CN113094876B - 未来情景下基于arima模型的水库防洪风险计算方法和系统 - Google Patents

未来情景下基于arima模型的水库防洪风险计算方法和系统 Download PDF

Info

Publication number
CN113094876B
CN113094876B CN202110281933.2A CN202110281933A CN113094876B CN 113094876 B CN113094876 B CN 113094876B CN 202110281933 A CN202110281933 A CN 202110281933A CN 113094876 B CN113094876 B CN 113094876B
Authority
CN
China
Prior art keywords
flood
future
model
reservoir
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110281933.2A
Other languages
English (en)
Other versions
CN113094876A (zh
Inventor
闫宝伟
郭靖
李正坤
刘金华
张磊磊
刘昱
唐俊龙
江慧宁
王浩
穆冉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
PowerChina Huadong Engineering Corp Ltd
Original Assignee
Huazhong University of Science and Technology
PowerChina Huadong Engineering Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology, PowerChina Huadong Engineering Corp Ltd filed Critical Huazhong University of Science and Technology
Priority to CN202110281933.2A priority Critical patent/CN113094876B/zh
Publication of CN113094876A publication Critical patent/CN113094876A/zh
Application granted granted Critical
Publication of CN113094876B publication Critical patent/CN113094876B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0635Risk analysis of enterprise or organisation activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/08Probabilistic or stochastic CAD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/40Controlling or monitoring, e.g. of flood or hurricane; Forecasting, e.g. risk assessment or mapping

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Economics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Development Economics (AREA)
  • Geometry (AREA)
  • Educational Administration (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Computer Hardware Design (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了未来情景下基于ARIMA模型的水库防洪风险计算方法和系统,属于水库防洪风险分析技术领域。本发明结合气候情景和水文模拟技术,通过对未来洪水序列建立ARIMA随机模型,模拟未来洪水的统计特征,同时假定模型中的初始值服从由历史洪水资料推求的概率分布,进而构造了能同时反映过去、现在和未来洪水统计特征的随机模型,并据此提供了未来情景下水库防洪风险计算方法和系统,其目的在于实现未来气候变化情景下水库的防洪风险计算,为水库的设计和运行提供科学依据。

Description

未来情景下基于ARIMA模型的水库防洪风险计算方法和系统
技术领域
本发明属于水库防洪风险分析技术领域,更具体地,涉及未来情景下基于ARIMA(Autoregressive Integrated Moving Average model,差分整合移动平均自回归模型,又称整合移动平均自回归模型)模型的水库防洪风险计算方法和系统。
背景技术
气候变化已是不争事实,致使极端水文事件广发、频发,进而影响到水库的防洪安全。现有水库的防洪安全设计依据的是过去的历史洪水资料,气候变化背景下,未来洪水的频次和量级都将发生剧烈变化,可能会导致水库的防洪风险增加,未来情景下如何衡量水库的防洪风险是当前面临的重大工程问题。
现有方法多是采用设计洪水反映水库的防洪风险率,通常需借助于水文频率计算,要求水文序列满足独立同分布的平稳性条件,而气候变化情景下,水文序列的平稳性遭到破坏,现有方法遇到理论障碍。随机模拟是另一种可行的风险分析方法,但现有研究多是基于历史洪水序列进行建模,反映的是历史洪水的统计特征,未能反映未来气候情景下的洪水发展趋势。
发明内容
针对现有技术的缺陷和改进需求,本发明提供了未来情景下水库防洪风险计算方法和系统,其目的在于结合气候情景和水文模拟技术,通过对未来洪水序列建立ARIMA随机模型,模拟未来洪水的统计特征,同时假定模型中的初始值服从由历史洪水资料推求的概率分布,进而构造了能同时反映过去、现在和未来洪水统计特征的随机模型,实现未来气候变化情景下水库的防洪风险计算,为水库的设计和运行提供科学依据。
为实现上述目的,按照本发明的一个方面,提供了一种未来情景下基于ARIMA模型的水库防洪风险计算方法,该方法包括以下步骤:
S1.基于水库控制流域的基准期实测降水和气温数据、大尺度气象数据,构建水库控制流域的统计降尺度模型,将水库控制流域的未来大尺度气象序列输入至所述统计降尺度模型,得到水库控制流域未来情景下的降水序列和气温序列;
S2.基于水库控制流域的基准期水文气象数据和下垫面数据,构建水库控制流域的水文模型,将水库控制流域未来情景下的降水序列和气温序列输入至所述水文模型,得到未来情景下的径流序列;
S3.由未来情景下的径流序列根据峰量转换关系计算出未来情景下年洪峰序列;
S4.构建未来情景下年洪峰序列的ARIMA模型;
S5.采用所述ARIMA模型对未来气候变化情景下年洪峰序列做随机模拟,得到若干抽样结果;
S6.分别统计抽样结果中超过设计洪水和校核洪水的样本个数,从而计算出未来情景超设计洪水位和校核洪水位的风险率。
优选地,所述统计降尺度模型为ASD(Automated Statistical Downscaling)降尺度模型。
有益效果:本发明优选ASD降尺度模型做气候变化下未来降水气温预测,相对于其他统计降尺度模型,由于该模型使用方便、精度较高且适用于批量数据的处理,从而实现未来情景下降水和气温的预测。
优选地,所述水文模型为SWAT(Soil and Water Assessment Tool)模型。
有益效果:本发明优选SWAT模型做未来径流模拟,相对于其他水文模型,由于该模型物理基础较强、输入数据易获取且能模拟长时段的水文过程,从而实现未来情景下的径流模拟。
优选地,步骤S5中,采用ARIMA模型对未来气候变化情景下年洪峰序列做随机模拟,公式如下:
Figure BDA0002978907020000031
其中,yt为预测值,yt-1~yt-p为反映历史洪水统计特征的随机模拟值,γi为自回归模型的自相关系数,p为自回归模型的阶数,q为移动平均模型的阶数,θi为移动平均的相关系数,εt~εt-i为误差项,服从均值为0,均方差为常数的正态分布。
有益效果:本发明通过对未来洪水序列建立ARIMA随机模型,模拟未来洪水的统计特征,同时假定模型中的初始值服从由历史洪水资料推求的概率分布,进而构造了能同时反映过去、现在和未来洪水统计特征的随机模型,为未来气候变化情景下水库的防洪风险计算提供了一种可行途径。
优选地,yt-1~yt-p服从P-III分布。
有益效果:本发明采用国内常用的P-III分布模拟初始值,能够更好地反映历史洪水序列的统计特征,且易于利用水库已有经过论证的设计成果。
优选地,未来情景防洪风险率计算公式如下:
Figure BDA0002978907020000032
其中,P为防洪风险率,m为超过超设计洪水位或校核洪水位的样本个数,M为抽样样本容量。
为实现上述目的,按照本发明的另一个方面,提供了一种未来情景下基于ARIMA模型的水库防洪风险计算系统,包括:计算机可读存储介质和处理器;
所述计算机可读存储介质用于存储可执行指令;
所述处理器用于读取所述计算机可读存储介质中存储的可执行指令,执行上述未来情景下基于ARIMA模型的水库防洪风险计算方法。
总体而言,通过本发明所构思的以上技术方案,能够取得以下有益效果:
本发明结合气候情景和水文模拟技术,通过对未来洪水序列建立ARIMA随机模型,模拟未来洪水的统计特征,同时假定模型中的初始值服从由历史洪水资料推求的概率分布,进而构造了能同时反映过去、现在和未来洪水统计特征的随机模型,并据此提供了未来情景下水库防洪风险计算方法和系统,其目的在于实现未来气候变化情景下水库的防洪风险计算,为水库的设计和运行提供科学依据。
附图说明
图1为发明提供的一种未来情景下基于ARIMA模型的水库防洪风险计算方法流程图;
图2为发明实施例提供的未来气候模式下年洪峰序列图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图1所示,本发明提供了一种未来情景下基于ARIMA模型的水库防洪风险计算方法,该方法包括以下步骤:
步骤S1.基于水库控制流域的基准期实测降水和气温数据、大尺度气象数据,构建水库控制流域的统计降尺度模型,将水库控制流域的未来大尺度气象序列输入至所述统计降尺度模型,得到水库控制流域未来情景下的降水序列和气温序列。
优选地,所述统计降尺度模型为ASD降尺度模型。
将水库控制流域基准期的实测降水和气温数据、NCEP(National Centers forEnvironmental Prediction,美国国家环境预报中心)数据和GCM(Global Climate Model,全球气候模式)数据输入到ASD降尺度模型中,构建得到水库控制流域的ASD降尺度模型。将未来GCM数据输入到水库控制流域的ASD降尺度模型,生成水库控制流域未来情景下的降水和气温数据。
步骤S1包括如下子步骤:
S1.1.为NCEP和GCM模式选择合适的大尺度气候因子,所选择的大尺度气候因子应最能表征水库控制流域的降雨和气温预报量;
S1.2.采用主成分分析法对大尺度气候因子进行主成分分析,用得到的主成分代替之前的大尺度气候因子集合作为预报因子;
S1.3.根据ASD降尺度模型原理,由基准期的实测降水和气温、NCEP预报因子、GCM预报因子构建ASD降尺度模型;
S1.4.根据未来大尺度GCM气候因子得到未来GCM预报因子,将其输入基准期建立的ASD降尺度模型,得到未来气候模式下的降水和气温序列。
步骤S2.基于水库控制流域的基准期水文气象数据和下垫面数据,构建水库控制流域的水文模型,将水库控制流域未来情景下的降水和气温序列输入至所述水文模型,得到未来情景下的径流序列。
优选地,所述水文模型为SWAT模型。
将水库控制流域的DEM、土壤数据、土地利用数据、基准期实测径流、实测降水和气温数据输入到SWAT模型中,构建水库控制流域的SWAT模型。将水库控制流域未来情景下的降水和气温序列输入至SWAT模型,得到未来情景下的径流序列。
步骤S3.由未来情景下的径流序列根据峰量转换关系计算出未来情景下年洪峰序列。
根据实测的洪峰与洪量序列,采用相关分析或人工神经网络等其它非线性分析方法确定该水库的峰量转换关系,进而由未来情景下的径流序列利用峰量转换关系推求年洪峰序列。
步骤S4.构建未来情景下年洪峰序列的ARIMA模型。
建立洪峰序列的ARIMA模型包括如下子步骤:
(1)确定参数d,d为时间序列成为平稳时所做的差分次数,若序列不满足平稳性条件,则采用差分法将非平稳序列转为平稳序列;
差分法计算公式如下:
Δdyt=yt-yt-d
其中,d为差分的阶数,yt为t时刻的值,Δdyt为yt作d阶差分后的值。
(2)模型定阶,即确定p和q的阶数;
(3)参数估计,采用统计学理论和方法对模型的参数进行估计;
(4)模型检验,即针对模型的残差进行检验,检验ARIMA模型的残差是否是均值为0且方差为常数的正态分布。
步骤S5.采用所述ARIMA模型对未来气候变化情景下年洪峰序列做随机模拟,得到若干抽样结果。
优选地,步骤S5中,采用ARIMA模型对未来气候变化情景下年洪峰序列做随机模拟,公式如下:
Figure BDA0002978907020000061
其中,yt为预测值,yt-1~yt-p为反映历史洪水统计特征的随机模拟值,γi为自回归模型的自相关系数,p为自回归模型的阶数,q为移动平均模型的阶数,θi为移动平均的相关系数,εt~εt-i为误差项,服从均值为0,均方差为σ的正态分布。
优选地,yt-1~yt-p服从由历史洪水资料推求的概率分布,一般假定为P-III分布。
步骤S6.分别统计抽样结果中超过设计洪水和校核洪水的样本个数,从而计算出未来情景超设计洪水位和校核洪水位的风险率。
优选地,未来情景防洪风险率计算公式如下:
Figure BDA0002978907020000071
其中,P为防洪风险率,m为超过超设计洪水位或校核洪水位的样本个数,M为抽样样本容量。
实施例
本实施例以雅砻江流域杨房沟水库为例,杨房沟水库位于四川省凉山彝族自治州木里县境内的雅砻江干流处,介于雅江水文站(上游)与麦地龙水文站(下游)两个控制断面之间,集水面积为80880km2,水库设计洪水(500年一遇)为9320m3/s,校核洪水(5000年一遇)为11200m3/s,相应的设计洪水位为2096.27m,校核洪水位为2099.91m。
步骤S1.以杨房沟水库为研究对象,以1981-2005年为基准期,根据基准期实测资料和NCEP再分析数据构建ASD降尺度模型。将全球气候模式GFDL中RCP8.5情景下的大尺度预报因子输入到ASD降尺度模型中,生成未来情景下的降水和气温序列。
步骤S2.将水库控制流域的DEM、土壤数据、土地利用数据、气象数据和基准期实测降水和气温数据输入到SWAT模型中,构建得到水库控制流域的SWAT模型。将水库控制流域未来情景下的降水和气温输入至SWAT模型,得到未来情景下的径流序列。
本实施例中,计算尺度为日,得到的是日径流序列。
步骤S3.由未来情景下的径流序列根据峰量转换关系计算出未来情景下年洪峰序列。
本实施例计算出的未来情景下年洪峰序列如图2所示。
步骤S4.构建未来情景下年洪峰序列的ARIMA模型。
本实施例中构建出的ARIMA模型为ARIMA(0,1,1)。即
yt=yt-1t-11t
式中:yt-1为服从由历史期洪水资料所得的均值为4160,变差系数为0.29,偏态系数为1.16的服从P-III分布的随机模拟值。
步骤S5.通过建立的ARIMA模型做随机模拟,以未来GFDL模式中RCP8.5情景下的年洪峰序列作为基础序列,生成未来情景下洪峰序列长度为n的M组洪峰模拟序列,本发明实施例中未来洪峰序列长度为n=77(2024年-2100年),M=10000。
步骤S6.将未来时期划分为2024-2050年、2051-2075年和2076-2100年(分别简写为未来时期的2030S、2060S和2090S)进行统计,计算出未来GFDL模式中RCP8.5情景下不同时期超设计洪水和校核洪水的风险率,计算结果如表1所示:
表1
Figure BDA0002978907020000081
本发明还提供了一种未来情景下基于ARIMA模型的水库防洪风险计算系统,包括:计算机可读存储介质和处理器;
所述计算机可读存储介质用于存储可执行指令;
所述处理器用于读取所述计算机可读存储介质中存储的可执行指令,执行上述未来情景下基于ARIMA模型的水库防洪风险计算方法。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种未来情景下基于ARIMA模型的水库防洪风险计算方法,其特征在于,该方法包括以下步骤:
S1.对未来洪水序列构建ARIMA随机模型,所述ARIMA随机模型中的初始值服从由历史洪水资料推求的概率分布;
S2.采用所述ARIMA随机模型对未来气候变化情景下年洪峰序列做随机模拟,得到若干抽样,随机模拟公式如下:
Figure FDA0003475884540000011
其中,yt为预测值,yt-1~yt-p为反映历史洪水统计特征的随机模拟值,γi为自回归模型的自相关系数,p为自回归模型的阶数,q为移动平均模型的阶数,θi为移动平均的相关系数,εt~εt-i为误差项,服从均值为0,均方差为常数的正态分布;
S3.分别统计抽样结果中超过设计洪水和校核洪水的样本个数,从而计算出未来情景超设计洪水位和校核洪水位的风险率;
其中,所述未来洪水序列通过以下方式得到:
(1)基于水库控制流域的基准期实测降水和气温数据、大尺度气象数据,构建水库控制流域的统计降尺度模型,将水库控制流域的未来大尺度气象序列输入至所述统计降尺度模型,得到水库控制流域未来情景下的降水序列和气温序列;
(2)基于水库控制流域的基准期水文气象数据和下垫面数据,构建水库控制流域的水文模型;
(3)将水库控制流域未来情景下的降水序列和气温序列输入至所述水文模型,得到未来情景下的径流序列;
(4)由未来情景下的径流序列根据峰量转换关系计算出未来情景下年洪峰序列。
2.如权利要求1所述的方法,其特征在于,所述统计降尺度模型为ASD降尺度模型。
3.如权利要求1所述的方法,其特征在于,所述水文模型为SWAT模型。
4.如权利要求1所述的方法,其特征在于,yt-1~yt-p服从P-III分布。
5.如权利要求1所述的方法,其特征在于,未来情景防洪风险率计算公式如下:
Figure FDA0003475884540000021
其中,P为防洪风险率,m为超过超设计洪水位或校核洪水位的样本个数,M为抽样样本容量。
6.一种未来情景下基于ARIMA模型的水库防洪风险计算系统,其特征在于,包括:计算机可读存储介质和处理器;
所述计算机可读存储介质用于存储可执行指令;
所述处理器用于读取所述计算机可读存储介质中存储的可执行指令,执行权利要求1至5任一项所述的未来情景下基于ARIMA模型的水库防洪风险计算方法。
CN202110281933.2A 2021-03-16 2021-03-16 未来情景下基于arima模型的水库防洪风险计算方法和系统 Active CN113094876B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110281933.2A CN113094876B (zh) 2021-03-16 2021-03-16 未来情景下基于arima模型的水库防洪风险计算方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110281933.2A CN113094876B (zh) 2021-03-16 2021-03-16 未来情景下基于arima模型的水库防洪风险计算方法和系统

Publications (2)

Publication Number Publication Date
CN113094876A CN113094876A (zh) 2021-07-09
CN113094876B true CN113094876B (zh) 2022-04-22

Family

ID=76668093

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110281933.2A Active CN113094876B (zh) 2021-03-16 2021-03-16 未来情景下基于arima模型的水库防洪风险计算方法和系统

Country Status (1)

Country Link
CN (1) CN113094876B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108764515A (zh) * 2018-04-04 2018-11-06 河海大学 一种耦合数值气象水文集合预报的水库调度风险决策方法
CN112036683A (zh) * 2020-07-14 2020-12-04 中国电建集团华东勘测设计研究院有限公司 一种适用于未来气候变化情景下的水库防洪风险预估方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108764515A (zh) * 2018-04-04 2018-11-06 河海大学 一种耦合数值气象水文集合预报的水库调度风险决策方法
CN112036683A (zh) * 2020-07-14 2020-12-04 中国电建集团华东勘测设计研究院有限公司 一种适用于未来气候变化情景下的水库防洪风险预估方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《时间序列模型在水文预报中的应用》;刘清华;《湖南水利水电》;20070331;第42,67页 *
《未来气候情景下雅砻江流域径流响应研究》;袁奥宇;《中国优秀博硕士学位论文全文数据库(硕士)基础科学辑》;20200315;第6-7,19-21,34-35,61-64页 *

Also Published As

Publication number Publication date
CN113094876A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
CN111310968B (zh) 一种基于互信息的lstm神经网络循环水文预报方法
CN102289570B (zh) 基于降雨-径流-洪水演进计算的洪水预报方法
CN110598290B (zh) 考虑气候变化的流域未来水电发电能力预测方法和系统
CN107292098A (zh) 基于前期气象因子与数据挖掘技术的中长期径流预报方法
CN108764515A (zh) 一种耦合数值气象水文集合预报的水库调度风险决策方法
Georgakakos et al. On improved hydrologic forecasting—Results from a WMO real-time forecasting experiment
Niroomandi et al. Extreme value analysis of wave climate in Chesapeake Bay
Gragne et al. Improving real-time inflow forecasting into hydropower reservoirs through a complementary modelling framework
CN112036683B (zh) 一种适用于未来气候变化情景下的水库防洪风险预估方法
Herath et al. Evaluation of HEC-HMS model for water resources management in Maha Oya Basin in Sri Lanka
CN113435630B (zh) 一种产流模式自适应的流域水文预报方法及系统
CN117172037B (zh) 一种分布式水文预报方法、装置、计算机设备及介质
Gouvas et al. The relationship between altitude of meteorological stations and average monthly and annual precipitation
Yurekli et al. Regional daily maximum rainfall estimation for Cekerek Watershed by L‐moments
CN108595814A (zh) 一种基于天时间尺度的降水发生器
CN117648878A (zh) 一种基于1d-cnn算法的洪水快速演进及淹没模拟方法
CN113094876B (zh) 未来情景下基于arima模型的水库防洪风险计算方法和系统
CN116976227A (zh) 一种基于lstm机器学习的风暴增水预报方法及系统
Gao et al. A framework for automatic calibration of SWMM considering input uncertainty
CN114819322B (zh) 湖泊入湖流量的预报方法
CN115034159A (zh) 一种海上风电场的功率预测方法、装置、存储介质及系统
CN109870146B (zh) 一种气候变化情景下的洪水频率计算方法和装置
Neykov et al. Linking atmospheric circulation to daily precipitation patterns over the territory of Bulgaria
Goodarzi et al. Assessment of climate change using SDSM downscaling Model (A case study: West of Iran)
CN117350180B (zh) 一种复杂工况下洪水快速预测模型集合构建方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant