;水0.9~1L。
作为优选,所述的制剂,以1L计,包括以下组分:迷迭香酸24g;表面活性剂0.04L;水0.96L。
所述的表面活性剂可使制剂在植物表面的湿润、分散、展着和渗透性能显著增强,有效减少制剂喷洒后的随风漂移,提高制剂的抗雨水冲刷能力和药效,减少制剂的用量,延长制剂的有效期。本发明中的表面活性剂可采用有机硅、吐温60或Silwet-L77中的一种,更优选有机硅,有机硅表面活性剂价格更为低廉,且在提高本发明制剂的延展性、降低制剂表面张力上效果更显著,更易被植株吸收。
本发明还一种提高番茄高温抗性的方法,其特征在于,包括以下步骤:将提高植物高温抗性的制剂直接或用水稀释后喷施于番茄叶片表面;
所述制剂,以1L计,包括以下组分:迷迭香酸18-36g;表面活性剂0.03-0.05L;水0.95~0.97L。
根据最终用途的不同可适当混合其他有机溶剂如乙醇、二甲基亚砜(DMSO)、磷酸缓冲液PBS(pH 7.2)等。
与现有技术相比,本发明具有以下有益效果:
(1)本发明对于迷迭香酸发掘了新的提高植物高温抗性的用途,开拓了一个新的应用领域。
(2)本发明制剂中的有效成分为迷迭香酸,其具有诱导植物的抗氧化酶活性,降低植物体内氧化蛋白和H2O2积累,从而提高植物对高温胁迫的抗性。
附图说明
图1为实施例1中高温胁迫下制剂处理和对照处理对番茄植株的表型、叶片PSII最大光化学量子产量(Fv/Fm)和相对电解质渗透率的影响;
其中,A:高温胁迫下番茄植株的表型;B:迷迭香酸对高温胁迫下番茄叶片PSII最大光化学量子产量(Fv/Fm)的影响;C:迷迭香酸对高温胁迫下番茄叶片相对电解质渗透率的影响。
图2为实施例2中高温胁迫下制剂处理和对照处理对番茄植株的氧化胁迫;
其中,A:高温胁迫下番茄叶片中氧化蛋白含量;B:高温胁迫下番茄叶片中H2O2含量。
图3为实施例3中高温胁迫下制剂处理和对照处理对番茄植株抗氧化酶活性的影响;
其中,A:植株体内抗坏血酸过氧化物酶(APX)活性;B:植株体内过氧化氢酶(CAT)活性;C:植株体内谷胱甘肽还原酶(GR)活性;D:植株体内脱氢抗坏血酸还原酶(DHAR)活性。
具体实施方式
下面结合具体实施例对本发明作进一步描述,以下列举的仅是本发明的具体实施例,但本发明的保护范围不仅限于此。
下述实施例中所用实验材料、试剂等,如无特殊说明,均可从商业途径得到。番茄品种为番茄常规品种Condine Red。
实施例1
取18g的迷迭香酸(药品购自阿拉丁公司)溶于960mL的水中搅拌使其充分溶解,向溶液中加入40mL有机硅溶液,搅拌均匀后获得制剂原液。
制剂工作液由100mL制剂原液加至10L清水中混合均匀而得。将制剂工作液均匀喷施苗龄为五叶一心的番茄叶片表面,直至两面叶片完全湿润,且工作液不呈水滴状流下,每天上午9点喷施1次持续喷施3天,以喷施清水的番茄植株作为对照。
经制剂工作液及对照处理后的番茄植株进行不同温度处理。番茄植株置于人工气候培养箱中,光强为200μmol m-2s-1,温度设置为45℃的高温处理或25℃的常温处理。期间及时补充水分,防止植株干旱缺水。不同温度处理10小时后,将高温处理组与常温处理组番茄植株进行比较,拍摄植物温度响应表型,测定植株PSII最大光化学效率(Fv/Fm)和电解质渗透率。
植物PSII最大光化学效率(Fv/Fm)测定方法为:将不同温度处理后的番茄植株置于暗环境适应30min后,利用德国Heinz-Walz公司生产的Imaging-PAM调制荧光成像系统照射检测光(<0.5μmol m-2s-1)获得最小荧光Fo,再照射饱和脉冲光(4000μmol m-2s-1)获得最大荧光Fm。荧光参数计算方法为:Fv/Fm=(Fm-Fo)/Fm。
电解质渗透率测定:称取0.3g番茄叶片并用dH2O将叶片洗净,去主叶脉后剪成1cm2的碎块置50mL离心管中,加入20mL dH2O。室温200rpm震荡2h后测得电导率EL1。样品95℃水浴15min,冷却至室温测定电导率为EL2。电解质渗透率EL(%)=EL1/EL2×100。
结果显示,制剂工作液处理能显著提高番茄的高温抗性(图1A)。制剂处理的番茄植株遭遇高温胁迫后,其最大PSII最大光化学效率(Fv/Fm)(图1B)显著高于相同条件对照处理的番茄植株;同时本发明制剂能有效降低高温介导电解质渗透率的提高(图1C)。
实施例2
取36g的迷迭香酸(药品购自阿拉丁公司)溶于960mL的水中搅拌使其充分溶解,向混合溶液中加入40mL有机硅溶液,搅拌均匀后获得制剂原液。
制剂工作液由100mL制剂原液加至10L清水中混合均匀而得。将制剂工作液均匀喷施苗龄为五叶一心的番茄叶片表面,直至两面叶片完全湿润,且工作液不呈水滴状流下。每天上午9点喷施1次持续喷施3天,以喷施清水的番茄植株作为对照。
经制剂工作液及对照处理后的番茄植株进行不同温度处理。番茄植株置于人工气候培养箱中,光强为200μmol m-2s-1,温度设置为45℃的高温处理或25℃的常温处理。期间及时补充水分,防止植株干旱缺水。番茄植株置于不同温度处理8h后,测定氧化蛋白和H2O2含量。
氧化蛋白的检测参照OxyBlot Protein Oxidation Detection Kit(ChemiconInternational,CA,USA)试剂盒方法。
H2O2含量测定:0.3g植物叶片用4ml 0.2M HClO4冰浴研磨成匀浆。4℃条件下12000g离心10min后收集上清液,加入4M KOH使溶液pH达到6.0-7.0,4℃12000g离心5min。上清液过AG1x8预装柱(Bio-Rad,Hercules,CA)后用4mL ddH2O洗涤。取800μL样品与400μL反应缓冲液混合。缓冲液包括:4mM 2,2’-azino-di(3-ethylbenzthiazoline-6-sulfonicacid),100mM醋酸钾(pH 4.4),400μL ddH2O和0.25U辣根过氧化物酶。H2O2含量在412nm用分光光度计测定。
结果显示,制剂工作液处理能显著减少高温胁迫后番茄植株体内氧化蛋白的积累(图2A),并且高温诱导的H2O2含量也显著少于对照处理植株(图2B)。由此可见,本发明制剂能有效缓解植物高温胁迫导致的氧化胁迫。
实施例3
取24g的迷迭香酸(药品购自阿拉丁公司)溶于960mL的水中搅拌使其充分溶解,向混合溶液中加入40mL有机硅溶液,搅拌均匀后获得制剂原液。
制剂工作液由100mL制剂原液加至10L清水中混合均匀而得。将制剂工作液均匀喷施苗龄为五叶一心的番茄叶片表面,直至两面叶片完全湿润,且工作液不呈水滴状流下。每天上午9点喷施1次持续喷施3天,以喷施清水的番茄植株作为对照。
经制剂工作液及对照处理后的番茄植株进行不同温度处理。番茄植株置于人工气候培养箱中,光强为200μmol m-2s-1,温度设置为45℃的高温处理或25℃的常温处理。期间及时补充水分,防止植株干旱缺水。番茄植株置于不同温度处理6h后,测定若干抗氧化酶活性。
抗氧化酶活性测定:称取0.3g叶片加3mL含有1%PVP和0.2mM EDTA的25mM PBS缓冲液于冰浴上研磨至匀浆,4℃条件下12000g离心10min后收集上清液,用紫外可见分光光度仪(UV-2401PC,Shimadzu,Japan)于后续酶活性检测。抗坏血酸过氧化物酶(APX)活性测定:100μL上清液加入1700μL含有0.1mM EDTA的PBS缓冲液(pH 7.0),100μL 20mM H2O2,100μL 5mM AsA。测定25s内A290下的酶动力学变化并计算反应速率。过氧化氢酶(CAT)活性测定:100μL上清液加入1800μL含有0.1mM EDTA的PBS缓冲液(pH 7.0),100μL 10mM H2O2。测定25s内A240下的酶动力学变化并计算反应速率。谷胱甘肽还原酶(GR)活性测定:100μL上清液加入1700μL含有0.1mM EDTA的PBS缓冲液(pH 7.8),100μL 10mM GSSG,100μL 2.4mM NADPH。测定25s内A340下的酶动力学变化并计算反应速率。脱氢抗坏血酸还原酶(DHAR)活性测定:2mL反应液包含25mM PBS(pH7.0),0.1mM EDTA,3.5mM GSH,0.4mM DHA和50μL上清液,测定25s内A265下的酶动力学变化并计算反应速率。
如图3所示,制剂工作液处理可进一步增强高温胁迫下植物体内抗坏血酸过氧化物酶(APX)、过氧化氢酶(CAT)、谷胱甘肽还原酶(GR)和脱氢抗坏血酸还原酶(DHAR)等抗氧化酶活性,从而提高植物在高温下的抗性。
Claims (6)
1.迷迭香酸在提高植物高温抗性中的应用。
2.如权利要求1所述的应用,其特征在于,所述植物为番茄。
3.迷迭香酸在制备提高植物高温抗性的制剂中的应用。
4.如权利要求3所述的应用,其特征在于,所述植物为番茄。
5.如权利要求3所述的应用,其特征在于,所述的制剂,以1L计,包括以下组分:迷迭香酸18~36g;表面活性剂0.03~0.05L;水0.95~0.97L。
6.一种提高番茄高温抗性的方法,其特征在于,包括以下步骤:将提高植物高温抗性的制剂直接或用水稀释后喷施于番茄叶片表面;
所述制剂,以1L计,包括以下组分:迷迭香酸18~36g;表面活性剂0.03~0.05L;水0.95~0.97L。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110335936.XA CN113100234B (zh) | 2021-03-29 | 2021-03-29 | 迷迭香酸在提高植物高温抗性中的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110335936.XA CN113100234B (zh) | 2021-03-29 | 2021-03-29 | 迷迭香酸在提高植物高温抗性中的应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113100234A true CN113100234A (zh) | 2021-07-13 |
CN113100234B CN113100234B (zh) | 2022-03-04 |
Family
ID=76712561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110335936.XA Active CN113100234B (zh) | 2021-03-29 | 2021-03-29 | 迷迭香酸在提高植物高温抗性中的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113100234B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140364314A1 (en) * | 2010-03-23 | 2014-12-11 | Crop Microclimate Management Inc. | Methods for increasing tolerance to abiotic stress in plants |
CN108347931A (zh) * | 2015-09-15 | 2018-07-31 | 菲特艾克欧公司 | 用于提高植物胁迫耐受性的生物活性组合物 |
CN110367257A (zh) * | 2019-06-25 | 2019-10-25 | 山东省农业科学院作物研究所 | 一种小麦玉米周年高产抗逆栽培浸种剂及其制备方法 |
US20210037717A1 (en) * | 2018-02-05 | 2021-02-11 | Crop Microclimate Management Inc. | Methods and compositions for increasing tolerance to abiotic stress in plants |
-
2021
- 2021-03-29 CN CN202110335936.XA patent/CN113100234B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140364314A1 (en) * | 2010-03-23 | 2014-12-11 | Crop Microclimate Management Inc. | Methods for increasing tolerance to abiotic stress in plants |
CN108347931A (zh) * | 2015-09-15 | 2018-07-31 | 菲特艾克欧公司 | 用于提高植物胁迫耐受性的生物活性组合物 |
US20210037717A1 (en) * | 2018-02-05 | 2021-02-11 | Crop Microclimate Management Inc. | Methods and compositions for increasing tolerance to abiotic stress in plants |
CN110367257A (zh) * | 2019-06-25 | 2019-10-25 | 山东省农业科学院作物研究所 | 一种小麦玉米周年高产抗逆栽培浸种剂及其制备方法 |
Non-Patent Citations (4)
Title |
---|
张丽等: "高温逆境下番茄生理生化特性研究进展", 《农技服务》 * |
张俊霞等: "植物抗氧化系统对逆境胁迫的动态响应", 《湖北民族学院学报(自然科学版)》 * |
徐晶等: "植物体内保护酶系统的研究", 《海峡药学》 * |
王国骄等: "抗氧化机制在作物对非生物胁迫耐性中的作用", 《沈阳农业大学学报》 * |
Also Published As
Publication number | Publication date |
---|---|
CN113100234B (zh) | 2022-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tanase et al. | Physiological and biochemical responses induced by spruce bark aqueous extract and deuterium depleted water with synergistic action in sunflower (Helianthus annuus L.) plants | |
Fan et al. | Effects of humic acid derived from sediments on the postharvest vase life extension in cut chrysanthemum flowers | |
Saw et al. | Stimulation of anthocyanin synthesis in grape (Vitis vinifera) cell cultures by pulsed electric fields and ethephon | |
Hu et al. | Gibberellic acid enhances postharvest toon sprout tolerance to chilling stress by increasing the antioxidant capacity during the short-term cold storage | |
Skrzypek et al. | Allelopathic effect of aqueous extracts from the leaves of peppermint (Mentha× piperita L.) on selected physiological processes of common sunflower (Helianthus annuus L.) | |
CN110959617A (zh) | 植物生长逆境保护剂及使用方法 | |
Xu et al. | Growth phase-dependent allelopathic effects of cyanobacterial exudates on Potamogeton crispus L. seedlings | |
CN112400630A (zh) | 一种降低低温胁迫后不结球白菜内h2o2和mda含量的方法 | |
Ilmiah et al. | Fruit morphology, antioxidant activity, total phenolic and flavonoid contents of Salacca zalacca (Gaertner) Voss by applications of goat manures and Bacillus velezensis B-27. | |
Fukuoka et al. | Effect of shading on anthocyanin and non-flavonoid polyphenol biosynthesis of Gynura bicolor leaves in midsummer | |
CN113100234B (zh) | 迷迭香酸在提高植物高温抗性中的应用 | |
Shrestha et al. | Effect of foliar application of gibberellic acid (GA3) on quality attributes of Calendula flowers (Calendula officinalis L.) cv.‘Gitana Fiesta’in Chitwan, Nepal | |
Stasińska-Jakubas et al. | Application of chitosan lactate, selenite, and salicylic acid as an approach to induce biological responses and enhance secondary metabolism in Melissa officinalis L. | |
Musbah et al. | Effects of feeding tyrosine or phenylalanine on the accumulation of polyphenols in Coleus Blumei in Vivo and in Vitro. | |
NL2025884B1 (en) | Organic composition for bio-stimulation of a plant | |
Rubin et al. | Glucosinolates content of in vitro grown Nasturtium officinale (watercress) | |
Li et al. | Improving tomato yield, quality and antioxidant capacity in greenhouse by far-infrared radiation | |
CN111820238A (zh) | 一种缓解凤丹干旱胁迫的抗旱剂及其应用 | |
Sowmeya et al. | Influence of priming on seed quality of fresh and old seed lots of carrot (Daucus carota L.) | |
Moglia et al. | Globe artichoke callus as an alternative system for the production of dicaffeoylquinic acids | |
CN101946666B (zh) | 降低蔷薇科果树砧木地上部重金属镉积累的方法 | |
Leja et al. | Some antioxidant and senescence parameters of broccoli as related to its developmental stages | |
Magangana et al. | Effect of blanching pretreatment on the phytochemical properties, and bioactivities of  Herskawitz pomegranate peel extracts at three different harvest maturities | |
CN109362750B (zh) | 抗生素jx在提高水稻抗病性中的应用 | |
Babakhani et al. | Biochemical and physiological responses of alfalfa (Medicago sativa L.) cultivars to osmotic stress |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |