CN113098052A - 一种多目标耦合的并网逆变器负序最优控制方法 - Google Patents

一种多目标耦合的并网逆变器负序最优控制方法 Download PDF

Info

Publication number
CN113098052A
CN113098052A CN202110271663.7A CN202110271663A CN113098052A CN 113098052 A CN113098052 A CN 113098052A CN 202110271663 A CN202110271663 A CN 202110271663A CN 113098052 A CN113098052 A CN 113098052A
Authority
CN
China
Prior art keywords
current
grid
connected inverter
negative sequence
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110271663.7A
Other languages
English (en)
Other versions
CN113098052B (zh
Inventor
魏应冬
李笑倩
邵文君
李伟瑞
黄俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
State Grid Beijing Electric Power Co Ltd
Original Assignee
Tsinghua University
State Grid Beijing Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, State Grid Beijing Electric Power Co Ltd filed Critical Tsinghua University
Priority to CN202110271663.7A priority Critical patent/CN113098052B/zh
Publication of CN113098052A publication Critical patent/CN113098052A/zh
Application granted granted Critical
Publication of CN113098052B publication Critical patent/CN113098052B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明提出一种多目标耦合的并网逆变器负序最优控制方法,属于并网逆变器技术领域。该方法以并网逆变器A相电压为参考电压,确定并网逆变器正序输出电流相量;根据并网逆变器桥臂电流约束确定并网逆变器负序补偿电流的解域;检测并网逆变器电网接口的负荷侧负序电流,通过解析几何法根据负荷侧负序电流在相平面上所属区域,求解负荷侧负序电流最优补偿相量,最终得到并网逆变器三相输出电流,并网逆变器器在输出指定正序电流的同时最大程度对负序电流进行补偿。本发明在并网逆变器保证正序功率输出基础上,进一步提升了对负序电流的补偿能力,更好地发挥了能源并网逆变器的容量潜力,减少补偿设备的安装容量,并能实现实时控制,有很高的应用价值。

Description

一种多目标耦合的并网逆变器负序最优控制方法
技术领域
本发明涉及并网逆变器技术领域,特别涉及一种多目标耦合的并网逆变器负序最优控制方法。
背景技术
我国电能质量问题严峻,每年由于电能质量问题引起的经济损失高达数百亿。其中,无功电流的存在,使输送单位有功的实际电流变大,增加变压器及输电线路的有功网损。无功电流波动会引起电网中节点电压波动,严重威胁电网安全和稳定运行。负序电流会造成电网损耗增加,导致电力电子设备产生附加的谐波电流,同时可能引起以负序电流分量为起动分量的保护误动作,威胁电网的正常运行。负序电流还会影响用电设备正常工作,缩短使用寿命,严重时会损坏用电设备。
包括静止同步补偿器STATCOM、新能源并网逆变器在内的并网逆变器通过施加有效的控制策略,就可以用于补偿无功、负序等电能质量问题,并以其连续、快速调节等优点,逐步成为治理无功电流、负序电流综合补偿的有效措施。
然而在相关技术中,由于全控型电力电子器件造价昂贵,耦合正序无功、正序有功、负序电流乃至谐波电流的负荷电流往往不断剧烈变动,完全满足所有耦合输出潮流要求所需所需并网逆变器投资巨大,实际工程往往按照经济性配置STATCOM、有源电力滤波器APF等补偿设备的实际容量。且新能源并网逆变器主要任务是传输正序有功功率,因此实际用于补偿电能质量的并网逆变器安装容量有限,并网逆变器容量往往不能完全补偿负序电流问题。
发明内容
本发明的目的是为克服已有技术的不足之处,针对有限容量的三相三交流端口并网逆变器,提出一种多目标耦合的并网逆变器负序最优控制方法。本发明在保证并网逆变器正序电流输出下尽可能提高其负序电流补偿能力。最大限度利用并网逆变器容量,减少补偿设备的安装容量。
本发明提出一种多目标耦合的并网逆变器负序最优控制方法,其特征在于,该方法以并网逆变器的A相电压为参考电压,确定并网逆变器正序输出电流相量;根据并网逆变器桥臂电流约束确定并网逆变器负序补偿电流的解域;检测并网逆变器电网接口的负荷侧负序电流,通过解析几何法根据负荷侧负序电流在相平面上所属的区域,求解负荷侧负序电流最优补偿相量,最终得到并网逆变器三相输出电流。
该方法包括以下步骤:
1)以并网逆变器的A相电压
Figure BDA0002974821970000021
为参考电压;确定并网逆变器正序输出电流相量
Figure BDA0002974821970000022
为(Ipz,Iqz),其中,Ipz表示正序输出有功电流幅值,Iqz表示正序输出无功电流幅值,其幅值为Icz
2)根据并网逆变器桥臂电流约束确定并网逆变器负序补偿电流
Figure BDA0002974821970000023
解域;约束关系如下:
Figure BDA0002974821970000024
Figure BDA0002974821970000025
Figure BDA0002974821970000026
式中,Ilim为并网逆变器各桥臂最大允许电流;
Figure BDA0002974821970000027
分别代表并网逆变器A、B、C三相输出电流,a为旋转因子,a=ej2π/3;x∈[a,b,c],
Figure BDA0002974821970000028
表示并网逆变器各相正序输出电流相量,
Figure BDA0002974821970000029
表示并网逆变器各相负序输出电流相量;
则并网逆变器正序优先时的负序补偿电流相量的解域通过如下方式确定:
以A相电流相量代表三相系统电流,在相平面上中,分别以相量
Figure BDA00029748219700000210
末端端点为圆心,以Ilim半径构建三个圆,该三个圆的圆心分别记为A点、B点和C点;将该三个圆分别记为圆A、圆B和圆C,该三个圆重合区域即为并网逆变器正序优先时的负序补偿电流相量的解域,其中X点、Y点、Z点分别为该重合区域的三个顶点,X点为在圆A内圆B和圆C的交点,Y点为在圆B内圆A和圆C的交点,Z点为在圆C内圆A和圆B的交点;
其中,将以圆A通过原点的半径在该圆圆周上的端点记为D,将坐标轴原点记为O,则角DOB即为正序电流滞后正序电压角度,将该角记为角
Figure BDA00029748219700000211
3)连接AY,AZ,BX,BZ,CX,CZ,将相平面上解域外部分分成六个区域;其中,曲线YZ与AY、AZ所围重合区域外部为区域I;AY与CY所围Y点外部为区域II,该区域不包含B点;曲线XY与CX,CY所围重合区域外部为区域III;CX与BX所围X点外部为区域IV,该区域不包含A点;曲线XZ与BX,BZ所围重合区域外部为区域V;BZ与AZ所围Z点外部为区域VI,该区域不包含C点;
4)检测并网逆变器电网接口的负荷侧负序电流
Figure BDA0002974821970000031
Ipn
Figure BDA0002974821970000032
有功分量幅值,Iqn
Figure BDA0002974821970000033
无功分量幅值;
Figure BDA0002974821970000034
在相平面上表示为
Figure BDA0002974821970000035
确定
Figure BDA0002974821970000036
在相平面所属区域,定位方法如下:
4-1)设定相量
Figure BDA0002974821970000037
和参数σ如下:
Figure BDA0002974821970000038
4-2)分别计算相量
Figure BDA0002974821970000039
对应的相位εA、εB、εC、εX、εY、εZ;分别计算相量
Figure BDA00029748219700000310
对应的幅值AN、BN、CN;
根据相位εA、εB、εC、εX、εY、εZ及幅值AN、BN、CN对负荷侧负序电流进行分区判定,方法如下:
Figure BDA00029748219700000311
且AN>Ilim,则
Figure BDA00029748219700000312
属于区域I;
Figure BDA00029748219700000313
Figure BDA00029748219700000314
属于区域II;
Figure BDA00029748219700000315
且CN>Ilim,则
Figure BDA00029748219700000316
属于区域III;
Figure BDA00029748219700000317
Figure BDA00029748219700000318
属于区域IV;
Figure BDA00029748219700000319
Figure BDA00029748219700000320
属于区域VI;
若AN≤Ilim,BN≤Ilim,CN≤Ilim,则
Figure BDA00029748219700000321
属于解域内;
判定完毕后,得到负荷侧负序电流在相平面上所属的区域;
5)根据负荷侧负序电流在相平面上所属的区域,求解负荷侧负序电流最优补偿相量
Figure BDA00029748219700000322
具体方法如下:
5-1)若
Figure BDA0002974821970000041
属于区域I,则负荷侧负序电流最优补偿向量为:
(-Ipz+IlimcosεA)+j(-Iqz+IlimsinεA)
5-2)若
Figure BDA0002974821970000042
属于区域II,则负荷侧负序电流最优补偿向量为:
Figure BDA0002974821970000043
5-3)若
Figure BDA0002974821970000044
属于区域III,则负荷侧负序电流最优补偿向量为:
Figure BDA0002974821970000045
5-4)若
Figure BDA0002974821970000046
属于区域IV,则负荷侧负序电流最优补偿向量为:
Figure BDA0002974821970000047
5-5)若
Figure BDA0002974821970000048
属于区域V,则负荷侧负序电流最优补偿向量为:
Figure BDA0002974821970000049
5-6)若
