CN113078263A - 一种渗滤复合薄膜、制备方法及其光电应用 - Google Patents

一种渗滤复合薄膜、制备方法及其光电应用 Download PDF

Info

Publication number
CN113078263A
CN113078263A CN202110263158.8A CN202110263158A CN113078263A CN 113078263 A CN113078263 A CN 113078263A CN 202110263158 A CN202110263158 A CN 202110263158A CN 113078263 A CN113078263 A CN 113078263A
Authority
CN
China
Prior art keywords
film
precursor solution
percolation
metal
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110263158.8A
Other languages
English (en)
Other versions
CN113078263B (zh
Inventor
杨化桂
葛兵
杨双
侯宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN202110263158.8A priority Critical patent/CN113078263B/zh
Publication of CN113078263A publication Critical patent/CN113078263A/zh
Application granted granted Critical
Publication of CN113078263B publication Critical patent/CN113078263B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种渗滤复合薄膜、制备方法及其光电应用。是由一种无机半导体和一种绝缘体纳米颗粒组成的互穿网络结构;其中,所述的半导体材料,是金属氧化物、金属硫化物、金属磷化物或金属氮化物;所述绝缘体材料,是碳酸盐。本发明利用溶液法制备低成本、无机半导体‑绝缘体组成的两相渗滤网络结构,并用作钙钛矿太阳能光电器件的空穴传输层材料。稳定的双相渗滤结构具有优异的导电性和匹配的能带,优化了空穴的提取和传输路径,从而有效的提升钙钛矿光电器件的能量转化效率及长期运作稳定性。

Description

一种渗滤复合薄膜、制备方法及其光电应用
技术领域
本发明涉及一种渗滤复合薄膜、制备方法及其光电应用,其作为钙钛矿太阳能电池的空穴传输层材料,具有优异的导电性和空穴提取、传输能力,提升钙钛矿器件的光电转化效率及稳定性。此方法在新能源电池领域具有非常重要的应用前景。
背景技术
2003年5月3日在美国休斯敦召开的理查德斯莫利能源和纳米技术会议上,提出了人类未来50年所要面临和解决的十大问题,其中能源问题位居首位。由于非可再生能源(煤炭、石油、天然气)储量有限,全球温室效应以及环境污染日益严重,随着现代工业的发展,可再生新型清洁能源,尤其是太阳能的开发利用势在必行。作为最易获得的可再生能源,与其他能源相比,太阳能具有取之不尽、用之不竭、安全环保等特点,是新能源领域最重要的一部分。光伏发电技术作为一种极其有前景的可再生能源利用手段,被视为传统化石能源的有力替代者。在众多新型光伏器件中,最具发展前景的无疑是钙钛矿太阳能电池,钙钛矿吸光材料具有储量丰富、直接带隙特性,高的光吸收能力以及优越的载流子传输性能等优势。在短短几年时间内,钙钛矿太阳能电池的光电转换效率不断提高,其被美国国家可再生能源实验室认证的效率已高达25.5%,达到了商业化太阳能电池的标准。
作为高效钙钛矿太阳能电池的关键组成部分,空穴传输层可以有效地吸收和传输钙钛矿光吸收层中产生的光生载流子,能通过抑制空穴层与钙钛矿界面处的载流子复合现象,从而促进电池开路电压、填充因子以及最终光电转换效率的提升。然而,目前主流的空穴传输层仍为有机材料(例如:Spiro-OMeTAD,PTAA,PEDOT:PSS),其高昂的成本、复杂的制备工艺以及吸湿掺杂剂的引入,极大地限制了钙钛矿电池的商业化应用。低成本无机空穴传输层由于其优良的环境耐久性、良好的电子性能以及简单的溶液法制备,为实现高效、稳定、低成本的钙钛矿太阳能电池提供了可能,符合实际生产的需求。
本发明利用溶液旋涂法制备出高导电性、高载流子提取和传输能力的无机渗滤网络结构薄膜,合成方法简单,原材料选择广泛,制备成本低廉,制成的钙钛矿太阳能电池具有优异的光电转换效率及稳定性。本发明方法使得钙钛矿电池进一步实现组件化、工业化有了更新的进展。
发明内容
本发明的目的在于提供一种成本低廉渗滤复合薄膜、制备方法及其光电应用,此制备方法简单,可重复性高。
为实现上述目的,本发明采用如下技术方案:
一种渗滤复合材料,是由一种无机半导体和一种绝缘体纳米颗粒组成,具有互穿网络形式的体异质结结构材料;
所述的半导体材料,包括一系列金属氧化物、金属硫化物、金属磷化物、金属氮化物等材料,例如:氧化钴、氧化镍、氧化铜、氧化锰、氧化钒、氧化铁、氧化铬、氧化镓、氧化锌、氧化锡、氧化钛等,硫化钴,硫化锌、硫化铜,硫化亚铁、硫化锰、硫化铟等,磷化锌、磷化铝、磷化铜等,氮化钴、氮化锰、氮化钨、氮化锆等;
所述绝缘体材料,包括一系列碳酸盐类材料:碳酸锶、碳酸钡、碳酸钙、碳酸镁、碳酸铯、碳酸铷、碳酸钾等。
进一步的,所述渗滤复合材料是Co3O4-SrCO3其晶体结构与正交结构SrCO3(JCPDSNo.05-0418)和立方结构的Co3O4(JCPDS No.09-0418)相匹配;Co3O4-SrCO3渗滤复合材料相应的XRD图谱为图1所示。
进一步的,渗滤复合薄膜是由SrCO3和Co3O4纳米颗粒组成的,晶面间距(d)约为0.354nm,为正交结构SrCO3的(111)晶面,d值为0.233nm,与立方结构Co3O4(222)晶面相一致。
本发明的另一个目的是提出一种渗滤复合薄膜的制备方法,包含以下步骤:
将含有无机半导体和绝缘体材料的混合前驱体溶液涂布在基底材料并进行退火制得;或液相法制备出无机半导体和绝缘体纳米颗粒,然后将二者分散在溶剂中,随后涂布在基底材料上制得。
所述的含有无机半导体以及绝缘体材料的前驱体溶液,为各种金属化合物粉末作为金属源,柠檬酸、柠檬酸钠或乙二胺四乙酸等作为添加剂,2-甲氧基乙醇、N,N-二甲基甲酰胺、乙醇、异丙醇、去离子水或二甲基亚砜等作为溶剂形成的前驱体溶液;所述前驱体溶液中金属离子的总浓度为0.01-1.00M,优选0.2-0.5M;所述添加剂的用量为溶液中金属离子总量的0.1-10倍。
所述基底材料是FTO或ITO导电玻璃;将渗滤复合材料的前驱体溶液涂布在刻蚀、清洗过的FTO导电玻璃上,形成致密的薄膜,然后将涂布好的薄膜400~550℃马弗炉煅烧0.5~2h制备。
本发明还提出了一种渗滤复合薄膜的应用,是将薄膜作为钙钛矿太阳能电池工序装配为器件。
所述器件的制备方法是:将煅烧好的渗滤薄膜作为钙钛矿太阳能电池的空穴传输层,然后在渗滤薄膜上旋涂钙钛矿吸收层、电子传输层、空穴阻隔层以及蒸镀金属电极,得到完整的标准钙钛矿太阳能电池器件。
所述的钙钛矿前驱体溶液为最终合成钙钛矿太阳能电池中对应钙钛矿吸收层的组分前驱体。
例如:CH3NH3PbI3钙钛矿光电器件,其对应的是PbI2和CH3NH3I前驱体溶液;1.3M的PbI2前驱体溶液由1.1986g碘化铅粉末溶解在2mL N,N-二甲基甲酰胺和185μL的二甲基亚砜混合溶剂中,室温搅拌12~20小时,滤头过滤后备用;40mg/mL的CH3NH3I由80mg甲胺碘粉末溶解在2mL的异丙醇溶液中,室温搅拌12~20小时,无过滤;然后通过两步旋涂法依次将PbI2和CH3NH3I前驱体溶液,旋涂在渗滤薄膜空穴层基底上退火成膜,后续采用标准钙钛矿太阳能电池工序装配为器件;
CsPbI2Br光电器件,对应的是CsPbI2Br前驱体溶液;制备方法是将312mg碘化铯,276.61mg碘化铅和220.20mg溴化铅溶解在1mL的二甲基亚砜溶剂中,50℃温度下搅拌12~20小时,滤头过滤后备用,最终形成CsPbI2Br无机钙钛矿前驱体溶液;然后通过溶液旋涂法将CsPbI2Br无机钙钛矿前驱体溶液,旋涂在渗滤薄膜空穴层基底上退火成膜,后续采用标准钙钛矿太阳能电池工序装配为器件;
CH(NH2)2PbI3光电器件,对应的是PbI2和CH(NH2)2I前驱体溶液;制备方法是PbI2前驱体溶液由622.35mg碘化铅粉末溶解在900μL N,N-二甲基甲酰胺和100μL的二甲基亚砜混合溶剂中,60℃温度下搅拌12~20小时,无需过滤;CH(NH2)2I前驱体溶液由94.58mg甲脒碘粉末和7.42mg甲胺氯粉末溶解在1mL的异丙醇溶液中,室温搅拌12~20小时,无过滤;然后通过两步旋涂法依次将PbI2和CH(NH2)2I前驱体溶液,旋涂在渗滤薄膜空穴层基底上退火成膜,后续采用标准钙钛矿太阳能电池工序装配为器件。
上述应用方法如下:采用标准工艺装配钙钛矿太阳能电池后,在模拟AM 1.5G太阳光照射下,测试光电转化效率。
上述无机渗滤结构空穴传输层材料具有优异的光电特性,相应的钙钛矿电池拥有高的光电转换效率及稳定性。
本发明的有益效果在于:
(1)采用简单的溶液旋涂法成膜,退火后得到的无机渗滤复合薄膜具有优异的导电性和匹配的能带,优化空穴的提取和传输路径,合成薄膜操作简便,重复性好。
(2)所使用的金属化合物种类众多、来源方便且价格低廉,所需添加剂和溶剂均为商业产品,简单易得,不需要进一步处理。
(3)将无机渗滤复合薄膜作为钙钛矿太阳能电池空穴传输层材料,结果表明器件具有非常优异的光电转换效率和稳定性,如合成制备的Co3O4-SrCO3渗滤复合薄膜材料,使得CH3NH3PbI3电池效率提升至21.04%(电池有效面积为0.0625cm2),且组装电池后亦能在相对湿度小于20%,1000h之后维持原始效率的91%以上。
附图说明
图1是实施例1所制备Co3O4-SrCO3渗滤复合材料的XRD图谱。
图2是实施例1所制备Co3O4-SrCO3渗滤复合薄膜的高倍透射电镜图片。
图3是实施例1所制备Co3O4-SrCO3渗滤复合薄膜,以及对应的单一材料SrCO3和Co3O4薄膜的扫描电镜图片。
图4是实施例1所制备Co3O4-SrCO3渗滤复合薄膜,以及对应的单一材料SrCO3和Co3O4薄膜的导电原子力显微镜图片。
图5是实施例1所制备Co3O4-SrCO3渗滤复合薄膜作为空穴传输层材料应用到MAPbI3器件中,装配的钙钛矿器件获得的最高效率,及器件不同扫描方式下(反扫模式和正扫模式)对应的电流-电压曲线图。
图6是实施例1所制备Co3O4-SrCO3渗滤复合薄膜作为空穴传输层材料应用到MAPbI3器件中,装配的钛矿器件相应的稳定性测试曲线。
具体实施方式
下面,结合附图和实施例,对本发明的具体实施方式做进一步详细的说明,但不应以此限制本发明的保护范围。
本文所公开的“范围”以下限和上限的形式。可以分别为一个或多个下限,和一个或多个上限。给定范围是通过选定一个下限和一个上限进行限定的。选定的下限和上限限定了特别范围的边界。所有可以这种方式进行限定的范围是包含和可组合的,即任何下限可以与任何上限组合形成一个范围。例如,针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围3,4和5,则下面的范围可全部预料到:1-2、1-4、1-5、2-3、2-4和2-5。
本发明中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。
在本发明中,如果没有特别的说明,本文所提到的所有实施方式以及优选实施方式可以互相组合形成新的技术方案。
在本发明中,如果没有特别的说明,本文所提到的所有技术特征以及优选特征可以互相组合形成新的技术方案。
下面将结合具体实施例来具体阐述本发明的优选实施方法,但是应当理解,本领域技术人员可以在不背离权利要求书限定的范围的前提下,对这些实施例进行合理的变化、改良和相互组合,从而获得新的具体实施方法,这些通过变化、改良和相互组合获得的新的具体实施方式也都包括在本发明的保护范围之内。
实施例1
步骤一、Co3O4-SrCO3渗滤复合薄膜材料的制备
室温下,首先称量0.75mmol的六水合氯化锶SrCl2·6H2O,0.75mmol的六水合氯化钴CoCl2·6(H2O)以及3.0mmol的一水柠檬酸C6H8O7·H2O溶解在5mL的2-甲氧基乙醇中。在磁力搅拌的情况下,搅拌过夜,最终得到均匀的前驱体溶液。然后取30~50μL的前驱体溶液旋涂在清洗过的FTO导电玻璃上(3000转,30秒),随后在加热台上150℃加热5分钟,转移到马弗炉中500℃煅烧1小时,形成致密均匀的渗滤复合薄膜。所述的薄膜制备在空气氛围中完成。
除Co3O4-SrCO3渗滤复合薄膜之外,其它对应的无机半导体-绝缘体复合材料均采用以上相同的合成方式,包括:NiO-SrCO3,CuO-SrCO3,Fe2O3-SrCO3和MnO2-SrCO3等。
图1为所制备的Co3O4-SrCO3渗滤复合材料相应的XRD图谱。可以看出,所制备材料是由SrCO3和Co3O4组成,其晶体结构与正交结构SrCO3(JCPDS No.05-0418)和立方结构的Co3O4(JCPDS No.09-0418)相匹配。
图2为Co3O4-SrCO3渗滤复合薄膜对应的高倍透射电镜图片。涂敷在导电玻璃FTO上的透射电镜薄膜样品是用聚焦离子束(FIB)系统制备的。图片对应的标尺为2nm,从图中可以进一步看出,渗滤复合薄膜是由SrCO3和Co3O4纳米颗粒组成的,晶面间距(d)约为0.354nm,为正交结构SrCO3的(111)晶面,d值为0.233nm,与立方结构Co3O4(222)晶面相一致。
图3为Co3O4-SrCO3渗滤复合薄膜,以及对应的单一材料SrCO3和Co3O4薄膜的扫描电镜图片。图片对应的标尺为500nm,从图中可以看出Co3O4-SrCO3渗滤复合薄膜在基底FTO上具有更优异的成膜质量。
步骤二、性能表征测试
CH3NH3PbI3钙钛矿光电器件,其对应的是PbI2和CH3NH3I前驱体溶液;1.3M的PbI2前驱体溶液由1.1986g碘化铅粉末溶解在2mL N,N-二甲基甲酰胺和185μL的二甲基亚砜混合溶剂中,室温搅拌12~20小时,滤头过滤后备用;40mg/mL的CH3NH3I由80mg甲胺碘粉末溶解在2mL的异丙醇溶液中,室温搅拌12~20小时,无过滤;然后通过两步旋涂法依次将PbI2和CH3NH3I前驱体溶液,旋涂在渗滤薄膜空穴层基底上退火成膜,后续采用标准钙钛矿太阳能电池工序装配为器件;
CsPbI2Br光电器件,对应的是CsPbI2Br前驱体溶液;制备方法是将312mg碘化铯,276.61mg碘化铅和220.20mg溴化铅溶解在1mL的二甲基亚砜溶剂中,50℃温度下搅拌12~20小时,过滤后备用,最终形成CsPbI2Br无机钙钛矿前驱体溶液;然后通过溶液旋涂法将CsPbI2Br无机钙钛矿前驱体溶液,旋涂在渗滤薄膜空穴层基底上退火成膜,后续采用标准钙钛矿太阳能电池工序装配为器件;
CH(NH2)2PbI3光电器件,对应的是PbI2和CH(NH2)2I前驱体溶液;制备方法是PbI2前驱体溶液由622.35mg碘化铅粉末溶解在900μL N,N-二甲基甲酰胺和100μL的二甲基亚砜混合溶剂中,60℃温度下搅拌12~20小时,无需过滤;CH(NH2)2I前驱体溶液由94.58mg甲脒碘粉末和7.42mg甲胺氯粉末溶解在1mL的异丙醇溶液中,室温搅拌12~20小时;然后通过两步旋涂法依次将PbI2和CH(NH2)2I前驱体溶液,旋涂在渗滤薄膜空穴层基底上退火成膜,后续采用标准钙钛矿太阳能电池工序装配为器件。
本实施例中取20~35μL PbI2前驱体溶液,旋涂在Co3O4-SrCO3渗滤复合薄膜(空穴传输层)覆盖的FTO玻璃上,随后取35~50μL CH3NH3I前驱体溶液进行旋涂成膜,然后115℃加热10分钟,形成CH3NH3PbI3钙钛矿吸收层薄膜。薄膜冷却之后旋涂[6,6]-苯基-C61-丁酸甲酯(PC61BM)电子层(20mg/ml的氯苯溶液),随后旋涂浴铜灵(BCP)空穴阻挡层(0.5mg/ml的乙醇溶液),然后70℃加热15分钟,薄膜冷却之后蒸镀银电极(100nm厚),装配成钙钛矿太阳能电池,通过太阳光模拟器,在100mW cm-2标准光的照射下,测试光电转化效率。电池的有效面积为0.0625cm2
图4为Co3O4-SrCO3渗滤复合薄膜,以及对应的单一材料SrCO3和Co3O4薄膜的导电原子力显微镜图片。图片对应的标尺为400nm,从图中可以看出对于SrCO3薄膜,由于其绝缘特性,薄膜表面平均电流仅为4皮安,对于Co3O4薄膜大多数区域的电流集中在2-8纳安,与之对应的Co3O4-SrCO3渗滤复合薄膜表面电流分布更均匀,平均值大于10纳安。
图5是采用标准工艺装配钙钛矿太阳能电池后,反扫模式下,光电转化效率达到21.04%(短路电流23.17mA/cm2,开路电压1.120V,填充因子81.00%);电池器件迟滞效应小,在正扫模式下,电池效率为20.57%(短路电流23.14mA/cm2,开路电压1.117V,填充因子79.60%)。
图6是采用标准工艺装配钙钛矿太阳能电池后,放置在相对湿度15%±5%的干燥箱中测试其湿度稳定性。从图谱可以看出基于无机Co3O4-SrCO3空穴传输层的钙钛矿器件具有优异的稳定性。

Claims (10)

1.一种渗滤复合材料,其特征在于,是由一种无机半导体和一种绝缘体纳米颗粒组成的互穿网络结构;其中,所述的半导体材料,是金属氧化物、金属硫化物、金属磷化物或金属氮化物;所述绝缘体材料,是碳酸盐。
2.根据权利要求1所述的一种渗滤复合材料,其特征在于,所述金属氧化物、金属硫化物、金属磷化物或金属氮化物是氧化钴、氧化镍、氧化铜、氧化锰、氧化钒、氧化铁、氧化铬、氧化镓、氧化锌、氧化锡、氧化钛,硫化钴,硫化锌、硫化铜,硫化亚铁、硫化锰、硫化铟,磷化锌、磷化铝、磷化铜、氮化钴、氮化锰、氮化钨或氮化锆;
所述碳酸盐是碳酸锶、碳酸钡、碳酸钙、碳酸镁、碳酸铯、碳酸铷或碳酸钾。
3.根据权利要求2所述的一种渗滤复合材料,其特征在于,所述渗滤复合材料是Co3O4-SrCO3其晶体结构与正交结构SrCO3(JCPDS No.05-0418)和立方结构的Co3O4(JCPDS No.09-0418)相匹配;晶面间距(d)约为0.354nm,为正交结构SrCO3的(111)晶面,d值为0.233nm,与立方结构Co3O4(222)晶面相一致。
4.一种渗滤复合薄膜的制备方法,其特征在于,是将含有权利要求1或2或3所述的无机半导体以及绝缘体材料的混合前驱体溶液涂布在基底材料并进行退火制得;或液相法制备出无机半导体和绝缘体纳米颗粒,然后将二者分散在溶剂中涂布在基底材料上制得。
5.根据权利要求4所述的制备方法,其特征在于,所述的含有无机半导体以及绝缘体材料的前驱体溶液,为各种金属化合物粉末作为金属源,柠檬酸、柠檬酸钠或乙二胺四乙酸作为添加剂,2-甲氧基乙醇、N,N-二甲基甲酰胺、乙醇、异丙醇、去离子水或二甲基亚砜作为溶剂形成的前驱体溶液;所述前驱体溶液中金属离子的总浓度为0.1-0.8M,优选0.2-0.5M;所述添加剂的用量为溶液中金属离子总量的1-3倍。
6.根据权利要求4所述的方法,其特征在于,所述基底材料是FTO或ITO导电玻璃。
7.根据权利要求4所述的方法,其特征在于,将渗滤复合材料的前驱体溶液涂布在刻蚀、清洗过的FTO导电玻璃上,形成致密的薄膜,然后将涂布好的薄膜400~550℃马弗炉煅烧0.5~2h制备。
8.一种渗滤复合薄膜的应用,其特征在于,是将薄膜作为钙钛矿太阳能电池工序装配为器件;
所述器件的制备方法是:将煅烧好的渗滤薄膜作为钙钛矿太阳能电池的空穴传输层,然后在渗滤薄膜上旋涂钙钛矿吸收层、电子传输层、空穴阻挡层以及蒸镀金属电极,得到完整的标准钙钛矿太阳能电池器件。
9.根据权利要求8所述的应用,其特征在于,器件为卤化物钙钛矿光电器件;包括:
CH3NH3PbI3光电器件,对应的是PbI2和CH3NH3I前驱体溶液;制备方法是1.3M的PbI2前驱体溶液由1.1986g碘化铅粉末溶解在2mL N,N-二甲基甲酰胺和185μL的二甲基亚砜混合溶剂中,室温搅拌12~20小时,滤头过滤后备用;40mg/mL的CH3NH3I由80mg甲胺碘粉末溶解在2mL的异丙醇溶液中,室温搅拌12~20小时,无过滤;然后通过两步旋涂法依次将PbI2和CH3NH3I前驱体溶液,旋涂在渗滤薄膜空穴层基底上退火成膜,后续采用标准钙钛矿太阳能电池工序装配为器件;
CsPbI2Br光电器件,对应的是CsPbI2Br前驱体溶液;制备方法是将312mg碘化铯,276.61mg碘化铅和220.20mg溴化铅溶解在1mL的二甲基亚砜溶剂中,50℃温度下搅拌12~20小时,滤头过滤后备用,最终形成CsPbI2Br无机钙钛矿前驱体溶液;然后通过溶液旋涂法将CsPbI2Br无机钙钛矿前驱体溶液,旋涂在渗滤薄膜空穴层基底上退火成膜,后续采用标准钙钛矿太阳能电池工序装配为器件;
CH(NH2)2PbI3光电器件,对应的是PbI2和CH(NH2)2I前驱体溶液;制备方法是PbI2前驱体溶液由622.35mg碘化铅粉末溶解在900μLN,N-二甲基甲酰胺和100μL的二甲基亚砜混合溶剂中,60℃温度下搅拌12~20小时,无需过滤;CH(NH2)2I前驱体溶液由94.58mg甲脒碘粉末和7.42mg甲胺氯粉末溶解在1mL的异丙醇溶液中,室温搅拌12~20小时,无过滤;然后通过两步旋涂法依次将PbI2和CH(NH2)2I前驱体溶液,旋涂在渗滤薄膜空穴层基底上退火成膜,后续采用标准钙钛矿太阳能电池工序装配为器件。
10.根据权利要求8所述的应用,其特征在于,采用标准工艺装配钙钛矿太阳能电池后,在标准太阳光辐照度的测试条件下,所述渗滤复合薄膜钙钛矿器件具有高的光电转化效率以及优异的稳定性。
CN202110263158.8A 2021-03-10 2021-03-10 一种渗滤复合薄膜、制备方法及其光电应用 Active CN113078263B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110263158.8A CN113078263B (zh) 2021-03-10 2021-03-10 一种渗滤复合薄膜、制备方法及其光电应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110263158.8A CN113078263B (zh) 2021-03-10 2021-03-10 一种渗滤复合薄膜、制备方法及其光电应用

Publications (2)

Publication Number Publication Date
CN113078263A true CN113078263A (zh) 2021-07-06
CN113078263B CN113078263B (zh) 2024-06-21

Family

ID=76612311

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110263158.8A Active CN113078263B (zh) 2021-03-10 2021-03-10 一种渗滤复合薄膜、制备方法及其光电应用

Country Status (1)

Country Link
CN (1) CN113078263B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129252A (zh) * 2016-07-18 2016-11-16 武汉大学 基于Spiro‑OMeTAD/PbS复合空穴传输层的钙钛矿太阳能电池及其制备方法
US20170162809A1 (en) * 2014-08-19 2017-06-08 Wuhan University Perovskite thin-film photovoltaic cell and preparation method thereof
CN111029465A (zh) * 2019-11-13 2020-04-17 徐州吴瑞信息科技有限公司 一种有机无机杂化钙钛矿太阳能电池的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170162809A1 (en) * 2014-08-19 2017-06-08 Wuhan University Perovskite thin-film photovoltaic cell and preparation method thereof
CN106129252A (zh) * 2016-07-18 2016-11-16 武汉大学 基于Spiro‑OMeTAD/PbS复合空穴传输层的钙钛矿太阳能电池及其制备方法
CN111029465A (zh) * 2019-11-13 2020-04-17 徐州吴瑞信息科技有限公司 一种有机无机杂化钙钛矿太阳能电池的制备方法

Also Published As

Publication number Publication date
CN113078263B (zh) 2024-06-21

Similar Documents

Publication Publication Date Title
Shahiduzzaman et al. The benefits of ionic liquids for the fabrication of efficient and stable perovskite photovoltaics
Duan et al. Inorganic perovskite solar cells: an emerging member of the photovoltaic community
Yin et al. Nickel oxide as efficient hole transport materials for perovskite solar cells
Mahajan et al. Review of current progress in hole-transporting materials for perovskite solar cells
Hu et al. Sol-gel-processed yttrium-doped NiO as hole transport layer in inverted perovskite solar cells for enhanced performance
Pan et al. Quantum dot-sensitized solar cells
Wang et al. One plus one greater than two: high-performance inverted planar perovskite solar cells based on a composite CuI/CuSCN hole-transporting layer
Zheng et al. Iodine-doped ZnO nanopillar arrays for perovskite solar cells with high efficiency up to 18.24%
Shalan et al. Cobalt oxide (CoO x) as an efficient hole-extracting layer for high-performance inverted planar perovskite solar cells
Park et al. Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p‐type NiO electrode formed by a pulsed laser deposition
Li et al. Dimensional diversity (0D, 1D, 2D, 3D) in Perovskite solar cells: Exploring the potential of mix-dimensional integrations
Mali et al. A solution processed nanostructured p-type NiO electrode for efficient inverted perovskite solar cells
Liu et al. Thickness-dependent photovoltaic performance of TiO2 blocking layer for perovskite solar cells
CN109728169B (zh) 一种掺杂有功能添加剂的钙钛矿太阳电池及其制备方法
Wang et al. Energy level and thickness control on PEDOT: PSS layer for efficient planar heterojunction perovskite cells
Bhatt et al. Current progress and scientific challenges in the advancement of organic–inorganic lead halide perovskite solar cells
Gao et al. Porous Organic Cage Induced Spontaneous Restructuring of Buried Interface Toward High‐Performance Perovskite Photovoltaic
Xu et al. All-inorganic perovskite quantum dots as light-harvesting, interfacial, and light-converting layers toward solar cells
Xu et al. Highly oriented quasi-2D layered tin halide perovskites with 2-thiopheneethylammonium iodide for efficient and stable tin perovskite solar cells
Choi et al. First demonstration of lithium, cobalt and magnesium introduced nickel oxide hole transporters for inverted methylammonium lead triiodide based perovskite solar cells
Luo et al. AgAl alloy electrode for efficient perovskite solar cells
Singh et al. Efficient and thermally stable CH3NH3PbI3 based perovskite solar cells with double electron and hole extraction layers
Ge et al. Self‐Organized Co3O4‐SrCO3 Percolative Composites Enabling Nanosized Hole Transport Pathways for Perovskite Solar Cells
Zhao et al. Controlled reaction for improved CH 3 NH 3 PbI 3 transition in perovskite solar cells
Ye et al. A SrGeO 3 inorganic electron-transporting layer for high-performance perovskite solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant