CN113078659A - Capacity selection method for AGC frequency modulation device of energy storage auxiliary thermal power generating unit - Google Patents

Capacity selection method for AGC frequency modulation device of energy storage auxiliary thermal power generating unit Download PDF

Info

Publication number
CN113078659A
CN113078659A CN202110350522.4A CN202110350522A CN113078659A CN 113078659 A CN113078659 A CN 113078659A CN 202110350522 A CN202110350522 A CN 202110350522A CN 113078659 A CN113078659 A CN 113078659A
Authority
CN
China
Prior art keywords
frequency modulation
energy storage
generating unit
power generating
thermal power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110350522.4A
Other languages
Chinese (zh)
Other versions
CN113078659B (en
Inventor
薛磊
孙钢虎
兀鹏越
柴琦
王小辉
寇水潮
杨沛豪
张立松
贺婷
高峰
李志鹏
郭新宇
郭霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Thermal Power Research Institute Co Ltd
Original Assignee
Xian Thermal Power Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Thermal Power Research Institute Co Ltd filed Critical Xian Thermal Power Research Institute Co Ltd
Priority to CN202110350522.4A priority Critical patent/CN113078659B/en
Publication of CN113078659A publication Critical patent/CN113078659A/en
Application granted granted Critical
Publication of CN113078659B publication Critical patent/CN113078659B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/30Arrangements for balancing of the load in a network by storage of energy using dynamo-electric machines coupled to flywheels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Printing Plates And Materials Therefor (AREA)

Abstract

The invention discloses a capacity selection method for an AGC frequency modulation device of an energy storage auxiliary thermal power generating unit. The invention provides a capacity selection method for an AGC frequency modulation device of an optimal energy storage auxiliary thermal power generating unit by fitting frequency modulation instruction probability distribution based on a Gaussian mixture model aiming at the problem that the current power type energy storage device is high in manufacturing cost.

Description

Capacity selection method for AGC frequency modulation device of energy storage auxiliary thermal power generating unit
Technical Field
The invention belongs to the technical field of power system automation, and particularly relates to a capacity selection method for an AGC frequency modulation device of an energy storage auxiliary thermal power generating unit.
Background
With the increasing proportion of renewable energy sources such as wind energy and solar energy of a power grid, the intermittent and fluctuating characteristics of the renewable energy sources increase the frequency modulation demand brought to the power grid. In order to absorb large-scale new energy electric energy, the power grid issues a frequency modulation auxiliary service market trading rule, and power plants are encouraged to actively participate in a frequency modulation market, so that power fluctuation caused by new energy grid connection is stabilized.
The frequency modulation performance of the thermal power generating unit generally differs from that of the hydroelectric generating unit due to the characteristics of the units, so that the thermal power generating unit is in a disadvantage in the frequency modulation market, and the reward cost of the frequency modulation unit is required to be shared frequently. In order to improve the frequency modulation performance of the thermal power generating unit, a large-scale energy storage technology needs to be configured for the thermal power generating unit.
The application of advanced large-scale energy storage technology can solve the problems of randomness and fluctuation of new energy power generation to a great extent, so that intermittent low-density renewable clean energy can be widely and effectively utilized, and the intermittent low-density renewable clean energy gradually becomes economically competitive electric energy.
The energy storage has various technical means, wherein the energy storage of the lithium battery is a mature energy storage technology at present, but the lithium battery has the defect of service life when being applied to AGC frequency modulation of a thermal power generating unit, and the theoretical service life of the lithium battery in a 2C/100% DOD state is not more than 5000 times.
In order to solve the problem of short service life of the lithium battery, a certain proportion of super capacitors can be configured. The super capacitor has the outstanding advantages of high power density, quick charging, long cycle life, wide working temperature range, safety, reliability, cleanness, environmental protection and the like, and is particularly suitable for frequency modulation requirements.
On the other hand, unlike the chemical energy storage form of lithium ion batteries, the flywheel energy storage is a physical energy storage form, has the advantages of high charging and discharging speed, high working efficiency, long service life, simple maintenance, no environmental pollution and the like, is suitable for auxiliary frequency modulation, but has higher flywheel energy storage cost and less practical engineering application at present
Disclosure of Invention
The invention aims to provide a capacity selection method of an AGC frequency modulation device of an energy storage auxiliary thermal power generating unit aiming at the problem of higher energy storage cost of a super capacitor and a flywheel at present, which can reduce the capacity configuration requirement of an energy storage system to the greatest extent, thereby reducing the engineering cost and ensuring that the frequency modulation requirement of a power grid is met on the premise of configuring the minimum energy storage capacity.
The invention is realized by adopting the following technical scheme:
a capacity selection method for an AGC frequency modulation device of an energy storage auxiliary thermal power generating unit comprises the following steps:
1) carrying out statistics on AGC frequency modulation instructions sent to the thermal power generating unit by the power grid scheduling mechanism within M months according to the month, wherein the unit is MW;
2) taking an absolute value of an AGC frequency modulation instruction issued by scheduling;
3) counting the frequency of absolute values of AGC frequency modulation instructions according to months, and forming a frequency histogram;
4) fitting a frequency histogram of the AGC frequency modulation instruction based on a Gaussian mixture model to obtain a Gaussian mixture distribution model
Figure BDA0003001993700000021
Wherein M is the number of months of the statistical frequency modulation command, M is 1,2,3imIs the weight of the ith Gaussian fraction model, muimIs the mean, σ, of the ith Gaussian mixture modelimIs the variance of the ith Gaussian score model;
5) order to
Figure BDA0003001993700000022
6) If μi<μjThe rated power of the power type energy storage device configured in the energy storage system is mujMW, rated capacity of T x muj×πjMWh, rated power of energy type energy storage device configured in energy storage system is muiMW, rated capacity of T x mui×πiMWh and T are fluctuation cycles of AGC frequency modulation instructions, and the unit is h.
The further improvement of the invention is that in the step 1), the AGC frequency modulation instruction sent to the thermal power generating unit within M months of the power grid dispatching mechanism is counted according to months, and the frequency modulation instruction in the summer time period, namely 6-8 months, and the frequency modulation instruction in the winter time period, namely 12 months-2 months next year are covered.
A further development of the invention is that in step 4), the number k of gaussian partial models is 2.
The further improvement of the invention is that in the step 4), a Gaussian mixture distribution model is obtained by adopting EM algorithm calculation.
In a further development of the invention, in step 5), the calculated μ is evaluatediPerforming rounding operation, reserving one decimal, and calculating the obtained muiAnd performing an upper rounding operation to round to a unit.
A further improvement of the present invention is that, in step 6), T is a fluctuation period of the AGC frequency modulation instruction, which is obtained by counting the duration of the continuous unidirectional frequency modulation instruction, and if the fluctuation period of the AGC frequency modulation instruction is 7.5 minutes, T is 2 × 7.5 minutes — 15 minutes, that is, 0.25 h.
The further improvement of the invention is that in the step 6), the power type energy storage device and the energy type energy storage device are respectively a power type flywheel and an energy type flywheel, a super capacitor and a lithium ion battery or a high-rate lithium ion battery and a low-rate lithium ion battery.
The invention has at least the following beneficial technical effects:
1. the invention configures the power type energy storage device and the energy type energy storage device with corresponding power and capacity according to the probability distribution of the dispatching AGC frequency modulation instruction, thereby reducing the capacity requirement of expensive energy storage devices such as a super capacitor or a flywheel and the like and achieving the purpose of reducing the construction cost.
2. According to the probability distribution of the AGC frequency modulation command, the power type energy storage device and the energy type energy storage device with corresponding proportions are configured, such as the power type flywheel and the energy type flywheel, the super capacitor and the lithium ion battery or the high-rate lithium ion battery and the low-rate lithium ion battery, and the power type energy storage device or the energy type energy storage device is respectively called for different frequency modulation commands, so that the purpose of quickly responding to different frequency modulation commands is achieved.
Compared with the prior art, the invention has the following remarkable advantages:
1. compared with a lithium ion battery energy storage system or a flywheel array energy storage system with the same capacity which is frequently adopted at present, the capacity selection method for the AGC frequency modulation device of the energy storage auxiliary thermal power generating unit can fully play the advantages of different frequency modulation instructions tracked by a power type device and an energy type device, so that a better frequency modulation tracking effect is realized on the premise of reducing the total capacity of the energy storage system.
2. According to the capacity selection method for the AGC frequency modulation device of the energy storage auxiliary thermal power generating unit, probability distribution of the AGC frequency modulation command is fitted based on the Gaussian mixture model, and the Gaussian mixture model can fit any type of distribution theoretically, so that the method is wide in application range.
Drawings
FIG. 1 is a protection logic diagram of the present invention.
Fig. 2 is a frequency histogram of absolute values of AGC frequency modulation commands of 660MW units of a certain power plant.
FIG. 3 is a frequency modulation command frequency distribution diagram of a 660MW unit of a power plant based on a Gaussian mixture model.
Detailed Description
Exemplary embodiments of the present disclosure will be described in more detail below with reference to the accompanying drawings. While exemplary embodiments of the present disclosure are shown in the drawings, it should be understood that the present disclosure may be embodied in various forms and should not be limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. It should be noted that the embodiments and features of the embodiments may be combined with each other without conflict. The present invention will be described in detail below with reference to the embodiments with reference to the attached drawings.
As shown in fig. 1, the method for selecting the capacity of the AGC frequency modulation device of the energy storage auxiliary thermal power generating unit according to the present invention includes the following steps:
1) carrying out statistics on AGC frequency modulation instructions sent to the thermal power generating unit by the power grid scheduling mechanism within M months according to the month, wherein the unit is MW;
2) taking an absolute value of an AGC frequency modulation instruction issued by scheduling;
taking a certain 660MW unit as an example, the AGC frequency modulation instruction data issued to the unit in 7 months of scheduling is:
13.97573;6.30424;18.20384;9.7476;1.39254;4.86109;14.68465;11.19065;11.84895;6.30425;11.849;6.27895;21.6725;25.1664;17.49496;9.06394;2.0761;8.32975;2.15205;9.06395;9.0639;15.34289;20.9129;19.54572;7.67138;7.67146;18.86213;21.64713;21.64713;23.74859;18.86212;1.36718;9.79822;6.96254;20.93825;22.33075;5.06366;0.55704;8.3803;18.2039;2.076;9.064;8.35503;7.69677;6.27894;3.49394;11.8743;18.1532;22.3307;2.1014;6.96254;20.96354;22.3814;14.00105;1.34185;5.6207;11.1653;7.64614;7.72211;6.96255;8.4056;9.064;7.67142;18.86212;13.9757;16.10247;16.8114;15.34287;21.64713;18.86213;22.38138;15.41885;19.59637;19.59637;0.65826;8.40567;8.38034;23.06494;17.4696;15.3682;11.87428;10.48178;19.59634;16.10241;9.79819;16.81134;22.40668;16.07712;19.54572;24.45746;9.77286;14.68461;16.12775;23.77386;18.86212;8.40567;14.05167;18.91278;5.57001;4.20285;7.24103;3.24075;18.17853;3.46862;12.55789;5.59533;11.84895;8.43098;21.67245;3.4939;7.69677;7.67146;13.26678;2.78504;17.4696;7.69678;5.59534;4.86112;20.27998;3.44327;10.48178;20.25463;20.98885;6.27893;14.02634;3.4686;22.33072;23.72323;10.43116;10.43116;18.83686;18.83686;16.71006;8.4057;12.5832;16.0771;13.92505;17.46961;9.79816;7.67145;16.05175;20.25457;20.25457;11.8996;10.4565;8.35503;3.49387;10.48184;6.96252;20.25466;16.0771;17.4696;13.2668;19.57107;11.62107;4.4561;9.0639;11.14;18.15317;11.14003;16.0771;2.78504;16.07714;19.59636;16.78601;19.57099;20.30524;7.6968;5.5953;9.08925;4.88645;11.84896;9.08924;5.54473;15.34289;13.24146;20.204;17.419;4.91176;1.39251;16.76075;13.2415;4.91176;16.05182;8.40564;9.3931;3.8737;8.431;5.57;4.8864;11.849;6.96253;16.43158;0.2785;11.87425;11.1907;3.54456;16.00114;10.4818;9.0386;2.0761;17.4443;14.6593;4.0256;1.54443;7.62078;7.03852;13.95037;16.00115;13.21615;3.49393;0.70893;11.82366;4.17749;14.60865;2.10143;16.71008;16.71008;2.78503;16.05176;13.26676;5.57003;14.6593;4.17749;13.95036;18.8621;16.0771;8.35506;12.53256;16.7607;10.4565;11.19075;11.19075;16.76076;18.86213;19.57107;5.8738;3.1901;4.17753;15.34289;2.78504;8.3804;20.28;14.68464;14.00104;17.49493;19.57098;2.07611;10.45648;7.01312;14.00096;16.0771;1.3925;10.48174;19.57098;9.77286;11.8743;5.51935;15.46948;20.27993;12.55783;1.39252;9.0893;1.36718;18.17853;10.43115;12.58319;17.49494;9.74755;20.96355;7.67146;13.92504;0.70893;15.34289;14.63396;16.0265;16.0265;18.81145;9.0893;9.77285;18.1532;20.9382;9.0893;9.7728;5.57004;7.01316;8.35506;10.50708;2.78506;11.1907;11.84894;14.68466;10.43106;20.93823;20.25464;11.19067;9.79822;21.01422;9.0639;5.59534;7.62085;7.69672;6.30423;4.83584;20.22931;20.25467;9.7981;20.3052;20.33056;11.14004;18.17855;4.88642;16.76068;20.25455;9.0893;11.8743;11.16533;20.93817;20.25458;24.48274;8.38036;9.82346;16.786;8.50694;2.65846;10.4564;9.7729;9.7475;19.5204;5.3928;14.86185;9.77285;9.77286;10.45648;9.06391;9.08925;3.49394;13.31744;11.14005;9.0386;19.52038;19.52038;20.9382;5.57003;4.91175;8.38035;9.77285;9.79819;2.7344;4.17749;8.4057;9.77283;7.69678;9.74749;2.81037;17.4696;9.7729;11.19067;13.92505;16.71009;20.20401;9.08926;9.77287;15.34287;8.40567;3.46863;9.7982;3.4939;7.69677;11.8743;18.17856;14.68463;19.54574;7.67146;14.6846;2.785;11.16537;14.6846;9.77286;9.79817;10.45646;9.06394;9.77286;8.38037;16.76071;13.29212;9.06393;2.78501;4.86111;1.39252;7.72207;4.88646;9.77285;11.16535;13.26678;8.38037;9.08925;10.43113;9.08927;14.001;9.03864;11.8996;19.59638;11.87424;20.93814;13.97571;9.03865;10.50707;9.06396;8.27907;9.87413;23.06493;16.07708;8.38037;10.45645;11.84897;7.67145;13.97571;13.97571;9.06392;9.0893;7.72208;14.02633;13.21615;19.5204;10.48176;2.12674;13.95037;9.08927;9.06393;10.45645;9.74756;7.69675;10.48175;13.95038;9.06396;20.2293;18.1279;16.07711;12.60852;8.38035;14.00102;18.86212;9.7982;6.9625;15.36818;15.36818;6.6826;10.1765;8.38035;18.55685;10.8601;10.8601;9.4676;12.58318;9.77286;13.95038;22.38138;12.63386;13.92504;9.08926;9.74753;10.50711;8.35504;16.07712;20.27994;10.45645;8.40567;20.27992;9.08928;5.59532;16.1024;21.67245;9.06395;9.06395;9.08927;7.67144;18.86216;0.70888;10.43115;13.97567;4.88646;20.96356;1.3672;8.38038;0.65826;18.1279;9.03864;12.5579;8.35504;6.96252;18.12789;14.63397;2.785;18.1279;4.17752;13.26678;16.05178;11.79834;9.82348;9.08926;2.785;14.63398;13.95038;9.77285;6.98785;19.54572;18.86212;2.78503;8.38037;16.78604;11.1907;2.785;12.53256;20.17868;9.08926;4.83579;18.1279;18.1279;10.48177;10.45646;13.26678;10.48176;14.001;15.3935;20.25463;9.06393;9.6969;0.81018;16.02649;6.27893;10.48178;12.53253;13.97567;0.6583;10.50708;10.43112;8.35504;9.79819;18.15323;14.001;4.86112;4.86112;11.8743;13.26678;18.86212;5.57;18.86212;10.48175;8.32973;17.419;15.3429;9.7982;9.0386;20.9382;11.8743;18.86214;9.08926;7.67142;20.96352;10.4818;13.26677;8.35503;9.08925;10.43115;11.216;9.74753;7.64612;18.86212;14.6846;10.48177;18.8621;19.59633;9.77287;9.74755;9.77285;4.20283;10.50708;8.38035;13.31742;12.53256;9.79816;9.77286;20.2546;19.5457;16.7354;5.59535;10.2539;0.9621;15.39353;14.65928;20.2546;3.5192;0.6583;10.48177;11.87427;11.14006;11.16536;6.32959;2.7597;17.52025;9.03864;10.45646;9.06396;4.88641;14.65927;19.5457;20.27993;5.64597;19.57101;9.08927;20.25461;0.70895;11.16535;2.78497;11.16541;18.15323;12.55788;20.0268;20.0268;6.30427;9.08923;3.46863;4.17747;12.5579;13.26677;10.48183;9.7728;9.0893;9.7728;7.6715;5.62064;4.12689;10.50707;9.77284;8.38036;4.15223;17.46963;16.0771;1.39253;9.08929;9.08929;17.44433;8.355;11.1907;9.06395;3.51925;12.53257;10.48173;1.39253;16.73543;13.2415;20.9382;20.9382;17.4696;14.634;9.08923;13.97563;12.55785;17.49495;11.8489;20.96354;20.96354;12.5579;9.74754;9.08926;16.02646;9.79824;9.79814;18.83679;9.08927;14.63397;9.08926;14.6593;16.76071;11.89959;7.67145;8.35504;9.79819;9.79817;9.06395;8.38037;9.03861;8.40567;16.0265;11.8996;9.7475;12.5832;9.77286;15.3429;11.16534;8.40564;16.02646;11.1907;6.98786;11.14007;9.08929;4.15214;9.11465;1.39245;9.79816;13.6972;0.25317;1.39253;1.4178;2.1014;4.91173;2.12677;2.12677;3.51923;3.51923;2.12677;2.12677;17.44433;9.7728;9.8488;1.34184;8.35506;7.67143;11.16543;17.44425;13.26678;7.69677;16.02644;18.17852;13.29206;9.77284;18.17853;10.45648;17.14045;12.1781;10.48177;17.46963;9.0133;15.34288;10.45645;20.96356;17.41897;16.07712;15.39348;12.5579;18.8368;19.5204;9.8235;20.27996;19.54571;10.50711;4.88642;18.91276;18.8368;1.49378;6.2283;21.64713;17.49493;16.786;14.7099;11.8743;6.2536;20.27995;9.06395;13.2921;2.785;13.95038;17.44431;12.53256;13.29212;8.35501;16.05182;12.55788;12.53254;9.08926;17.44427;9.74755;16.76072;16.05178;11.16537;11.84897;12.55786;7.69678;11.87427;15.3682;19.57105;10.45645;11.19068;10.45645;17.46961;10.43112;19.52039;16.73538;9.06396;16.10243;16.10243;8.32973;18.1026;8.38033;5.999;13.69574;4.17752;4.20284;13.9504;9.06392;9.03864;3.51924;8.53227;1.89887;10.48176;18.12788;21.64712;20.96354;1.3925;6.98786;23.03964;7.67145;20.25463;8.32972;8.38034;16.02646;12.53256;8.431;20.27996;16.0771;11.84896;20.96356;9.03864;9.77286;8.40567;4.86111;11.16535;9.79817;11.8996;20.98885;12.55785;20.27993;19.59635;6.30426;6.27892;18.17852;20.27997;8.22842;9.16523;9.8488;11.77302;20.8876;20.25464;8.35504;9.77286;16.05178;20.9129;8.38034;2.78503;14.6846;7.67145;9.03862;5.62065;9.1146;9.03863;11.16538;15.39352;9.03863;15.97585;0.75953;20.25461;15.672;1.11401;0.6836;14.6846;9.77286;3.49393;12.53256;16.76072;20.22932;11.16538;2.83563;9.1146;9.74753;8.35504;9.08926;10.48178;8.60822;0.4304;11.1907;22.33076;16.05179;18.12787;12.53254;6.30425;18.17852;13.95038;12.58319;13.34274;0.58232;14.60866;2.81034;4.88646;18.88746;20.98887;18.86213;4.88644;8.35504;11.8996;14.70994;18.88746;19.54572;8.35504;14.6593;5.57;13.9504;12.55785;12.22873;0.37979;12.58319;7.72208;13.21615;10.43115;13.29208;19.54571;9.08927;9.08926;6.96252;11.87426;11.16538;9.74754;9.08925;9.11459;9.77286;10.48178;9.08927;3.46859;2.78501;19.54572;9.08926;11.87427;11.8996;18.91275;20.98885;6.96253;2.81033;11.19068;15.34289;11.14005;11.8743;14.6593;13.26679;16.8873;1.26593;19.54571;11.92493;2.75972;8.355;3.46862;4.30411;0.30237;4.60648;6.25362;7.01316;9.06397;11.14004;5.62063;11.84898;9.06396;20.96356;9.03864;18.15323;9.74753;5.57004;16.02649;11.19068;10.43112;13.95035;13.26675;9.06397;6.30426;6.27892;9.4676;17.87326;9.77286;11.14004;9.08927;5.57004;12.53256;11.89957;10.45648;9.08926;9.06393;2.81033;16.78603;7.64612;12.63382;4.20283;4.8358;9.06394;9.08926;9.77286;22.38136;9.74754;21.62182;20.9129;6.30426;8.35504;13.95038;10.48178;11.14004;18.1532;10.50712;10.4311;19.5457;2.785;6.27894;5.57003;14.63397;11.84897;19.26721;17.87469;9.79819;19.54571;13.97571;20.25464;9.08926;9.06393;9.08927;10.45645;8.35503;9.06398;9.06392;9.1146;8.355;8.3804;2.12673;11.87427;10.45644;25.14106;22.38135;6.96253;0.68359;4.75986;7.11444;7.69673;11.19072;9.74753;11.89959;9.08926;9.06394;18.86212;8.35504;11.89958;4.91176;8.38034;20.96353;20.96353;12.5832;11.82365;19.52039;9.77286;8.38036;14.65928;6.98786;17.49494;20.25464;14.65927;3.51925;13.21613;11.8743;8.73481;10.78561;20.93823;10.45644;6.6826;10.80948;10.80948;6.02432;6.02432;9.4676;9.4676;11.59433;9.74753;12.55786;8.784;12.96152;11.19068;9.79818;14.73523;16.07709;8.40566;6.45618;2.58246;11.16538;2.07611;14.6846;9.08927;6.30426;14.60864;6.96256;3.51922;1.39252;23.72323;9.08927;9.08926;12.60852;9.74754;13.95037;5.59533;13.97568;11.84896;6.98786;12.5832;10.43115;11.19067;20.98886;14.00101;15.34287;19.54572;19.54572;9.06396;12.53256;9.08926;5.59534;16.10242;13.97568;17.46961;9.03863;15.36818;9.06398;11.16534;11.8743;9.77286;6.27892;2.0761;17.4443;16.02647;20.25463;9.74754;6.96252;8.35502;12.2526;9.51822;12.53256;9.06397;16.07712;11.14005;1.39251;2.50507;12.2526;9.08926;15.34286;1.39252;4.60648;12.96152;0.68358;14.00102;11.8996;16.76071;8.35504;13.92504;3.54459;10.17798;3.11413;9.08927;14.6593;9.0386;12.22872;8.68418;2.07608;9.79819;21.64713;14.6846;8.38034;4.83579;16.73538;8.38035;9.74755;17.46963;5.62067;13.24145;9.08926;17.4696;18.17852;9.77287;18.20387;4.15218;9.03864;14.58334;14.58334;11.216;20.25464;20.25464;5.57001;11.14004;6.38023;2.73437;10.45645;16.02646;9.08929;20.22933;20.25463;16.76071;15.36823;11.19067;20.30527;7.64612;15.34287;9.08926;8.38037;18.15323;14.6846;9.06397;13.97571;10.48176;7.69676;12.60852;19.3685;0.20256;12.55785;1.08725;7.3915;7.3915;13.6451;13.6451;12.30325;8.86142;3.44183;15.08826;10.43112;12.55789;9.79816;9.03863;9.59564;2.27863;9.08927;9.06396;8.35504;16.7607;8.38033;12.55786;9.74753;9.08926;17.4696;15.39352;20.30526;23.09026;16.81133;9.08927;16.81134;9.08926;16.27965;0.53168;20.27993;9.74756;3.51924;9.74755;5.34213;0.9621;10.50712;9.06392;8.35505;13.97567;13.24149;5.57004;13.16553;9.13989;19.57101;15.34284;19.4697;0.78488;4.88642;6.07638;2.30399;13.29208;10.43115;8.40567;11.84893;6.2789;9.064;4.1775;9.7981;7.6462;3.51923;17.46963;17.46963;16.73543;12.6085;1.3672;20.9636;20.28;16.7861;2.10146;8.38036;20.96355;18.86212;4.15223;4.8864;18.1026。
3) the frequency of the absolute value of the AGC frequency modulation instruction is counted monthly and a frequency histogram is formed, which is shown in fig. 2 for the example of the above mentioned 660MW unit.
4) Fitting a frequency histogram of the AGC frequency modulation instruction based on a Gaussian mixture model to obtain a Gaussian mixture distribution model
Figure BDA0003001993700000111
Wherein M is the number of months of the statistical frequency modulation command, M is 1,2,3imIs the weight of the ith Gaussian fraction model, muimIs the mean, σ, of the ith Gaussian mixture modelimIs the variance of the ith Gaussian score model;
5) order to
Figure BDA0003001993700000112
Taking a certain 660MW unit mentioned above as an example, the fitting obtained by calculation obtains pi1=0.8091,π2=0.1909,μ1=9.6156,μ2=19.2958,σ1=4.1846,σ22.7295, its gaussian mixture model is p (x) 0.8091 × N (x |9.6156,4.1846) +0.1909 × N (x |19.2958,2.7295), and its probability distribution is shown in fig. 3. The data rounding operation is carried out on the result to obtain pi1=0.8,π2=0.2,μ1=10,μ2=20;
6) If μi<μjThe rated power of the power type energy storage device configured in the energy storage system is mujMW, rated capacity thereofThe amount is T × muj×πjMWh, rated power of energy type energy storage device configured in energy storage system is muiMW, rated capacity of T x mui×πiMWh and T are fluctuation cycles of AGC frequency modulation instructions, and the unit is h.
Taking a certain 660MW unit as an example, if a super capacitor lithium battery is used for hybrid energy storage, the rated power of the super capacitor in the energy storage system can be 20MW, the rated capacity of the super capacitor is 0.25 × 20 × 0.2 ═ 1MWh, the rated power of the lithium battery in the energy storage system can be 10MW, and the rated capacity of the lithium battery is 0.25 × 10 × 0.8 ═ 2 MWh; if the flywheel energy storage is adopted, the flywheel energy storage system can be configured with 2 sets of energy storage flywheels, wherein the rated power of one set of flywheel energy storage can be 10MW, and the rated capacity is 0.25 multiplied by 10 multiplied by 0.8 which is 2 MWh; the rated power of the other set of flywheel can be 20MW, and the rated capacity is 0.25 multiplied by 20 multiplied by 0.2 which is 1 MWh; if the high-rate lithium battery and the low-rate lithium battery are used for hybrid energy storage, the rated power of the high-rate lithium battery in the energy storage system can be 20MW, the rated capacity of the high-rate lithium battery is 0.25 multiplied by 20 multiplied by 0.2-1 MWh, the rated power of the low-rate lithium battery in the energy storage system can be 10MW, and the rated capacity of the low-rate lithium battery in the energy storage system is 0.25 multiplied by 10 multiplied by 0.8-2 MWh.
Although the invention has been described in detail hereinabove with respect to a general description and specific embodiments thereof, it will be apparent to those skilled in the art that modifications or improvements may be made thereto based on the invention. Accordingly, such modifications and improvements are intended to be within the scope of the invention as claimed.

Claims (8)

1. A capacity selection method for an AGC frequency modulation device of an energy storage auxiliary thermal power generating unit is characterized by comprising the following steps:
1) carrying out statistics on AGC frequency modulation instructions sent to the thermal power generating unit by the power grid scheduling mechanism within M months according to the month, wherein the unit is MW;
2) taking an absolute value of an AGC frequency modulation instruction issued by scheduling;
3) counting the frequency of absolute values of AGC frequency modulation instructions according to months, and forming a frequency histogram;
4) for AGC frequency-modulated commandsThe frequency histogram is fitted based on a Gaussian mixture model to obtain a Gaussian mixture distribution model
Figure FDA0003001993690000011
Wherein M is the number of months of the statistical frequency modulation command, M is 1,2,3imIs the weight of the ith Gaussian fraction model, muimIs the mean, σ, of the ith Gaussian mixture modelimIs the variance of the ith Gaussian score model;
5) order to
Figure FDA0003001993690000012
6) If μi<μjThe rated power of the power type energy storage device configured in the energy storage system is mujMW, rated capacity of T x muj×πjMWh, rated power of energy type energy storage device configured in energy storage system is muiMW, rated capacity of T x mui×πiMWh and T are fluctuation cycles of AGC frequency modulation instructions, and the unit is h.
2. The capacity selection method for the AGC frequency modulation device of the energy storage auxiliary thermal power generating unit according to claim 1, characterized in that in the step 1), the AGC frequency modulation command sent to the thermal power generating unit within M months of the power grid dispatching mechanism is counted according to months, wherein the frequency modulation command covers the summer time period of 6-8 months and the winter time period of 12-2 months next year.
3. The method for selecting the capacity of the AGC frequency modulation device of the energy storage assisted thermal power generating unit according to claim 1, wherein in the step 4), the number k of the gaussian partial models is 2.
4. The capacity selection method for the AGC frequency modulation device of the energy storage auxiliary thermal power generating unit according to claim 1, characterized in that in the step 4), a Gaussian mixture distribution model is obtained through calculation by adopting an EM algorithm.
5. The method for selecting the capacity of the AGC frequency modulation device of the energy storage auxiliary thermal power generating unit according to claim 1, wherein in the step 5), the calculated mu is subjected to calculationiPerforming rounding operation, reserving one decimal, and calculating the obtained muiAnd performing an upper rounding operation to round to a unit.
6. The method for selecting the capacity of the AGC frequency modulation device of the energy storage assisting thermal power generating unit according to claim 1, wherein in step 6), T is a fluctuation period of the AGC frequency modulation command, which is obtained by counting a duration of the continuous unidirectional frequency modulation command, and the fluctuation period of the AGC frequency modulation command is 7.5 minutes, and then T is 2 × 7.5 minutes-15 minutes, that is, 0.25 h.
7. The method for selecting the capacity of the AGC frequency modulation device of the energy storage assisting thermal power generating unit according to claim 1, wherein in the step 6), the power type energy storage devices are a power type flywheel and an energy type flywheel.
8. The method for selecting the capacity of the AGC frequency modulation device of the energy storage auxiliary thermal power generating unit according to claim 1, wherein in the step 6), the energy type energy storage devices are a super capacitor and a lithium ion battery or a high-rate lithium ion battery and a low-rate lithium ion battery.
CN202110350522.4A 2021-03-31 2021-03-31 Capacity selection method for AGC frequency modulation device of energy storage auxiliary thermal power generating unit Active CN113078659B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110350522.4A CN113078659B (en) 2021-03-31 2021-03-31 Capacity selection method for AGC frequency modulation device of energy storage auxiliary thermal power generating unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110350522.4A CN113078659B (en) 2021-03-31 2021-03-31 Capacity selection method for AGC frequency modulation device of energy storage auxiliary thermal power generating unit

Publications (2)

Publication Number Publication Date
CN113078659A true CN113078659A (en) 2021-07-06
CN113078659B CN113078659B (en) 2023-02-07

Family

ID=76614350

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110350522.4A Active CN113078659B (en) 2021-03-31 2021-03-31 Capacity selection method for AGC frequency modulation device of energy storage auxiliary thermal power generating unit

Country Status (1)

Country Link
CN (1) CN113078659B (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518643A (en) * 2019-07-18 2019-11-29 中国电力科学研究院有限公司 A kind of energy storage joint fired power generating unit participates in the control method and device of AGC frequency modulation
CN110601236A (en) * 2019-09-20 2019-12-20 国网山东省电力公司电力科学研究院 Capacity selection method and device of flywheel energy storage compensation device
CN110676870A (en) * 2019-04-30 2020-01-10 国网新疆电力有限公司经济技术研究院 Hybrid energy storage capacity configuration method suitable for wind power grid connection
CN110808608A (en) * 2019-10-22 2020-02-18 国网江苏省电力有限公司电力科学研究院 Method and system for evaluating frequency modulation and voltage regulation capability of large-scale new energy participating receiving-end power grid
CN110970926A (en) * 2019-12-12 2020-04-07 上海外高桥第三发电有限责任公司 Auxiliary frequency modulation device based on energy-saving technology for thermal power plant and control method thereof
WO2020118734A1 (en) * 2018-12-14 2020-06-18 国网新源张家口风光储示范电站有限公司 Distributed energy storage scheduling method and apparatus
US20200259333A1 (en) * 2017-12-31 2020-08-13 Beijing Goldwind Science & Creation Windpower Equipment Co., Ltd. Photovoltaic power plant and secondary frequency modulation control method therefor
CN211266492U (en) * 2019-12-12 2020-08-14 上海外高桥第三发电有限责任公司 Auxiliary frequency modulation device of thermal power plant based on energy storage device
CN111555372A (en) * 2020-04-14 2020-08-18 吉林省电力科学研究院有限公司 Variable-rate energy storage auxiliary power plant AGC frequency modulation control method
CN111682566A (en) * 2020-03-02 2020-09-18 上海豫源电力科技有限公司 AGC frequency modulation method and device for energy storage auxiliary thermal power generating unit
CN111754361A (en) * 2020-06-29 2020-10-09 国网山西省电力公司电力科学研究院 Energy storage capacity optimal configuration method and computing device of wind-storage combined frequency modulation system
CN211701497U (en) * 2020-04-21 2020-10-16 西安西热节能技术有限公司 System for multi-energy-storage coupling thermal power generating unit simultaneously responding to primary frequency modulation and AGC (automatic gain control) instructions
US20200341437A1 (en) * 2019-04-26 2020-10-29 Renchang Dai Systems and Methods for Security Constrained Automatic Generation Control
CN112103980A (en) * 2020-09-27 2020-12-18 中国科学院电工研究所 Energy management method of hybrid energy storage system combining AGC frequency modulation of thermal power generating unit
CN112350344A (en) * 2020-05-25 2021-02-09 清华大学 Energy storage system-thermal power generating unit combined frequency modulation control method considering frequency modulation performance examination

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200259333A1 (en) * 2017-12-31 2020-08-13 Beijing Goldwind Science & Creation Windpower Equipment Co., Ltd. Photovoltaic power plant and secondary frequency modulation control method therefor
WO2020118734A1 (en) * 2018-12-14 2020-06-18 国网新源张家口风光储示范电站有限公司 Distributed energy storage scheduling method and apparatus
US20200341437A1 (en) * 2019-04-26 2020-10-29 Renchang Dai Systems and Methods for Security Constrained Automatic Generation Control
CN110676870A (en) * 2019-04-30 2020-01-10 国网新疆电力有限公司经济技术研究院 Hybrid energy storage capacity configuration method suitable for wind power grid connection
CN110518643A (en) * 2019-07-18 2019-11-29 中国电力科学研究院有限公司 A kind of energy storage joint fired power generating unit participates in the control method and device of AGC frequency modulation
CN110601236A (en) * 2019-09-20 2019-12-20 国网山东省电力公司电力科学研究院 Capacity selection method and device of flywheel energy storage compensation device
CN110808608A (en) * 2019-10-22 2020-02-18 国网江苏省电力有限公司电力科学研究院 Method and system for evaluating frequency modulation and voltage regulation capability of large-scale new energy participating receiving-end power grid
CN211266492U (en) * 2019-12-12 2020-08-14 上海外高桥第三发电有限责任公司 Auxiliary frequency modulation device of thermal power plant based on energy storage device
CN110970926A (en) * 2019-12-12 2020-04-07 上海外高桥第三发电有限责任公司 Auxiliary frequency modulation device based on energy-saving technology for thermal power plant and control method thereof
CN111682566A (en) * 2020-03-02 2020-09-18 上海豫源电力科技有限公司 AGC frequency modulation method and device for energy storage auxiliary thermal power generating unit
CN111555372A (en) * 2020-04-14 2020-08-18 吉林省电力科学研究院有限公司 Variable-rate energy storage auxiliary power plant AGC frequency modulation control method
CN211701497U (en) * 2020-04-21 2020-10-16 西安西热节能技术有限公司 System for multi-energy-storage coupling thermal power generating unit simultaneously responding to primary frequency modulation and AGC (automatic gain control) instructions
CN112350344A (en) * 2020-05-25 2021-02-09 清华大学 Energy storage system-thermal power generating unit combined frequency modulation control method considering frequency modulation performance examination
CN111754361A (en) * 2020-06-29 2020-10-09 国网山西省电力公司电力科学研究院 Energy storage capacity optimal configuration method and computing device of wind-storage combined frequency modulation system
CN112103980A (en) * 2020-09-27 2020-12-18 中国科学院电工研究所 Energy management method of hybrid energy storage system combining AGC frequency modulation of thermal power generating unit

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HÉCTOR CHÁVEZ等: "The Joint Adequacy of AGC and Primary Frequency Response in Single Balancing Authority Systems", 《IEEE TRANSACTIONS ON SUSTAINABLE ENERGY》 *
牛阳等: "提升火电机组AGC性能的混合储能优化控制与容量规划", 《电力系统自动化》 *
牟春华等: "火电机组与储能系统联合自动发电控制调频技术及应用", 《热力发电》 *

Also Published As

Publication number Publication date
CN113078659B (en) 2023-02-07

Similar Documents

Publication Publication Date Title
CN102694391B (en) Day-ahead optimal scheduling method for wind-solar storage integrated power generation system
CN109767078B (en) Multi-type power supply maintenance arrangement method based on mixed integer programming
CN109378856B (en) Wind-storage hybrid power station power fluctuation stabilizing method based on rolling optimization
CN103248048B (en) Abandoned wind electric quantity estimation method
CN111626527A (en) Intelligent power grid deep learning scheduling method considering fast/slow charging/discharging form of schedulable electric vehicle
CN110796373A (en) Wind power consumption-oriented multi-stage scene generation electric heating system optimal scheduling method
CN112365021A (en) Regional comprehensive energy system planning optimization method based on hybrid energy storage
CN111445107A (en) Multi-objective optimization configuration method for cold-heat-power combined supply type micro-grid
Xiao et al. A multi‐energy complementary coordinated dispatch method for integrated system of wind‐photovoltaic‐hydro‐thermal‐energy storage
CN107181272B (en) Wind power consumption method for improving peak regulation space by using energy storage system
Lin et al. Optimal control of battery energy storage system integrated in PV station considering peak shaving
CN105226730A (en) A kind of wind storage association system dispatching method and device improving wind-powered electricity generation schedulability
CN114938008A (en) Energy storage capacity and heat storage capacity configuration method and device and terminal equipment
CN111049165A (en) Method and system for energy storage configuration of new energy power system
Yang et al. Control strategy for energy-storage systems to smooth wind power fluctuation based on interval and fuzzy control
CN112653137A (en) Photothermal power station and wind power system considering carbon transaction, and low-carbon scheduling method and system
CN113078659B (en) Capacity selection method for AGC frequency modulation device of energy storage auxiliary thermal power generating unit
CN109617100B (en) Data-driven wind power plant energy storage capacity planning method
CN116805192A (en) Comprehensive energy system double-layer planning optimization method considering optimal energy rejection rate and application thereof
CN116050637A (en) Comprehensive energy virtual power plant optimal scheduling method and system based on time-of-use electricity price
CN113313329B (en) Optimal scheduling method for power distribution network containing comprehensive energy system
CN114421468A (en) Primary frequency modulation capacity planning method considering wind power cluster shared energy storage joint participation
CN114204549A (en) Wind-solar-storage cluster joint optimization operation method considering energy storage sharing
CN111062532A (en) Incremental distribution park power grid capacity configuration optimization method considering V2G
CN105529728B (en) Energy storage schedulable capacity prediction method considering multi-source information fusion and planned output

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20210706

Assignee: HUANENG LUOYUAN POWER GENERATION Co.,Ltd.

Assignor: Xi'an Thermal Power Research Institute Co.,Ltd.

Contract record no.: X2023110000149

Denomination of invention: A Capacity Selection Method for AGC Frequency Control Device in Energy Storage Assisted Thermal Power Units

Granted publication date: 20230207

License type: Common License

Record date: 20231206