Figure BDA00029748219700000410
属于区域VI,则负荷侧负序电流最优补偿向量为:
Figure BDA00029748219700000411
5-7)若
Figure BDA00029748219700000412
属于解域内,则负荷侧负序电流最优补偿向量为:(Ipn,jIqn);
6)利用步骤5)的结果,分别求解并网逆变器A、B、C三相输出电流,表达式如下:
Figure BDA00029748219700000413
Figure BDA00029748219700000414
Figure BDA00029748219700000415
式中,a为旋转因子,a=ej2π/3;控制完成。
本发明的特点及有益效果在于:
本发明在负序电流最优补偿策略下,在并网逆变器保证正序功率输出基础上,进一步提升了对负序电流的补偿能力,更好地发挥了新能源并网逆变器的容量潜力。
本发明的负序电流最优补偿策略简单,可以实现实时控制要求。
附图说明
图1为本发明实施例中并网逆变器及其电网拓扑结构示意图;
图2为本发明方法的整体流程图;
图3为本发明实施例中并网逆变器负序补偿电流在相平面中解域示意图;
图4为本发明实施例相平面在逆变器负序补偿电流解域外区域划分示意图。
具体实施方式
本发明提出一种多目标耦合的并网逆变器负序最优控制方法,以下结合附图和具体实施例对本发明进行进一步说明。
本发明提出一种多目标耦合的并网逆变器负序最优控制方法,其中所述并网逆变器特征包括:
结构上,并网逆变器为三相三交流端口;各相直流端口并联且不包括零序通路。典型拓扑包括三相两电平桥式、三相多电平桥式、三相MMC等。
功能上,并网逆变器功能为输出正序电流(包括正序有功电流、正序无功电流),补偿负序电流。典型应用包括:无功、负序电流综合补偿的STATCOM、APF,正序、负序电流耦合输出的新能源多功能并网逆变器等。
进一步地,作为一种示例,本发明实施例中并网逆变器的拓扑结构可如图1所示,结构上,该并网逆变器包括直流电源模块、DC/DC变换模块、三相两电平变流器模块、LCL滤波器模块。
直流电源模块输出直流电压Uin至DC/DC变换模块,DC/DC变换模块将直流电压Uin变换为三电两电平变流器模块的直流侧电容电压Udc,三相两电平变流器模块由直流电容器C1,IGBT S1、S2、S3、S4、S5、S6和并联在IGBT上的反并联二极管D1、D2、D3、D4、D5、D6,构成。三相两电平变流器模块的交流侧接LCL滤波器模块,滤除开关次谐波。LCL滤波器模块由变流器侧电感L1、滤波电容C、阻抗R、网侧电感L2构成。网侧电感L2出口为电网接口,输出正序有功、无功功率,补偿负序电流,其中
Figure BDA0002974821970000051
分别代
Figure BDA0002974821970000052
表并网逆变器A、B、C三相输出电流,
Figure BDA0002974821970000053
代表并网逆变器A、B、C三相的电压。
本发明提出一种多目标耦合的并网逆变器负序最优控制方法,整体流程如图2所示,包括以下步骤:
1)以并网逆变器的A相电压
Figure BDA0002974821970000054
为参考电压;确定并网逆变器正序输出电流相量
Figure BDA0002974821970000055
为(Ipz,Iqz),其中,Ipz表示正序输出有功电流幅值,Iqz表示正序输出无功电流幅值,其幅值为Icz
2)根据并网逆变器桥臂电流约束确定并网逆变器负序补偿电流
Figure BDA0002974821970000061
解域。约束关系如下:
Figure BDA0002974821970000062
Figure BDA0002974821970000063
Figure BDA0002974821970000064
式中,Ilim为并网逆变器各桥臂最大允许电流
Figure BDA0002974821970000065
分别代表并网逆变器A、B、C三相输出电流,a为旋转因子(a=ej2π/3)。x∈[a,b,c],
Figure BDA0002974821970000066
表示并网逆变器各相正序输出电流相量,
Figure BDA0002974821970000067
表示并网逆变器各相负序输出电流相量;
以A相电流相量代表三相系统电流,多功能并网逆变器正序优先时的负序补偿电流相量的解域如图3所示;
在相平面上,分别以相量
Figure BDA0002974821970000068
末端端点为圆心,以Ilim半径构建三个圆(即图3中的三个虚线圆),该三个圆的圆心分别记为A点、B点和C点(以下将该三个圆分别简称为圆A、圆B和圆C);则该三个圆重合区域即为多功能并网逆变器正序优先时的负序补偿电流相量的解域,其中X点、Y点、Z点分别为该重合区域的三个顶点,X点为在圆A内圆B和圆C的交点,Y点为在圆B内圆A和圆C的交点,Z点为在圆C内圆A和圆B的交点。
其中,将圆A通过原点的半径在该圆圆周上的端点记为D,将坐标轴原点记为O,则角DOB即为正序电流滞后正序电压角度(即图3中的角
Figure BDA0002974821970000069
)。
3)连接AY,AZ,BX,BZ,CX,CZ,将相平面上解域外部分分成六个区域。图4为本发明实施例相平面在逆变器负序补偿电流解域外区域划分示意图,如图4所示,其中,曲线YZ与AY、AZ所围重合区域外部为区域I。AY与CY所围Y点外部为区域II(该区域不包含B点)。曲线XY与CX,CY所围重合区域外部为区域III。CX与BX所围X点外部为区域IV(该区域不包含A点)。曲线XZ与BX,BZ所围重合区域外部为区域V。BZ与AZ所围Z点外部为区域VI(该区域不包含C点)。
4)检测并网逆变器电网接口的负荷侧负序电流
Figure BDA00029748219700000610
Ipn
Figure BDA00029748219700000611
有功分量幅值,Iqn
Figure BDA00029748219700000612
无功分量幅值。
Figure BDA00029748219700000613
在相平面上表示为
Figure BDA00029748219700000614
确定
Figure BDA00029748219700000615
在相平面所属区域;定位方法如下:
4-1)设定相量
Figure BDA00029748219700000616
和参数σ如下:
Figure BDA0002974821970000071
4-2)分别计算相量
Figure BDA0002974821970000072
对应的相位εA、εB、εC、εX、εY、εZ。分别计算相量
Figure BDA0002974821970000073
对应的幅值AN、BN、CN。
根据相位εA、εB、εC、εX、εY、εZ及幅值AN、BN、CN对负荷侧负序电流进行分区如下表所示:
表1负荷侧负序电流区域划分表
Figure BDA0002974821970000074
根据表1,即可得到负荷侧负序电流在相平面上所属的区域。
5)根据负荷侧负序电流所属的区域,按照下表分区求解负荷侧负序电流最优补偿相量
Figure BDA0002974821970000075
表2负荷侧负序电流最优补偿向量分区表
Figure BDA0002974821970000081
6)利用步骤5)的结果,分别求解并网逆变器A、B、C三相输出电流,表达式如下:
Figure BDA0002974821970000082
Figure BDA0002974821970000083
Figure BDA0002974821970000084
式中,a为旋转因子(a=ej2π/3)。
控制完成,并网逆变器在输出指定正序电流的同时最大程度对负序电流进行补偿。
以上示意性地对本发明及其实施方式进行了描述,该描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际并不局限于此。所以,如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性地设计出与该技术方案相似的方式及实施例,均应属于本发明的保护范围。

Claims (2)

1.一种多目标耦合的并网逆变器负序最优控制方法,其特征在于,该方法以并网逆变器的A相电压为参考电压,确定并网逆变器正序输出电流相量;根据并网逆变器桥臂电流约束确定并网逆变器负序补偿电流的解域;检测并网逆变器电网接口的负荷侧负序电流,通过解析几何法根据负荷侧负序电流在相平面上所属的区域,求解负荷侧负序电流最优补偿相量,最终得到并网逆变器三相输出电流。
2.如权利要求1所述的方法,其特征在于,该方法包括以下步骤:
1)以并网逆变器的A相电压
Figure FDA0002974821960000011
为参考电压;确定并网逆变器正序输出电流相量
Figure FDA0002974821960000012
为(Ipz,Iqz),其中,Ipz表示正序输出有功电流幅值,Iqz表示正序输出无功电流幅值,其幅值为Icz
2)根据并网逆变器桥臂电流约束确定并网逆变器负序补偿电流
Figure FDA0002974821960000013
解域;约束关系如下:
Figure FDA0002974821960000014
Figure FDA0002974821960000015
Figure FDA0002974821960000016
式中,Ilim为并网逆变器各桥臂最大允许电流;
Figure FDA0002974821960000017
分别代表并网逆变器A、B、C三相输出电流,a为旋转因子,a=ej2π/3;x∈[a,b,c],
Figure FDA0002974821960000018
表示并网逆变器各相正序输出电流相量,
Figure FDA0002974821960000019
表示并网逆变器各相负序输出电流相量;
则并网逆变器正序优先时的负序补偿电流相量的解域通过如下方式确定:
以A相电流相量代表三相系统电流,在相平面上中,分别以相量
Figure FDA00029748219600000110
末端端点为圆心,以Ilim半径构建三个圆,该三个圆的圆心分别记为A点、B点和C点;将该三个圆分别记为圆A、圆B和圆C,该三个圆重合区域即为并网逆变器正序优先时的负序补偿电流相量的解域,其中X点、Y点、Z点分别为该重合区域的三个顶点,X点为在圆A内圆B和圆C的交点,Y点为在圆B内圆A和圆C的交点,Z点为在圆C内圆A和圆B的交点;
其中,将以圆A通过原点的半径在该圆圆周上的端点记为D,将坐标轴原点记为O,则角DOB即为正序电流滞后正序电压角度,将该角记为角
Figure FDA00029748219600000111
3)连接AY,AZ,BX,BZ,CX,CZ,将相平面上解域外部分分成六个区域;其中,曲线YZ与AY、AZ所围重合区域外部为区域I;AY与CY所围Y点外部为区域II,该区域不包含B点;曲线XY与CX,CY所围重合区域外部为区域III;CX与BX所围X点外部为区域IV,该区域不包含A点;曲线XZ与BX,BZ所围重合区域外部为区域V;BZ与AZ所围Z点外部为区域VI,该区域不包含C点;
4)检测并网逆变器电网接口的负荷侧负序电流
Figure FDA0002974821960000021
Ipn
Figure FDA0002974821960000022
有功分量幅值,Iqn
Figure FDA0002974821960000023
无功分量幅值;
Figure FDA0002974821960000024
在相平面上表示为
Figure FDA0002974821960000025
确定
Figure FDA0002974821960000026
在相平面所属区域,定位方法如下:
4-1)设定相量
Figure FDA0002974821960000027
和参数σ如下:
Figure FDA0002974821960000028
4-2)分别计算相量
Figure FDA0002974821960000029
对应的相位εA、εB、εC、εX、εY、εZ;分别计算相量
Figure FDA00029748219600000210
对应的幅值AN、BN、CN;
根据相位εA、εB、εC、εX、εY、εZ及幅值AN、BN、CN对负荷侧负序电流进行分区判定,方法如下:
Figure FDA00029748219600000211
且AN>Ilim,则
Figure FDA00029748219600000212
属于区域I;
Figure FDA00029748219600000213
Figure FDA00029748219600000214
属于区域II;
Figure FDA00029748219600000215
且CN>Ilim,则
Figure FDA00029748219600000216
属于区域III;
Figure FDA00029748219600000217
Figure FDA00029748219600000218
属于区域IV;
Figure FDA00029748219600000219
Figure FDA00029748219600000220
属于区域VI;
若AN≤Ilim,BN≤Ilim,CN≤Ilim,则
Figure FDA00029748219600000221
属于解域内;
判定完毕后,得到负荷侧负序电流在相平面上所属的区域;
5)根据负荷侧负序电流在相平面上所属的区域,求解负荷侧负序电流最优补偿相量
Figure FDA0002974821960000031
具体方法如下:
5-1)若
Figure FDA0002974821960000032
属于区域I,则负荷侧负序电流最优补偿向量为:
(-Ipz+IlimcosεA)+j(-Iqz+IlimsinεA)
5-2)若
Figure FDA0002974821960000033
属于区域II,则负荷侧负序电流最优补偿向量为:
Figure FDA0002974821960000034
5-3)若
Figure FDA0002974821960000035
属于区域III,则负荷侧负序电流最优补偿向量为:
Figure FDA0002974821960000036
5-4)若
Figure FDA0002974821960000037
属于区域IV,则负荷侧负序电流最优补偿向量为:
Figure FDA0002974821960000038
5-5)若
Figure FDA0002974821960000039
属于区域V,则负荷侧负序电流最优补偿向量为:
Figure FDA00029748219600000310
5-6)若
Figure FDA00029748219600000311
属于区域VI,则负荷侧负序电流最优补偿向量为:
Figure FDA00029748219600000312
5-7)若
Figure FDA00029748219600000313
属于解域内,则负荷侧负序电流最优补偿向量为:(Ipn,jIqn);
6)利用步骤5)的结果,分别求解并网逆变器A、B、C三相输出电流,表达式如下:
Figure FDA00029748219600000314
Figure FDA00029748219600000315
Figure FDA00029748219600000316
式中,a为旋转因子,a=ej2π/3;控制完成。
CN202110271663.7A 2021-03-12 2021-03-12 一种多目标耦合的并网逆变器负序最优控制方法 Active CN113098052B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110271663.7A CN113098052B (zh) 2021-03-12 2021-03-12 一种多目标耦合的并网逆变器负序最优控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110271663.7A CN113098052B (zh) 2021-03-12 2021-03-12 一种多目标耦合的并网逆变器负序最优控制方法

Publications (2)

Publication Number Publication Date
CN113098052A true CN113098052A (zh) 2021-07-09
CN113098052B CN113098052B (zh) 2022-06-21

Family

ID=76667098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110271663.7A Active CN113098052B (zh) 2021-03-12 2021-03-12 一种多目标耦合的并网逆变器负序最优控制方法

Country Status (1)

Country Link
CN (1) CN113098052B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7249471B1 (ja) * 2022-08-23 2023-03-30 三菱電機株式会社 電力変換装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593852A (zh) * 2012-03-26 2012-07-18 浙江特雷斯电子科技有限公司 一种基于分布式并网逆变器的三相负序电压补偿方法
CN105680482A (zh) * 2016-04-13 2016-06-15 安徽工业大学 一种具有补偿不对称无功负载功能的光伏并网发电系统电流形成及控制方法
CN111193270A (zh) * 2019-09-09 2020-05-22 清华大学 有限容量的三相四桥臂变流器不平衡灵活补偿方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593852A (zh) * 2012-03-26 2012-07-18 浙江特雷斯电子科技有限公司 一种基于分布式并网逆变器的三相负序电压补偿方法
CN105680482A (zh) * 2016-04-13 2016-06-15 安徽工业大学 一种具有补偿不对称无功负载功能的光伏并网发电系统电流形成及控制方法
CN111193270A (zh) * 2019-09-09 2020-05-22 清华大学 有限容量的三相四桥臂变流器不平衡灵活补偿方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIAO KUNYU 等: "A balance compensation method based on negative sequence weighted equivalent model of unbalanced load", 《2018 18TH INTERNATIONAL CONFERENCE ON HARMONICS AND QUALITY OF POWER (ICHQP)》 *
胡长江 等: "并网逆变器负序电流优化补偿策略", 《电测与仪表》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7249471B1 (ja) * 2022-08-23 2023-03-30 三菱電機株式会社 電力変換装置
WO2024042612A1 (ja) * 2022-08-23 2024-02-29 三菱電機株式会社 電力変換装置

Also Published As

Publication number Publication date
CN113098052B (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
Tolbert et al. A multilevel converter-based universal power conditioner
Aboelsaud et al. Review of three-phase inverters control for unbalanced load compensation
CN110829466B (zh) 组合开关状态的npc三电平模型预测不平衡治理方法
CN104934989A (zh) 基于新型模块化多电平拓扑的无功补偿装置及其控制方法
CN104218587A (zh) 三电平四桥臂有源滤波器补偿配网中性线电流的控制方法
CN109361230B (zh) 变流器设备输出电压质量综合控制方法与系统
CN104466968A (zh) 一种dstatcom负序电流交叉耦合补偿控制方法
CN113098052B (zh) 一种多目标耦合的并网逆变器负序最优控制方法
CN114498718B (zh) 一种柔性牵引变电所及其控制方法
Bashir et al. Modular multilevel converter-based microgrid: A critical review
Li et al. Impedance modeling and mechanism analysis of low-frequency oscillations in single-phase MMC-RPC integrated vehicle-grid coupling system
Li et al. Controller design and implementation of a medium voltage (13.8 kV) modular multi-level converter for asynchronous microgrids
CN116191482A (zh) 一种三电平电压恢复器带不平衡负载的控制系统和方法
CN116526482A (zh) 一种多低压柔性互联装置并网自适应协调控制方法和装置
CN204992594U (zh) 基于新型模块化多电平拓扑结构的无功补偿装置
CN115360920A (zh) 级联型变换器的正负序最大最小值谐波零序电压注入方法
CN114465515A (zh) 一种避免电池微循环的储能型mmc拓扑及其控制方法
Wang et al. Modern flexible AC transmission system (FACTS) devices
Wu et al. The Stability Analysis and Control Strategies of Multiparalleled SAPFs: A Comprehensive Overview
CN110912130A (zh) 一种双交流母线并网变换器的电路结构及其谐波补偿方法
Sun et al. An improved DC capacitor voltage balancing strategy for PWM cascaded H-bridge converter-based STATCOM
Yang et al. AC voltage sensorless-based natural frame control of cascaded H-bridge converter based on virtual flux observer
Lei et al. DSTATCOM connected to the system through center-tapped distribution transformer for reactive power compensation
Gairola et al. SRF and IRPT methods of DSTATCOM for combined harmonics elimination and reactive power compensation
Xia et al. Control Strategy of Dual Current Source Inverters for High Power Application Under Unbalanced Grid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant