CN113078832A - 速调管用高压脉冲调制电源、速调管系统 - Google Patents

速调管用高压脉冲调制电源、速调管系统 Download PDF

Info

Publication number
CN113078832A
CN113078832A CN202110371458.8A CN202110371458A CN113078832A CN 113078832 A CN113078832 A CN 113078832A CN 202110371458 A CN202110371458 A CN 202110371458A CN 113078832 A CN113078832 A CN 113078832A
Authority
CN
China
Prior art keywords
pulse
solid
klystron
module
energy storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110371458.8A
Other languages
English (en)
Inventor
王雨琛
马东
陈俊峰
徐墨尘
王磊
黄军
周罗增
苗伟童
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Space Power Sources
Original Assignee
Shanghai Institute of Space Power Sources
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Space Power Sources filed Critical Shanghai Institute of Space Power Sources
Priority to CN202110371458.8A priority Critical patent/CN113078832A/zh
Publication of CN113078832A publication Critical patent/CN113078832A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/34Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/02Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
    • H01J25/10Klystrons, i.e. tubes having two or more resonators, without reflection of the electron stream, and in which the stream is modulated mainly by velocity in the zone of the input resonator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2223/00Details of transit-time tubes of the types covered by group H01J2225/00
    • H01J2223/34Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2225/00Transit-time tubes, e.g. Klystrons, travelling-wave tubes, magnetrons
    • H01J2225/02Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
    • H01J2225/10Klystrons, i.e. tubes having two or more resonators, without reflection of the electron stream, and in which the stream is modulated mainly by velocity in the zone of the input resonator

Abstract

本发明提供了一种速调管用高压脉冲调制电源,包括:依次连接的整流模块、移相全桥电路、储能模块、固态调制模块和泵升脉冲变压器,以及分别与移相全桥电路、储能模块和固态调制模块相连的控制回路;整流模块用于进行交流‑直流转换;移相全桥电路用于接收直流信号并进行升压处理;储能模块用于充电储能;固态调制模块用于当高压直流信号达到一设定电压值时,使得储能模块与泵升脉冲变压器和泵升脉冲变压器连接的负载构成放电回路;控制回路用于控制逻辑工作时序,并使固态调制模块产生脉冲调制信号,输出给泵升脉冲变压器;泵升脉冲变压器放大脉冲调制信号,并输出给负载。该调制电源体积小,并能够解决兆瓦级大功率脉冲速调管的供电问题。

Description

速调管用高压脉冲调制电源、速调管系统
技术领域
本发明涉及高功率微波技术领域,特别涉及一种速调管用高压脉冲调制电源、速调管系统。
背景技术
速调管是利用周期性调制电子注速度来实现振荡或放大的一种微波电子管。它首先在输入腔中对电子注进行速度调制,经漂移后转变为密度调制,然后群聚的电子块与输出腔缝隙的微波场交换能量,电子将动能交给微波场,完成振荡或放大。
微波设备性能的优劣不仅由其中的速调管性能决定,还由微波电源系统等因素决定。微波电源系统一般包括阴极高压电源、灯丝电源、磁场电源。微波设备工作时要求稳定度高、噪声小和频谱特性好。考虑到速调管的性能和工作情况,因而要求速调管供电电源体积小、纹波小、稳定性好。
高压脉冲电源作为速调管供电电源,是微波电源系统最为重要的部件,其性能参数对于整个系统有重大影响。高压脉冲电源的稳定性决定了微波输出的稳定性,如果其脉间稳定度偏低,那么对应的微波功率源便不可能稳定。高压脉冲电源作为速调管能量供应者其作用犹如人的心脏。
在脉冲功率技术领域,高压脉冲电源已有了一定的进展,但主开关器件仍采用氢闸流管,虽电压和电流耐受值上较大,但体积和重量却难以减小,不利于实际应用,制约高压脉冲电源的进一步发展。
因此,有必要提供一种体积较小,功率较大的脉冲电源给速调管供电。
发明内容
本发明提供了一种速调管用高压脉冲调制电源,该调制电源体积小,并能够解决兆瓦级大功率脉冲速调管的供电问题。
为实现上述目的和其他相关目的,本发明提供了一种速调管用高压脉冲调制电源,包括:依次连接的整流模块、移相全桥电路、储能模块、固态调制模块和泵升脉冲变压器,以及分别与所述移相全桥电路、储能模块和固态调制模块相连的控制回路;
所述整流模块的输入端用于接入交流信号,并进行交流-直流转换,将所述交流信号转换成直流信号,并由输出端输出;
所述移相全桥电路用于接收所述直流信号并进行升压处理,输出高压直流信号;
所述储能模块用于接收所述高压直流信号并进行充电储能;
所述固态调制模块用于接收所述高压直流信号,并当所述高压直流信号达到一设定电压值时,所述固态调制模块导通,使得所述储能模块与所述泵升脉冲变压器和所述泵升脉冲变压器连接的负载构成放电回路;
所述控制回路用于控制所述移相全桥电路、所述储能模块和所述固态调制模块的逻辑工作时序,并使所述固态调制模块产生脉冲调制信号,输出给所述泵升脉冲变压器;
所述泵升脉冲变压器用于放大所述脉冲调制信号,并输出给所述负载。
优选地,所述整流模块包括EMI滤波器和维也纳整流器,所述维也纳整流器的输入端接入交流信号。
优选地,所述维也纳整流器的输入端的L1引脚、L2引脚、L3引脚和N引脚分别对应接入火线A、火线B、火线C和零线信号。
优选地,所述移相全桥电路包括依次连接的全桥逆变器、高频变压器和全桥整流单元。
优选地,所述固态调制模块包括:脉冲同步器、以及若干组与所述脉冲同步器相连的全固态开关单元,每一组所述全固态开关单元包括依次连接的光电隔离板、固态开关和驱动电路,并且每一组所述全固态开关单元与所述储能模块的一个储能电容相连。
优选地,所述高压直流信号达到所述设定电压值后,经所述脉冲同步器处理后,通过所述光电隔离板提高抗干扰后得到光电隔离信号,所述光电隔离信号经所述驱动电路进行放大处理,以驱动所有固态开关同时导通或关闭,将所述储能模块的所有储能电容所存储的能量以脉冲放电方式传递给所述泵升脉冲变压器。
优选地,所述高压直流信号的所述设定电压值为2KV。
优选地,所述固态开关为金氧半场效晶体管MOSFET。
基于同一发明构思,本发明还提供了一种速调管系统,包括:如上述的速调管用高压脉冲调制电源和速调管负载,所述速调管负载连接所述泵升脉冲变压器,所述速调管负载用于根据所述脉冲调制信号产生传递信息的微波。
本发明中针对负载速调管万伏级和兆瓦级供电需求,规划基于固态调制模块的两级架构。前级为充电电源,以移相全桥式恒流充电电路为主拓扑;后级主要由储能模块、固态调制模块和泵升脉冲变压器组成。前级提供千伏级输出电压给后级储能模块充电,之后通过后级高压高变比的泵升脉冲变压器变换后,输出满足负载要求的万伏级脉冲电压波形,实现了速调管万伏级和兆瓦级供电需求,并且该调制电源去除了体积、重量庞大的工频元件,减小体积,采用各种抗干扰措施,优化充电模式,改进电路参数,从而带来高稳定度输出;进一步地,前级可在恒流模式下向储能模块充电,可充分应对速调管打火或跳模等复杂工况,大大提高微波设备的安全性;最后,所述的速调管用高压脉冲调制电源的调制部分采用多路固态MOSFET并联结构,可以满足速调管打火或短路故障时产生万安级电流的短路保护需求。
附图说明
图1为本发明一实施例提供的速调管用高压脉冲调制电源结构示意图;
图2为本发明一实施例提供的速调管用高压脉冲调制电源中移相全桥电路拓扑示意图;
图3为本发明一实施例提供的速调管用高压脉冲调制电源中固态调制模块和储能模块示意图。
具体实施方式
以下结合附图1-3和具体实施方式对本发明提出的速调管用高压脉冲调制电源和速调管系统作进一步详细说明。根据下面说明,本发明的优点和特征将更清楚。需要说明的是,附图采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施方式的目的。为了使本发明的目的、特征和优点能够更加明显易懂,请参阅附图。须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容能涵盖的范围内。
本发明的核心思想在于针对负载速调管万伏级和兆瓦级供电需求,规划基于固态调制模块的两级架构。前级为充电电源,以移相全桥式恒流充电电路为主拓扑;后级主要由储能模块、固态调制模块和泵升脉冲变压器组成。前级提供千伏级输出电压给后级储能模块充电,之后通过后级高压高变比的泵升脉冲变压器变换后,输出满足负载要求的万伏级脉冲电压波形,实现了速调管万伏级和兆瓦级供电需求,并且该调制电源去除了体积、重量庞大的工频元件,减小体积,采用各种抗干扰措施,优化充电模式,改进电路参数,从而带来高稳定度输出;进一步地,前级可在恒流模式下向储能模块充电,可充分应对速调管打火或跳模等复杂工况,大大提高微波设备的安全性;最后,所述的速调管用高压脉冲调制电源的调制部分采用多路固态MOSFET并联结构,可以满足速调管打火或短路故障时产生万安级电流的短路保护需求。
如图1所示,本发明一实施例提供了一种速调管用高压脉冲调制电源,包括:依次连接的整流模块100、移相全桥电路200、储能模块300、固态调制模块400和泵升脉冲变压器500,以及分别与所述移相全桥电路200、储能模块300和固态调制模块400连接的控制回路600。所述整流模块100的输入端用于接入交流信号,所述整流模块100对输入的所述交流信号进行交流-直流转换,将所述交流信号转换成直流信号,并从所述整流模块100的输出端输出;所述移相全桥电路200用于接收所述直流信号并进行升压处理,输出高压直流信号;所述储能模块300用于接收所述高压直流信号并进行充电储能;所述固态调制模块400具有导通-闭合功能,所述固态调制模块400用于接收所述高压直流信号,并当所述高压直流信号达到一设定电压值时,所述固态调制模块400导通,所述固态调制模块400导通时,所述储能模块300与所述泵升脉冲变压器500和所述泵升脉冲变压器500连接的负载构成放电回路;所述控制回路600用于控制所述移相全桥电路200、所述储能模块300和所述固态调制模块400的逻辑工作时序,并使所述固态调制模块400产生脉冲调制信号,输出给所述泵升脉冲变压器500;所述泵升脉冲变压器500用于放大所述脉冲调制信号,并输出给所述负载。
所述整流模块100一般包括EMI滤波器和维也纳整流器,所述维也纳整流器的输入端接入交流信号,如图1所示,所述整流模块100可以通过所述维也纳整流器接通市电,所述维也纳整流器的输入端的L1引脚、L2引脚、L3引脚和N引脚分别对应接入火线A、火线B、火线C和零线信号。
如图2所示,所述移相全桥电路200一般包括依次连接的全桥逆变器201、高频变压器202和全桥整流单元203。具体实施的时候,市电可以经断路器后通过EMI滤波器、维也纳整流器,转换为直流信号输入。充电启动后,所述控制回路600输出驱动信号,经隔离变压器送到所述全桥逆变器201开关器件的栅极,在驱动信号的控制下,所述全桥逆变器201输出高频信号经次级四绕组的所述高频变压器202升压,再经所述全桥整流单元203整流后串联,得到高压直流信号。
如图3所示,所述固态调制模块400一般包括:脉冲同步器401、以及若干组与所述脉冲同步器401相连的全固态开关单元,每一组所述全固态开关单元包括依次连接的光电隔离板402、固态开关404和驱动电路403,并且所述储能模块300包括多个储能电容301,每一组所述全固态开关单元与所述储能模块300的一个所述储能电容301相连。
具体实施的时候,所述固态调制模块400工作时先低压上电,所述驱动电路403处于待机状态,所述控制回路600不发出开通信号,所述固态开关404关断。所述移相全桥电路200给多路全固态开关单元的所述储能电容301进行同时充电。图中全固态开关单元为六路,当然,本发明技术领域内的人员应该明白,并不局限于六路,应当是任意多路都可以。
充电完成后,所述控制回路600发出触发脉冲,经所述脉冲同步器401处理后,通过所述光电隔离板402提高抗干扰后得到光电隔离信号,所述光电隔离信号经所述驱动电路403进行放大处理,以驱动所有固态开关404同时导通或关闭,并且导通后将所述储能模块300的所有储能电容301所存储的能量以脉冲放电方式传递给所述泵升脉冲变压器500初级,经所述泵升脉冲变压器500升压后,在其输出端得到高压脉冲信号,用于提供给速调管负载产生传递信息的微波。
所述高压直流信号的设定值可以为2KV,所述固态开关404可以为金氧半场效晶体管MOSFET。
由此,本发明采用两级式电源结构,先通过前级移相全桥式恒流充电电源将市电变化为2KV直流电,向储能电容充电将电能储存起来。而后通过控制固态MOSFET开关的开通和关断进行放电,经泵升脉冲变压器二次升压后输出高压脉冲,可以满足输出电压68kV、输出电流260A兆瓦级速调管供电电源的供电需求。
作为本发明的同一发明构思,本实施例还提供了一种速调管系统,包括上述速调管用高压脉冲调制电源和速调管负载,所述速调管负载连接所述泵升脉冲变压器500,所述速调管负载用于根据所述脉冲调制信号产生传递信息的微波。
本发明的优点在于基于固态调制模块的两级架构。前级为充电电源,以移相全桥式恒流充电电路为主拓扑;后级主要由储能模块、固态调制模块和泵升脉冲变压器组成。前级提供千伏级输出电压给后级储能模块充电,之后通过后级高压高变比的泵升脉冲变压器变换后,输出满足负载要求的万伏级脉冲电压波形,实现了速调管万伏级和兆瓦级供电需求,并且去除体积、重量庞大的工频元件,减小体积,采用各种抗干扰措施,优化充电模式,改进电路参数,从而带来高稳定度输出。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (9)

1.一种速调管用高压脉冲调制电源,其特征在于,包括:依次连接的整流模块、移相全桥电路、储能模块、固态调制模块和泵升脉冲变压器,以及分别与所述移相全桥电路、储能模块和固态调制模块相连的控制回路;
所述整流模块的输入端用于接入交流信号,并进行交流-直流转换,将所述交流信号转换成直流信号,并由输出端输出;
所述移相全桥电路用于接收所述直流信号并进行升压处理,输出高压直流信号;
所述储能模块用于接收所述高压直流信号并进行充电储能;
所述固态调制模块用于接收所述高压直流信号,并当所述高压直流信号达到一设定电压值时,所述固态调制模块导通,使得所述储能模块与所述泵升脉冲变压器和所述泵升脉冲变压器连接的负载构成放电回路;
所述控制回路用于控制所述移相全桥电路、所述储能模块和所述固态调制模块的逻辑工作时序,并使所述固态调制模块产生脉冲调制信号,输出给所述泵升脉冲变压器;
所述泵升脉冲变压器用于放大所述脉冲调制信号,并输出给所述负载。
2.如权利要求1所述的速调管用高压脉冲调制电源,其特征在于,所述整流模块包括EMI滤波器和维也纳整流器,所述维也纳整流器的输入端接入交流信号。
3.如权利要求2所述的速调管用高压脉冲调制电源,其特征在于,所述维也纳整流器的输入端的L1引脚、L2引脚、L3引脚和N引脚分别对应接入火线A、火线B、火线C和零线信号。
4.如权利要求1所述的速调管用高压脉冲调制电源,其特征在于,所述移相全桥电路包括依次连接的全桥逆变器、高频变压器和全桥整流单元。
5.如权利要求1所述的速调管用高压脉冲调制电源,其特征在于,所述固态调制模块包括:脉冲同步器、以及若干组与所述脉冲同步器相连的全固态开关单元,每一组所述全固态开关单元包括依次连接的光电隔离板、固态开关和驱动电路,并且每一组所述全固态开关单元与所述储能模块的一个储能电容相连。
6.如权利要求5所述的速调管用高压脉冲调制电源,其特征在于,所述高压直流信号达到所述设定电压值后,经所述脉冲同步器处理后,通过所述光电隔离板提高抗干扰后得到光电隔离信号,所述光电隔离信号经所述驱动电路进行放大处理,以驱动所有固态开关同时导通或关闭,将所述储能模块的所有储能电容所存储的能量以脉冲放电方式传递给所述泵升脉冲变压器。
7.如权利要求6所述的速调管用高压脉冲调制电源,其特征在于,所述高压直流信号的所述设定电压值为2KV。
8.如权利要求6所述的速调管用高压脉冲调制电源,其特征在于,所述固态开关为金氧半场效晶体管MOSFET。
9.一种速调管系统,其特征在于,包括:如权利要求1-8任一项所述的速调管用高压脉冲调制电源和速调管负载,所述速调管负载连接所述泵升脉冲变压器,所述速调管负载用于根据所述脉冲调制信号产生传递信息的微波。
CN202110371458.8A 2021-04-07 2021-04-07 速调管用高压脉冲调制电源、速调管系统 Pending CN113078832A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110371458.8A CN113078832A (zh) 2021-04-07 2021-04-07 速调管用高压脉冲调制电源、速调管系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110371458.8A CN113078832A (zh) 2021-04-07 2021-04-07 速调管用高压脉冲调制电源、速调管系统

Publications (1)

Publication Number Publication Date
CN113078832A true CN113078832A (zh) 2021-07-06

Family

ID=76615229

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110371458.8A Pending CN113078832A (zh) 2021-04-07 2021-04-07 速调管用高压脉冲调制电源、速调管系统

Country Status (1)

Country Link
CN (1) CN113078832A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113922475A (zh) * 2021-09-10 2022-01-11 上海空间电源研究所 一种微秒级微波脉冲驱动电源及其工作方法
CN113992025A (zh) * 2021-10-28 2022-01-28 北京机械工业自动化研究所有限公司 一种用于轻量化加速器的脉冲高压电源系统及控制方法
CN113922475B (zh) * 2021-09-10 2024-05-03 上海空间电源研究所 一种微秒级微波脉冲驱动电源及其工作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103391078A (zh) * 2013-07-19 2013-11-13 中国电子科技集团公司第十四研究所 一种小型高效的大功率固态调制器
CN109104107A (zh) * 2018-10-13 2018-12-28 曲阜师范大学 永磁直驱型风力发电机机侧变流器的拓扑结构和控制方法
CN112104254A (zh) * 2020-09-08 2020-12-18 襄阳九鼎昊天环保设备有限公司 一种静电除尘器用高压脉冲电源
CN112511136A (zh) * 2020-11-27 2021-03-16 上海空间电源研究所 一种高压脉冲磁控管调制电源

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103391078A (zh) * 2013-07-19 2013-11-13 中国电子科技集团公司第十四研究所 一种小型高效的大功率固态调制器
CN109104107A (zh) * 2018-10-13 2018-12-28 曲阜师范大学 永磁直驱型风力发电机机侧变流器的拓扑结构和控制方法
CN112104254A (zh) * 2020-09-08 2020-12-18 襄阳九鼎昊天环保设备有限公司 一种静电除尘器用高压脉冲电源
CN112511136A (zh) * 2020-11-27 2021-03-16 上海空间电源研究所 一种高压脉冲磁控管调制电源

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
朱永亮等: "基于多路初级绕组脉冲变压器的固态调制器设计", 《中国核科学技术进展报告(第一卷)》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113922475A (zh) * 2021-09-10 2022-01-11 上海空间电源研究所 一种微秒级微波脉冲驱动电源及其工作方法
CN113922475B (zh) * 2021-09-10 2024-05-03 上海空间电源研究所 一种微秒级微波脉冲驱动电源及其工作方法
CN113992025A (zh) * 2021-10-28 2022-01-28 北京机械工业自动化研究所有限公司 一种用于轻量化加速器的脉冲高压电源系统及控制方法

Similar Documents

Publication Publication Date Title
KR20140067260A (ko) 능동 전압 드룹 제어형 펄스 전원 시스템
CN110336320B (zh) 一种基于电能路由器的新能源并网或就地消纳系统
CN111371316B (zh) 一种基于耦合电感的零输入纹波高增益直流变换器
EP2731251B1 (en) Inverter circuit and control method therefor, and inverter circuit control device
CN112713798B (zh) 一种脉冲功率电源、gw级功率行波磁场产生装置及方法
CN113541500A (zh) 一种隔离型半准z源直流升压变换器
CN112511136A (zh) 一种高压脉冲磁控管调制电源
CN110601544A (zh) 基于两级变换结构的模块化组合式中压直流变换器及控制方法
Ansari et al. A new control method for an interleaved flyback inverter to achieve high efficiency and low output current THD
CN113078832A (zh) 速调管用高压脉冲调制电源、速调管系统
Lai et al. A hybrid binary multilevel cascaded inverter for medium-voltage applications
Badhoutiya et al. Boost control for PV applications using impedance source inverter
CN106411165B (zh) 一种谐振式逆变器电路及其控制方法
Baby et al. High gain single switch boost converter for sustainable energy applications using switched capacitor and coupled inductor
Wu et al. A self-oscillating controller based on pulse density modulator in wireless power transfer
KR20220094661A (ko) 인덕터 전류 감지 기반 절연형 dc-dc 컨버터
CN115967374B (zh) 一种基于全固态开关混联的高压脉冲发生装置
CN202535276U (zh) 一种电源变换装置
de Oliveira et al. Study and implementation of a high gain bidirectional dc-dc converter for photovoltaic on-grid systems
CN219287160U (zh) 一种新型的工商业光储充并离网一体机p-ees-c
Bonde et al. A Step-up Resonant Converter for Grid-Connected Renewable Energy Sources
Rao et al. Multilevel inverter topology for distributed generation with high voltage gain cascaded DC-DC converter
CN211606420U (zh) 一种高压电容器充电电源
CN213633804U (zh) 一种基于同轴磁控管的x波段小型气象雷达发射机
CN216451286U (zh) 一种带低压保护的隔离型辅助电源系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210706