CN113088942A - 一种手术电极用WS2掺杂Ni-P-PTFE医用复合涂层及其制备方法 - Google Patents

一种手术电极用WS2掺杂Ni-P-PTFE医用复合涂层及其制备方法 Download PDF

Info

Publication number
CN113088942A
CN113088942A CN202110396506.9A CN202110396506A CN113088942A CN 113088942 A CN113088942 A CN 113088942A CN 202110396506 A CN202110396506 A CN 202110396506A CN 113088942 A CN113088942 A CN 113088942A
Authority
CN
China
Prior art keywords
ptfe
substrate
composite coating
layer
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110396506.9A
Other languages
English (en)
Inventor
李伟
邵国森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Ruili Medical Instrument Co ltd
Original Assignee
Shanghai Ruili Medical Instrument Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Ruili Medical Instrument Co ltd filed Critical Shanghai Ruili Medical Instrument Co ltd
Publication of CN113088942A publication Critical patent/CN113088942A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/082Inorganic materials
    • A61L31/088Other specific inorganic materials not covered by A61L31/084 or A61L31/086
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/02Methods for coating medical devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/06Coatings containing a mixture of two or more compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vascular Medicine (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

一种手术电极用WS2掺杂Ni‑P‑PTFE医用复合涂层及其制备方法,制备步骤为:1)将基体放入丙酮中,采用超声波清洗;2)先采用化学法对基体进行除油,然后再利用盐酸溶液进行酸洗活化;3)通过化学镀在基材上镀一层Ni‑P,作为过渡层;4)通过化学镀在Ni‑P层上镀Ni‑P‑WS2‑PTFE层。该医用复合涂层主要应用于手术电极,能够耐磨减磨,有低摩擦系数的同时起到抗粘连的作用,以此提高手术电极的切割效率与操作精度。

Description

一种手术电极用WS2掺杂Ni-P-PTFE医用复合涂层及其制备 方法
技术领域
本发明属于材料学领域,涉及一种硬质保护涂层,具体来说是一种手术电极用低摩擦、抗粘连WS2掺杂Ni-P-PTFE医用复合涂层及其制备方法。
背景技术
随着社会的进步和科技的发展,人们越来越重视医疗领域的发展前景,在各种医疗手术中,手术刀是必不可少的一项工具。由于时代的进步与技术的发展,高频手术电刀与电凝的出现,大大减少了手术时的大量出血,提高了手术的切割效率。
高频手术电刀在工作时,高频电流通过电极与肌体接触,对组织进行加热,分离和凝固,从而达到止血的目的。可是手术电刀电极表面同时也会产生组织粘附,增加电极与组织之间的摩擦因数,从而降低电刀的切割效率和操作精度。因此为了保证手术电刀工作时,电极表面有着抗粘连以及较低的摩擦,人们通过对电极表面处理来解决这些问题。
众多学者研究表明,Ni-P-PTFE复合涂层摩擦系数较低,具有优秀的润滑减摩性能。同时据大量期刊文献报道,纳米WS2粒子以较低的摩擦系数,抗咬合性而被广泛应用于干摩擦润滑领域,当其复合进入Ni-P基质合金,亦能明显降低Ni-P涂层的摩擦系数。但是此前关于WS2,PTFE双润滑粒子组合掺杂对Ni-P涂层润滑性影响的相关研究极少,在医疗器械领域的应用也极少,本发明提供了一种手术电极用低摩擦、抗粘连WS2掺杂Ni-P-PTFE医用复合涂层及其制备方法,可制备出低摩擦,抗粘连的手术电极用医用复合涂层,同时本发明的方法工艺简单、成本低、沉积速度快、所得Ni-P-WS2-PTFE复合涂层结合强度好,对扩大Ni-P-PTFE涂层在医疗器械领域中的应用具有重要意义。
发明内容
针对现有技术中的上述技术问题,本发明提供了一种手术电极用低摩擦、抗粘连WS2掺杂Ni-P-PTFE医用复合涂层及其制备方法,所述的WS2掺杂Ni-P-PTFE医用复合涂层能够解决现有技术中在医用环境下低摩擦、耐腐蚀和抗粘连的技术问题。
根据本发明的第一方面,提供一种手术电极用低摩擦、抗粘连WS2掺杂Ni-P-PTFE医用复合涂层及其制备方法,其特征在于,所述复合涂层包括形成在基体上的Ni-P过渡层和Ni-P-WS2-PTFE表面层,所述基体为手术用电刀与双极电凝。
具体情况下,所述Ni-P过渡层和所述Ni-P-WS2-PTFE表面层分别通过化学镀工艺沉积而成。
根据本发明的第二方面,还提供上述WS2掺杂Ni-P-PTFE医用复合涂层的制备方法,其特征在于,包括如下步骤:
1)将基体放入丙酮中,采用超声波清洗;
2)采用化学法对基体进行除油,然后再利用盐酸溶液进行酸洗活化;
3)通过化学镀在基体上镀一层Ni-P,作为过渡层;
4)通过化学镀在Ni-P层上镀Ni-P-WS2-PTFE层。
具体情况下,步骤1)中,采用丙酮对基体表面进行超声波清洗;即将基体放入含有丙酮溶液的容器中,浸没,再将容器放置于超声波清洗仪中,功率设置为90W,时间设置为30min,对基材有机除油,获得洁净的基体表面。
具体情况下,步骤2)中,化学除油所需的溶液中含有NaOH、Na2CO3、Na3PO4,在所述的溶液中,NaOH的浓度为20g/L,Na2CO3的浓度为30g/L,Na3PO4的浓度为30g/L,溶液加热到70-80℃,然后将基体加入到除油溶液中,除油时间为10-15min,从而使得基体表面的油污被除尽。
具体情况下,步骤2)中,盐酸溶液的体积分数为40-60%,将经过除油的基体浸泡盐酸溶液中进行酸洗活化,溶液温度为常温,浸泡时间为3-5min,使得基体表面的氧化层被除去,得到完全暴露的基材,让基体的表面活性大大增强,利于接下来Ni-P层的沉积。
优选情况下,步骤3)中,Ni-P镀液的pH值是4.8,施镀温度为90℃,沉积时间为20min。
优选情况下,步骤4)中,化学镀Ni-P-WS2-PTFE镀液中的WS2浓度为4.0g/L,PTFE浓度为50ml/L,pH值是4.8,温度为85℃,沉积时间为15min。镀液中添加的WS2优选采用粒径为1μm以下,更优选情况下,采用粒径为100-300nm的WS2,从而为涂层带来纳米尺度效应。
本发明的一种手术电极用低摩擦、抗粘连WS2掺杂Ni-P-PTFE医用复合涂层及其制备方法,是根据化学镀Ni-P-WS2-PTFE复合涂层过程中,镀液中WS2含量随该复合镀液中WS2粒子浓度的增加呈先增加后下降的趋势。镀液中WS2浓度为4.0g/L时,该掺杂量下所得复合涂层WS2粒子含量达极大值。涂层中PTFE含量随着镀液中WS2浓度的增加而一直下降,且涂层中P元素的含量随WS2粒子掺杂量的增加而先下降后增加,以上元素含量均在WS2粒子浓度为4.0g/L时达到最值。同时在化学镀过程中,随复合镀液中WS2粒子掺杂量的增加,复合涂层的Ni(111)衍射峰的强度随之先增加后降低;WS2、PTFE颗粒在涂层中的复合量和分布情况与WS2掺杂量密切相关,当WS2浓度为4.0g/L时,WS2粒子复合量达最大值,且分布最为均匀。在化学镀Ni-P-WS2-PTFE复合涂层过程中,随镀液中WS2粒子掺杂量的增加,涂层的耐磨性随之先增加后下降,在WS2掺杂量为4.0g/L时达到最值;而其摩擦系数随之增加而先下降后增加。
本发明和已有技术相比,其技术进步是显著的。本发明通过在Ni-P-PTFE医用复合涂层中掺杂WS2,对WS2的浓度以及制备工艺参数进行优化,制备出具有低摩擦、优良耐磨性、抗粘连的Ni-P-PTFE医用复合涂层,且将其应用于手术电极上,从而降低手术电极的摩擦系数,提高手术电极的抗组织粘连,以此获得更好的切割效率和操作精度。
附图说明
图1是实施例1-7在化学镀过程中Ni-P-WS2-PTFE镀液中WS2的浓度分别为0.0g/L、1.0g/L、2.0g/L、3.0g/L、4.0g/L、5.0g/L和6.0g/L时所得到相对应的Ni-P-WS2-PTFE复合涂层的成分;
图2是实施例1-7在化学镀过程中Ni-P-WS2-PTFE镀液中WS2的浓度分别为0.0g/L、1.0g/L、2.0g/L、3.0g/L、4.0g/L、5.0g/L和6.0g/L时所得到相对应的Ni-P-WS2-PTFE复合涂层的XRD谱图;
图3a是化学镀过程中Ni-P-WS2-PTFE镀液中WS2的浓度为0.0g/L时,所得的化学镀Ni-P-WS2-PTFE复合涂层SEM图;
图3b是化学镀过程中Ni-P-WS2-PTFE镀液中WS2的浓度为1.0g/L时,所得的化学镀Ni-P-WS2-PTFE复合涂层SEM图;
图3c是化学镀过程中Ni-P-WS2-PTFE镀液中WS2的浓度为2.0g/L时,所得的化学镀Ni-P-WS2-PTFE复合涂层SEM图;
图3d是化学镀过程中Ni-P-WS2-PTFE镀液中WS2的浓度为3.0g/L时,所得的化学镀Ni-P-WS2-PTFE复合涂层SEM图;
图3e是化学镀过程中Ni-P-WS2-PTFE镀液中WS2的浓度为4.0g/L时,所得的化学镀Ni-P-WS2-PTFE复合涂层SEM图;
图3f是化学镀过程中Ni-P-WS2-PTFE镀液中WS2的浓度为5.0g/L时,所得的化学镀Ni-P-WS2-PTFE复合涂层SEM图;
图3g是化学镀过程中Ni-P-WS2-PTFE镀液中WS2的浓度为6.0g/L时,所得的化学镀Ni-P-WS2-PTFE复合涂层SEM图;
图4是实施例1-7化学镀过程中Ni-P-WS2-PTFEE镀液中WS2的浓度分别为0.0g/L、1.0g/L、2.0g/L、3.0g/L、4.0g/L、5.0g/L和6.0g/L时所得到相对应的Ni-P-WS2-PTFE复合涂层的硬度和摩擦系数曲线图;
图5是实施例1-7化学镀过程中Ni-P-WS2-PTFE镀液中WS2的浓度分别为0.0g/L、1.0g/L、2.0g/L、3.0g/L、4.0g/L、5.0g/L和6.0g/L时所得到相对应的Ni-P-WS2-PTFE复合涂层在运行载荷为30N,运行时间10min的磨损失重曲线图;
具体实施方式
下面通过具体实施例和附图对本发明作进一步的详细说明,但并不限制本发明。除特殊说明外,各具体实施例中所用试剂均为商业可获得,所用操作条件为现有技术中的常用条件。
本发明所用的制备、表征和测量仪器:
本发明的各实施例中所得的Ni-P-WS2-PTFE复合涂层采用Bruker公司的D8ADVANCE型X射线衍射(XRD)仪分析薄膜的晶相结构;
采用附带有能谱仪(EDS)的QuantaFEG450型场发射环境扫描电子显微镜(美国FEI公司)分析Ni-P-WS2-PTFE复合涂层的成分及微观形貌;
采用美国Agilent公司生产NANO Indenter G200型纳米压痕仪测量Ni-P-WS2-PTFE复合涂层的硬度;
采用兰州中科华凯科技有限公司的HSR-2M往复摩擦磨损仪测量复合涂层的摩擦系数及磨损失重量。
实施例1
一种手术电极用低摩擦、抗粘连WS2掺杂Ni-P-PTFE医用复合涂层及其制备方法,其制备过程包括如下步骤:
(1)将基体放入转装有100mL丙酮的烧杯中,采用超声波清洗10min,功率设置为90W;
(2)接着采用化学法对基体进行除油,除油温度为70-80℃,时间为10-15min,再利用体积分数40-60%的盐酸对基材进行酸洗活化3-5min;
(3)利用化学镀在基体上镀上Ni-P层,作为过渡层,镀液温度为90℃,化学镀过程中镀液的pH值控制在4.8;
(4)接着在Ni-P层上镀Ni-P-PTFE层,镀液温度为80℃,化学镀过程中镀液的pH值控制在4.8。
在上述的化学镀过程中,控制Ni-P镀液温度为90℃,pH值为4.8,施镀20min得到Ni-P层;控制Ni-P-PTFE镀液温度为80℃,pH值为4.8,在Ni-P层上继续施镀15min得到Ni-P-PTFE层,完成后得到Ni-P-PTFE复合涂层。包括基体、Ni-P层和Ni-P-PTFE复合涂层,其自下而上依次为基体、Ni-P层和Ni-P-PTFE复合涂层。
实施例2
一种在基体上化学镀Ni-P、Ni-P-WS2-PTFE复合涂层的制备方法,只是制备过程的步骤(4)中化学镀过程中Ni-P-PTFE镀液中加入WS2粒子,WS2的浓度为1.0g/L,镀液温度为85℃,化学镀过程中镀液的pH值控制在4.8。
其它同实施例1。
实施例3
一种在基体上化学镀Ni-P、Ni-P-WS2-PTFE复合涂层的制备方法,只是制备过程的步骤(3)中化学镀过程中Ni-P-PTFE镀液中加入WS2粒子,WS2的浓度为2.0g/L,镀液温度为85℃,化学镀过程中镀液的pH值控制在4.8。
其它同实施例1。
实施例4
一种在基体上化学镀Ni-P、Ni-P-WS2-PTFE复合涂层的制备方法,只是制备过程的步骤(3)中化学镀过程中Ni-P-PTFE镀液中加入WS2粒子,WS2的浓度为3.0g/L,镀液温度为85℃,化学镀过程中镀液的pH值控制在4.8。
其它同实施例1。
实施例5
一种在基体上化学镀Ni-P、Ni-P-WS2-PTFE复合涂层的制备方法,只是制备过程的步骤(3)中化学镀过程中Ni-P-PTFE镀液中加入WS2粒子,WS2的浓度为4.0g/L,镀液温度为85℃,化学镀过程中镀液的pH值控制在4.8。
其它同实施例1。
实施例6
一种在基体上化学镀Ni-P、Ni-P-WS2-PTFE复合涂层的制备方法,只是制备过程的步骤(3)中化学镀过程中Ni-P-PTFE镀液中加入WS2粒子,WS2的浓度为5.0g/L,镀液温度为85℃,化学镀过程中镀液的pH值控制在4.8。
其它同实施例1。
实施例7
一种在基体上化学镀Ni-P、Ni-P-WS2-PTFE复合涂层的制备方法,只是制备过程的步骤(3)中化学镀过程中Ni-P-PTFE镀液中加入WS2粒子,WS2的浓度为6.0g/L,镀液温度为85℃,化学镀过程中镀液的pH值控制在4.8。
其它同实施例1。
分别对实施例1-7即化学镀过程中,即Ni-P-WS2-PTFE镀液中WS2的浓度分别为0.0g/L、1.0g/L、2.0g/L、3.0g/L、4.0g/L、5.0g/L和6.0g/L时所得到相对应的Ni-P-WS2-PTFE复合涂层的成分进行测定,结果如图1所示。从图1可以看出,复合涂层中W(代表WS2)含量随化学镀Ni-P-PTFE复合镀液中WS2浓度的增加呈先增加后下降的趋势。镀液中WS2浓度在0-4.0g/L之间时,所得复合涂层中W的含量随着镀液中WS2浓度的增加而增加,当复合镀液中WS2粒子浓度为4.0g/L时,此浓度下所得复合涂层中WS2粒子含量达最大值。复合涂层中F(代表PTFE)含量变化亦如图1所示,易知涂层中F含量随复合镀液中WS2浓度的增加呈一直下降的趋势。此外,由图1还可知,涂层中P元素含量呈先下降后增加的趋势。
分别对实施例1-7即化学镀过程中,即Ni-P-WS2-PTFE镀液中WS2的浓度分别为0.0g/L、1.0g/L、2.0g/L、3.0g/L、4.0g/L、5.0g/L和6.0g/L时所得到相对应的Ni-P-WS2-PTFE复合涂层的XRD图谱进行测定,结果如图2所示。从图2可以看出,不同WS2掺杂量下所得复合涂层的X射线衍射图谱形状基本相同,所有掺杂量下所得复合涂层均在2θ=45°附近出现馒头包状Ni(111)晶面的衍射峰;除WS2掺杂量为5.0、6.0g/L以外,其余掺杂量下所得涂层均在2θ=18.4°的位置出现PTFE的衍射峰。各掺杂量下所得Ni-P-WS2-PTFE复合涂层的PTFE衍射峰强度随WS2粒子浓度提高几乎不发生变化;Ni(111)衍射峰的强度随着镀液中WS2粒子浓度增加呈先增加后下降的趋势,当复合镀液中WS2粒子浓度为4.0g/L时,Ni(111)衍射峰的强度达最大值。
分别对实施例1-7即化学镀过程中,即Ni-P-WS2-PTFE镀液中WS2的浓度分别为0.0g/L、1.0g/L、2.0g/L、3.0g/L、4.0g/L、5.0g/L和6.0g/L时所得到相对应的Ni-P-WS2-PTFE复合涂层的硬度与摩擦系数进行测定,结果如图4所示。当复合镀液中WS2粒子浓度在0-4.0g/L之间时,该系列复合涂层的硬度和摩擦系数变化不大;当镀液中WS2粒子浓度进一步增加时,镀液稳定性较低,此时复合进入涂层中WS2、PTFE复合粒子明显减少,因此,在此掺杂量范围内所得涂层硬度值随之大幅增加。
分别对实施例1-7即化学镀过程中,即Ni-P-WS2-PTFE镀液中WS2的浓度分别为0.0g/L、1.0g/L、2.0g/L、3.0g/L、4.0g/L、5.0g/L和6.0g/L时所得到相对应的Ni-P-WS2-PTFE复合涂层的涂层耐摩性进行测定,由图5可知,该浓度梯度下所得复合涂层的耐磨性随镀液中WS2粒子浓度增加呈先增加后降低的趋势,当镀液中WS2粒子浓度为4.0g/L时,所得复合涂层呈现最优异的耐磨性。
由以上实例,实现了通过控制Ni-P-WS2-PTFE镀液中WS2的浓度,最终获得WS2含量不同的Ni-P-WS2-PTFE复合涂层,通过对比不同WS2浓度掺杂对化学镀Ni-P-PTFE复合涂层的微观结构和力学性能的影响,明确了Ni-P-PTFE复合涂层的最优掺杂量为4.0g/L。在此掺杂量下制备的Ni-P-WS2-PTFE复合涂层结构致密,涂层硬度较高,且摩擦系数此时仍保持在较低水平,相对Ni-P-PTFE复合涂层其的耐磨性得到显著提升。

Claims (6)

1.一种手术电极用WS2掺杂Ni-P-PTFE医用复合涂层及其制备方法,其特征在于,所述复合涂层包括形成在基体上的Ni-P过渡层和Ni-P-WS2-PTFE表面层,所述基体为手术用电刀与双极电凝。
2.如权利要求1所述的WS2掺杂Ni-P-PTFE医用复合涂层,其特征在于,所述Ni-P过渡层和所述Ni-P-WS2-PTFE表面层分别通过化学镀工艺沉积而成。
3.如权利要求1-2之一所述的WS2掺杂Ni-P-PTFE医用复合涂层的制备方法,其特征在于,包括如下步骤:
1)将基体放入丙酮中,采用超声波清洗;
2)采用化学法对基体进行除油,然后再利用盐酸溶液进行酸洗活化;
3)通过化学镀在基体上镀一层Ni-P,作为过渡层;
4)通过化学镀在Ni-P层上镀Ni-P-WS2-PTFE层。
4.如权利要求3所述的WS2掺杂Ni-P-PTFE医用复合涂层的制备方法,其特征在于:步骤1)中,采用丙酮对基体表面进行超声波清洗;即将基体放入含有丙酮溶液的容器中,浸没,再将容器放置于超声波清洗仪中,功率设置为90W,时间设置为30min,对基材有机除油,获得洁净的基体表面。
5.如权利要求3所述的WS2掺杂Ni-P-PTFE医用复合涂层的制备方法,其特征在于:步骤2)中,化学除油所需的溶液中含有NaOH、Na2CO3、Na3PO4,在所述的溶液中,NaOH的浓度为20g/L,Na2CO3的浓度为30g/L,Na3PO4的浓度为30g/L,溶液加热到70-80℃,然后将基体加入到除油溶液中,除油时间为10-15min,从而使得基体表面的油污被除尽。
6.如权利要求3所述的WS2掺杂Ni-P-PTFE医用复合涂层的制备方法,其特征在于:步骤2)中,盐酸溶液的体积分数为40-60%,将经过除油的基体浸泡盐酸溶液中进行酸洗活化,溶液温度为常温,浸泡时间为3-5min,使得基体表面的氧化层被除去,得到完全暴露的基材。
CN202110396506.9A 2020-12-28 2021-04-13 一种手术电极用WS2掺杂Ni-P-PTFE医用复合涂层及其制备方法 Pending CN113088942A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2020115801845 2020-12-28
CN202011580184 2020-12-28

Publications (1)

Publication Number Publication Date
CN113088942A true CN113088942A (zh) 2021-07-09

Family

ID=76676929

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110396506.9A Pending CN113088942A (zh) 2020-12-28 2021-04-13 一种手术电极用WS2掺杂Ni-P-PTFE医用复合涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN113088942A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070217822A1 (en) * 2006-03-20 2007-09-20 Sharp Kabushiki Kaisha Charging apparatus and image forming apparatus
CN102836996A (zh) * 2012-07-13 2012-12-26 苏州大学 一种固体润滑高温耐磨粉末组合物及其复合涂层制备方法
CN110075368A (zh) * 2019-05-09 2019-08-02 简勇辉 一种电刀表面防粘粘膜层的制备方法
CN111748807A (zh) * 2020-07-06 2020-10-09 珠海格力电器股份有限公司 耐磨润滑复合涂层及顶箔基材及顶箔基材的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070217822A1 (en) * 2006-03-20 2007-09-20 Sharp Kabushiki Kaisha Charging apparatus and image forming apparatus
CN102836996A (zh) * 2012-07-13 2012-12-26 苏州大学 一种固体润滑高温耐磨粉末组合物及其复合涂层制备方法
CN110075368A (zh) * 2019-05-09 2019-08-02 简勇辉 一种电刀表面防粘粘膜层的制备方法
CN111748807A (zh) * 2020-07-06 2020-10-09 珠海格力电器股份有限公司 耐磨润滑复合涂层及顶箔基材及顶箔基材的制备方法

Similar Documents

Publication Publication Date Title
Zhang et al. Influence of graphene oxide on the antiwear and antifriction performance of MAO coating fabricated on MgLi alloy
Khiabani et al. Electrophoretic deposition of graphene oxide on plasma electrolytic oxidized-magnesium implants for bone tissue engineering applications
Wu et al. Characterization of carburized layer on T8 steel fabricated by cathodic plasma electrolysis
Yin et al. The process of electroplating with Cu on the surface of Mg–Li alloy
Li et al. Ni-W/BN (h) electrodeposited nanocomposite coating with functionally graded microstructure
Weicheng et al. Electrochemical performance and corrosion mechanism of Cr–DLC coating on nitrided Ti6Al4V alloy by magnetron sputtering
Gu et al. Corrosion behavior and mechanism of MAO coated Ti6Al4V with a grain-fined surface layer
Qin et al. Adaptive-lubricating PEO/Ag/MoS2 multilayered coatings for Ti6Al4V alloy at elevated temperature
CN113509054A (zh) 烹饪器具及其制备方法
Shen et al. The corrosion behavior of Zn/graphene oxide composite coatings fabricated by direct current electrodeposition
CN108187990A (zh) 含有石墨烯/二硫化钼的钛及钛合金表面自润滑耐磨涂层的制备方法
CN107937955A (zh) 一种提高干摩擦条件下铝合金表面耐磨性的方法
Wei et al. Corrosion and wear resistance of AZ31 Mg alloy treated by duplex process of magnetron sputtering and plasma electrolytic oxidation
Gu et al. Microstructure and corrosion model of MAO coating on nano grained AA2024 pretreated by ultrasonic cold forging technology
Zhao et al. Multi-arc ion plating and DC magnetron sputtering integrated technique for high-performance Al, C-co-doped δ-TiN quaternary films
Mahajan et al. Potential of electrical discharge treatment to enhance the in vitro cytocompatibility and tribological performance of Co–Cr implant
CN113599580A (zh) 一种抗粘附防胰瘘的高频电刀手术电极及制备工艺
Kong et al. Effect of MoS2 content on friction and wear properties of Mo and S co-doped CrN coatings at 25–600° C
Xiong et al. The effects of Cr2O3 particles on the microstructure and wear-resistant properties of electrodeposited CoNiP coatings
Li et al. Characterization and electrochemical behavior of a multilayer-structured Ti–N layer produced by plasma nitriding of electron beam melting TC4 alloy in Hank's solution
CN113088942A (zh) 一种手术电极用WS2掺杂Ni-P-PTFE医用复合涂层及其制备方法
CN113122831A (zh) 一种手术电极用Al2O3掺杂Ni-P-PTFE医用复合涂层及其制备方法
Padmavathy et al. Structural and electrochemical impedance spectroscopic studies on reactive magnetron sputtered titanium oxynitride (TiON) thin films
CN106119814A (zh) 一种在黄铜上化学镀Ni‑P、Ni‑P‑PTFE复合涂层的表面自润滑技术
Gao et al. Wear, corrosion, and biocompatibility of 316L stainless steel modified by well-adhered Ta coatings

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210709