CN113078823A - 一种基于数字化全桥boost两级升压电源 - Google Patents

一种基于数字化全桥boost两级升压电源 Download PDF

Info

Publication number
CN113078823A
CN113078823A CN202110510673.1A CN202110510673A CN113078823A CN 113078823 A CN113078823 A CN 113078823A CN 202110510673 A CN202110510673 A CN 202110510673A CN 113078823 A CN113078823 A CN 113078823A
Authority
CN
China
Prior art keywords
boost
bridge
full
output
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110510673.1A
Other languages
English (en)
Inventor
金国卫
何野
陈雨薇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Jinyi Power Technology Co ltd
Original Assignee
Anhui Jinyi Power Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Jinyi Power Technology Co ltd filed Critical Anhui Jinyi Power Technology Co ltd
Priority to CN202110510673.1A priority Critical patent/CN113078823A/zh
Publication of CN113078823A publication Critical patent/CN113078823A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33515Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种基于数字化全桥BOOST两级升压电源,本发明中:数字化控制电路包括输入电压检测模块、输出电压检测模块、电流检测模块、逆变脉冲输出模块和boost脉冲输出模块;MOS管全桥将输入的直流电进行逆变处理后输出至变压器T1;变压器T1副边连接整流桥的输入端;整流桥的输出端连接BOOST二级升压电路;电感L1的一端与整流桥输出端正极连接;电感L1的另一端依次串联二极管D1和电容C2至整流桥输出端负极。本发明通过第一级全桥隔离升压,减小开关管的承受电压和电流,保护开关器件,减小隔离变压器体积和设计难度;数字化控制全桥隔离提高控制精度;第二级BOOST升压保证输出电压稳定性和数字化宽范围调节能力,提高系统的升压比。

Description

一种基于数字化全桥BOOST两级升压电源
技术领域
本发明属于电源技术领域,特别是涉及一种基于数字化全桥BOOST两级升压电源。
背景技术
随着电源市场日新月异的发展,传统模式的以BOOST系统或以单极变压器为代表的单极DC/DC升压电源已经不足以满足市场需求。
单级变压器升压,在压差较大情况下,变压器体积大,质量重,不符合升压电源小型化、轻量化的发展趋势。而BOOST单级升压系统无法实现输入、输出的隔离效果;另外输入低压和输出高压之间安全性欠佳,由于同时在输入、输出之间会产生较大的电压差,这使得电路内部功率器件的损坏风险较高。
发明内容
本发明的目的在于提供一种基于数字化全桥BOOST两级升压电源,通过,通过从两级升压系统角度改进现有DC/DC升压电源,第一级全桥隔离升压,减小每个开关管的承受电压和电流,保护了开关器件,减小隔离变压器体积和设计难度;数字化控制全桥隔离提高了控制精度;第二级BOOST升压,可保证输出电压稳定性和数字化宽范围调节能力,提高系统的升压比。其工作频率高至250kHz,实现大功率电源的体积重量轻量化。
为解决上述技术问题,本发明是通过以下技术方案实现的:
本发明为一种基于数字化全桥BOOST两级升压电源,包括全桥逆变一级升压电路、整流桥、BOOST二级升压电路和数字化控制电路;
所述逆变一级升压电路的输入端与直流电源连接,所述逆变一级升压电路的输出端与整流桥输入端连接,所述整流桥的输出端与BOOST二级升压电路连接;
所述数字化控制电路包括输入电压检测模块、输出电压检测模块、电流检测模块、逆变脉冲输出模块和boost脉冲输出模块;所述输入电压检测模块与全桥逆变一级升压电路的输入端连接并检测输入电压数据;所述输出电压检测模块与BOOST二级升压电路的输出端连接并检测输出电压数据;所述电流检测模块与BOOST二级升压电路连接并检测电流数据;所述逆变脉冲输出模块与全桥逆变一级升压电路连接输出脉冲控制信号,所述boost脉冲输出模块与BOOST二级升压电路连接并输出脉冲控制信号;
所述全桥逆变一级升压电路包括电容C1、MOS管全桥和变压器T1;所述MOS管全桥将输入的直流电进行逆变处理后输出至变压器T1;
所述电容C1的一端与输入正接线端子与MOS管全桥的中间连接点连接,所述电容C1的另一端与输入负接线端子与MOS管全桥的中间连接点连接;
所述MOS管全桥的输出端连接变压器T1原边;所述变压器T1副边连接整流桥的输入端;所述整流桥的输出端向BOOST二级升压电路输出整流后的直流电;
所述BOOST二级升压电路包括电感L1、MOS管Q1、二极管D1、二极管D2和电容C2;所述电感L1的一端与整流桥输出端正极连接;所述电感L1的另一端依次串联二极管D1和电容C2至整流桥输出端负极;
所述MOS管Q1的漏极连接至电感L1与二极管D1的中间连接点;所述MOS管Q1的源极连接至电容C2与整流桥输出端负极的中间连接点;所述MOS管Q1的栅极与数字化控制模块连接;
所述二极管D2的两端分别于MOS管Q1的源极和漏极连接。
进一步地,所述输入电压检测模块通过电压互感器PT1接入到电容C1的两端进行输入端电压数据检测,做过欠压保护。
进一步地,所述输出电压检测模块通过电压互感器PT2接入到电容C2的两端进行输出端电压数据检测,采样值送入DSP进行监测,实现输出侧过欠压保护。
进一步地,所述电流检测模块通过电流互感器CT1接入到整流桥和MOS管Q1的源极之间电流进行电流数据检测,采样信号送入DSP监测,做过流保护以及参与内部闭环运算控制。
进一步地,所述逆变脉冲输出模块与MOS管全桥中的MOS管的栅极连接并输出脉冲控制信号进行控制,实现了数字化PWM控制。
进一步地,所述boost脉冲输出模块与MOS管Q1的栅极连接并输出脉冲控制信号进行控制,实现了数字化PWM控制。
进一步地,所述二极管D2的阳极与MOS管Q1的源极连接,所述二极管D2的阴极与MOS管Q1的漏极连接。
一种基于数字化全桥BOOST两级升压电源的控制方法,包括以下步骤:
Stp1、系统上电;
Stp2、系统进行自检,若无异常则进入Stp3;若出现异常则进入Stp2;
Stp3、初始化输入侧电压UDC1、输出侧电压UDC以及输出电流I0,数字化控制电路判断数据是否正常;若正常条件则进进入Stp4;若不正常进入故障告警,重新进入Stp3;
Stp4、数字化控制电路驱动全桥逆变一级升压电路工作;
Stp5、数字化控制电路判断输入侧电压UDC1、输出侧电压UDC以及输出电流I0数据是否正常,若正常则进入Stp6;若不正常则进入Stp8;
Stp6、数字化控制电路判断是否接收到外部控制指令,若接收到外部控制指令则进入Stp7;若没有接收到外部控制指令则继续待机;
Stp7、数字化控制电路发出驱动脉冲让BOOST二级升压电路进入工作状态;直至接收到外部发出的停止控制信号,数字化控制电路发出逆变脉冲以及BOOST脉冲,电源停机;
Stp8、数字化控制电路在BOOST二级升压电路工作时持续对输入侧电压UDC1、输出侧电压UDC以及输出电流I0数据进行检测,若发现异常,则进入故障停机状态,直到故障排除再正常停机。
本发明具有以下有益效果:
本发明从两级升压系统角度改进现有DC/DC升压电源,第一级全桥隔离升压,减小每个开关管的承受电压和电流,保护了开关器件,减小隔离变压器体积和设计难度;数字化控制全桥隔离提高了控制精度;第二级BOOST升压,可保证输出电压稳定性和数字化宽范围调节能力,提高系统的升压比。其工作频率高至250kHz,实现大功率电源的体积重量轻量化。
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一种基于数字化全桥BOOST两级升压电源的电路图;
图2为一种基于数字化全桥BOOST两级升压电源的控制流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“开孔”、“上”、“下”、“厚度”、“顶”、“中”、“长度”、“内”、“四周”等指示方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的组件或元件必须具有特定的方位,以特定的方位构造和操作,因此不能理解为对本发明的限制。
请参阅图1所示,本发明为一种基于数字化全桥BOOST两级升压电源,包括全桥逆变一级升压电路、整流桥、BOOST二级升压电路和数字化控制电路;
逆变一级升压电路的输入端与直流电源连接,逆变一级升压电路的输出端与整流桥输入端连接,整流桥的输出端与BOOST二级升压电路连接;
数字化控制电路包括输入电压检测模块、输出电压检测模块、电流检测模块、逆变脉冲输出模块和boost脉冲输出模块;输入电压检测模块与全桥逆变一级升压电路的输入端连接并检测输入电压数据;输出电压检测模块与BOOST二级升压电路的输出端连接并检测输出电压数据;电流检测模块与BOOST二级升压电路连接并检测电流数据;逆变脉冲输出模块与全桥逆变一级升压电路连接输出脉冲控制信号,boost脉冲输出模块与BOOST二级升压电路连接并输出脉冲控制信号;
全桥逆变一级升压电路包括电容C1、MOS管全桥和变压器T1;MOS管全桥将输入的直流电进行逆变处理后输出至变压器T1;
电容C1的一端与输入正接线端子与MOS管全桥的中间连接点连接,电容C1的另一端与输入负接线端子与MOS管全桥的中间连接点连接;输入电压检测模块通过电压互感器PT1接入到电容C1的两端进行输入端电压数据检测,做过欠压保护;
逆变脉冲输出模块与MOS管全桥中的MOS管的栅极连接并输出脉冲控制信号进行控制,实现了数字化PWM控制;MOS管全桥的输出端连接变压器T1原边;变压器T1副边连接整流桥的输入端;整流桥的输出端向BOOST二级升压电路输出整流后的直流电;
BOOST二级升压电路包括电感L1、MOS管Q1、二极管D1、二极管D2和电容C2;电感L1的一端与整流桥输出端正极连接;电感L1的另一端依次串联二极管D1和电容C2至整流桥输出端负极;输出电压检测模块通过电压互感器PT2接入到电容C2的两端进行输出端电压数据检测,采样值送入DSP进行监测,实现输出侧过欠压保护;
MOS管Q1的漏极连接至电感L1与二极管D1的中间连接点;MOS管Q1的源极连接至电容C2与整流桥输出端负极的中间连接点;MOS管Q1的栅极与数字化控制模块连接;boost脉冲输出模块与MOS管Q1的栅极连接并输出脉冲控制信号进行控制,实现了数字化PWM控制;电流检测模块通过电流互感器CT1接入到整流桥和MOS管Q1的源极之间电流进行电流数据检测,采样信号送入DSP监测,做过流保护以及参与内部闭环运算控制;
二极管D2的两端分别于MOS管Q1的源极和漏极连接;二极管D2的阳极与MOS管Q1的源极连接,二极管D2的阴极与MOS管Q1的漏极连接。
其中如图2所示,一种基于数字化全桥BOOST两级升压电源的控制方法,包括以下步骤:
Stp1、系统上电;
Stp2、系统进行自检,若无异常则进入Stp3;若出现异常则进入Stp2;
Stp3、初始化输入侧电压UDC1、输出侧电压UDC以及输出电流I0,数字化控制电路判断数据是否正常;若正常条件则进进入Stp4;若不正常进入故障告警,重新进入Stp3;
Stp4、数字化控制电路驱动全桥逆变一级升压电路工作;
Stp5、数字化控制电路判断输入侧电压UDC1、输出侧电压UDC以及输出电流I0数据是否正常,若正常则进入Stp6;若不正常则进入Stp8;
Stp6、数字化控制电路判断是否接收到外部控制指令,若接收到外部控制指令则进入Stp7;若没有接收到外部控制指令则继续待机;
Stp7、数字化控制电路发出驱动脉冲让BOOST二级升压电路进入工作状态;直至接收到外部发出的停止控制信号,数字化控制电路发出逆变脉冲以及BOOST脉冲,电源停机;
Stp8、数字化控制电路在BOOST二级升压电路工作时持续对输入侧电压UDC1、输出侧电压UDC以及输出电流I0数据进行检测,若发现异常,则进入故障停机状态,直到故障排除再正常停机。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (8)

1.一种基于数字化全桥BOOST两级升压电源,其特征在于,包括全桥逆变一级升压电路、整流桥、BOOST二级升压电路和数字化控制电路;
所述逆变一级升压电路的输入端与直流电源连接,所述逆变一级升压电路的输出端与整流桥输入端连接,所述整流桥的输出端与BOOST二级升压电路连接;
所述数字化控制电路包括输入电压检测模块、输出电压检测模块、电流检测模块、逆变脉冲输出模块和boost脉冲输出模块;所述输入电压检测模块与全桥逆变一级升压电路的输入端连接并检测输入电压数据;所述输出电压检测模块与BOOST二级升压电路的输出端连接并检测输出电压数据;所述电流检测模块与BOOST二级升压电路连接并检测电流数据;所述逆变脉冲输出模块与全桥逆变一级升压电路连接输出脉冲控制信号,所述boost脉冲输出模块与BOOST二级升压电路连接并输出脉冲控制信号;
所述全桥逆变一级升压电路包括电容C1、MOS管全桥和变压器T1;所述MOS管全桥将输入的直流电进行逆变处理后输出至变压器T1;
所述电容C1的一端与输入正接线端子与MOS管全桥的中间连接点连接,所述电容C1的另一端与输入负接线端子与MOS管全桥的中间连接点连接;
所述MOS管全桥的输出端连接变压器T1原边;所述变压器T1副边连接整流桥的输入端;所述整流桥的输出端向BOOST二级升压电路输出整流后的直流电;
所述BOOST二级升压电路包括电感L1、MOS管Q1、二极管D1、二极管D2和电容C2;所述电感L1的一端与整流桥输出端正极连接;所述电感L1的另一端依次串联二极管D1和电容C2至整流桥输出端负极;
所述MOS管Q1的漏极连接至电感L1与二极管D1的中间连接点;所述MOS管Q1的源极连接至电容C2与整流桥输出端负极的中间连接点;所述MOS管Q1的栅极与数字化控制模块连接;
所述二极管D2的两端分别于MOS管Q1的源极和漏极连接。
2.根据权利要求1所述的一种基于数字化全桥BOOST两级升压电源,其特征在于,所述输入电压检测模块通过电压互感器PT1接入到电容C1的两端进行输入端电压数据检测。
3.根据权利要求1所述的一种基于数字化全桥BOOST两级升压电源,其特征在于,所述输出电压检测模块通过电压互感器PT2接入到电容C2的两端进行输出端电压数据检测。
4.根据权利要求1所述的一种基于数字化全桥BOOST两级升压电源,其特征在于,所述电流检测模块通过电流互感器CT1接入到整流桥和MOS管Q1的源极之间电流进行电流数据检测。
5.根据权利要求1所述的一种基于数字化全桥BOOST两级升压电源,其特征在于,所述逆变脉冲输出模块与MOS管全桥中的MOS管的栅极连接并输出脉冲控制信号进行控制。
6.根据权利要求1所述的一种基于数字化全桥BOOST两级升压电源,其特征在于,所述boost脉冲输出模块与MOS管Q1的栅极连接并输出脉冲控制信号进行控制。
7.根据权利要求1所述的一种基于数字化全桥BOOST两级升压电源,其特征在于,所述二极管D2的阳极与MOS管Q1的源极连接,所述二极管D2的阴极与MOS管Q1的漏极连接。
8.根据权利要求1所述的一种基于数字化全桥BOOST两级升压电源的控制方法,其特征在于,包括以下步骤:
Stp1、系统上电;
Stp2、系统进行自检,若无异常则进入Stp3;若出现异常则进入Stp2;
Stp3、初始化输入侧电压UDC1、输出侧电压UDC以及输出电流I0,数字化控制电路判断数据是否正常;若正常条件则进进入Stp4;若不正常进入故障告警,重新进入Stp3;
Stp4、数字化控制电路驱动全桥逆变一级升压电路工作;
Stp5、数字化控制电路判断输入侧电压UDC1、输出侧电压UDC以及输出电流I0数据是否正常,若正常则进入Stp6;若不正常则进入Stp8;
Stp6、数字化控制电路判断是否接收到外部控制指令,若接收到外部控制指令则进入Stp7;若没有接收到外部控制指令则继续待机;
Stp7、数字化控制电路发出驱动脉冲让BOOST二级升压电路进入工作状态;直至接收到外部发出的停止控制信号,数字化控制电路发出逆变脉冲以及BOOST脉冲,电源停机;
Stp8、数字化控制电路在BOOST二级升压电路工作时持续对输入侧电压UDC1、输出侧电压UDC以及输出电流I0数据进行检测,若发现异常,则进入故障停机状态,直到故障排除再正常停机。
CN202110510673.1A 2021-05-11 2021-05-11 一种基于数字化全桥boost两级升压电源 Pending CN113078823A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110510673.1A CN113078823A (zh) 2021-05-11 2021-05-11 一种基于数字化全桥boost两级升压电源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110510673.1A CN113078823A (zh) 2021-05-11 2021-05-11 一种基于数字化全桥boost两级升压电源

Publications (1)

Publication Number Publication Date
CN113078823A true CN113078823A (zh) 2021-07-06

Family

ID=76616441

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110510673.1A Pending CN113078823A (zh) 2021-05-11 2021-05-11 一种基于数字化全桥boost两级升压电源

Country Status (1)

Country Link
CN (1) CN113078823A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10312549B3 (de) * 2003-03-21 2004-08-26 Hüttinger Elektronik Gmbh + Co. Kg Gasentladungsprozess-Spannungsversorgungseinheit
CN203056977U (zh) * 2012-12-18 2013-07-10 中科恒源科技股份有限公司 一种升压隔离型dc-dc变换器
CN105553273A (zh) * 2015-12-24 2016-05-04 东南大学 适用于中高压直流并网的级联dc/dc变换器及其控制方法
CN111913129A (zh) * 2020-08-26 2020-11-10 上海华熵能源科技有限公司 上电自检检测电路和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10312549B3 (de) * 2003-03-21 2004-08-26 Hüttinger Elektronik Gmbh + Co. Kg Gasentladungsprozess-Spannungsversorgungseinheit
CN203056977U (zh) * 2012-12-18 2013-07-10 中科恒源科技股份有限公司 一种升压隔离型dc-dc变换器
CN105553273A (zh) * 2015-12-24 2016-05-04 东南大学 适用于中高压直流并网的级联dc/dc变换器及其控制方法
CN111913129A (zh) * 2020-08-26 2020-11-10 上海华熵能源科技有限公司 上电自检检测电路和方法

Similar Documents

Publication Publication Date Title
US20240072534A1 (en) Start method for photovoltaic rapid shutdown system, application apparatus and system
US8559201B2 (en) Grid-connected inverter
EP3624333B1 (en) Shutdown method for photovoltaic module
WO2006033143A1 (ja) 太陽光発電システムおよびその昇圧ユニット
US20230396057A1 (en) Photovoltaic system, direct-current combiner box, and fault isolation method
US20190319450A1 (en) Pcs for ess and pcs operating method
CN110266245A (zh) 电机驱动系统、方法、电机驱动器及电动汽车
US20240146067A1 (en) Photovoltaic rapid shutdown system and control method therefor
JP5645425B2 (ja) 電力変換装置
US6956305B2 (en) Voltage fluctuation compensating apparatus
JP5289192B2 (ja) 電力変換装置および電力変換装置の故障検出方法
EP4293891A1 (en) Micro-inverter and grid-tied output control method and device therefor
CN113964863A (zh) 一种可自动实现组件级关断的串联型光伏系统
CN116577590A (zh) 一种逆变器自检方法
US11637431B2 (en) Inverter
WO2023272579A1 (zh) 一种直流母线电压的控制系统和控制方法
CN113078823A (zh) 一种基于数字化全桥boost两级升压电源
TWI542114B (zh) 太陽能逆變器並網系統及三相並網方法
KR101566387B1 (ko) 순간 전압 강하 보상에서 피드포워드 보상장치
CN215934728U (zh) 一种dc/dc变换器及氢燃料电池动力系统
JP2007104809A (ja) 系統連系用インバータ及びその制御方法
CN215186468U (zh) 一种双向储能变换器
US20240072528A1 (en) Arc detection device, breaker, power conditioner, solar panel, solar-panel-attached module, junction box, arc detection system, and arc detection method
US20210044142A1 (en) Uninterrupted power supply apparatus
CN110829818A (zh) 供电电路、供电电路的控制方法、装置及空调器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210706