CN113069148A - 一种自动识别气体与固体栓子信号的方法 - Google Patents
一种自动识别气体与固体栓子信号的方法 Download PDFInfo
- Publication number
- CN113069148A CN113069148A CN202110622592.0A CN202110622592A CN113069148A CN 113069148 A CN113069148 A CN 113069148A CN 202110622592 A CN202110622592 A CN 202110622592A CN 113069148 A CN113069148 A CN 113069148A
- Authority
- CN
- China
- Prior art keywords
- doppler
- frequency
- solid
- microemboli
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007787 solid Substances 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 31
- 208000005189 Embolism Diseases 0.000 title abstract description 16
- 230000017531 blood circulation Effects 0.000 claims abstract description 24
- 210000001627 cerebral artery Anatomy 0.000 claims abstract description 16
- 230000003073 embolic effect Effects 0.000 claims description 11
- 230000000694 effects Effects 0.000 abstract description 7
- 238000012544 monitoring process Methods 0.000 abstract description 2
- 238000012216 screening Methods 0.000 abstract 1
- 230000003111 delayed effect Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 208000032382 Ischaemic stroke Diseases 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000002966 stenotic effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Clinical applications
- A61B8/0833—Clinical applications involving detecting or locating foreign bodies or organic structures
- A61B8/085—Clinical applications involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/488—Diagnostic techniques involving Doppler signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/52—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/5215—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
- A61B8/5223—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Vascular Medicine (AREA)
- Physiology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
本发明涉及医疗监测技术领域,具体涉及一种自动识别气体与固体栓子信号的方法;通过对观察者发射超声波声源,当超声经过观察者大脑动脉中流动的血流成分,则会得到相应的回波信号,再基于超声多普勒效应,得出血流速度,将血流速度带入公式中计算出多普勒频移,将计算出的多普勒频移与正常人的各阈值频率进行对比,即可识别出观察者大脑动脉中是否存在气体微栓子或固体微栓子,对于筛选高危患者和了解栓子的来源均有帮助,为临床上有的放矢的治疗提供必要信息,有利于及时对患者进行治疗。
Description
技术领域
本发明涉及医疗监测技术领域,尤其涉及一种自动识别气体与固体栓子信号的方法。
背景技术
栓子指栓塞时阻塞血管的物质。大脑动脉中流动的栓子分为气体微栓子和固体微栓子,固体微栓子一般由血小板等成分组成,容易造成大脑微小动脉栓塞。
栓塞是引起缺血性脑卒中的主要原因之一。栓子可来自心脏、颈部和颅内某些狭窄的动脉区段。但目前这方面的诊断仍大部份依赖于一些间接证据,不能直接监测出原因,耽误患者治疗。
发明内容
本发明的目的在于提供一种自动识别气体与固体栓子信号的方法,旨在解决现有技术中的栓塞诊断仍大部份依赖于一些间接证据,不能直接监测出原因,耽误患者治疗的技术问题。
为实现上述目的,本发明采用的一种自动识别气体与固体栓子信号的方法,包括以下步骤:
对观察者发射超声波声源,超声经过观察者大脑动脉中流动的血流成分,获得相应的回波信号;
通过所述回波信号得出观察者大脑动脉中的血流速度,再利用所述血流速度计算出多普勒频移;
将所述多普勒频移与设定的阈值频率进行对比,判断得出结论。
向观察者发射超声波声源,获得相应的回波信号,并根据超声多普勒效应得出大脑动脉中的血流速度,将血流速度带入计算公式中进行计算,获得多普勒频移,将计算得出的多普勒频移与预先监测出的正常人的各个阈值频率进行对比,判断出观察者的情况。
其中,将所述多普勒频移与设定的阈值频率进行对比,判断得出结论,所述方法还包括:
所述多普勒频移小于伪差阈值频率,判断结论为伪差。
其中,将所述多普勒频移与设定的阈值频率进行对比,判断得出结论,所述方法还包括:
所述多普勒频移大于伪差阈值频率,并小于微栓子阈值频率,且持续时间小于伪差阈值时间,判断结论为伪差。
其中,将所述多普勒频移与设定的阈值频率进行对比,判断得出结论,所述方法还包括:
所述多普勒频移大于微栓子阈值频率,判断结论为微栓子。
其中,将所述多普勒频移与设定的阈值频率进行对比,判断得出结论,所述方法还包括:
所述多普勒频移大于伪差阈值频率,并小于微栓子阈值频率,且持续时间大于伪差阈值时间,判断结论为微栓子。
其中,将所述多普勒频移与设定的阈值频率进行对比,判断得出结论,所述方法还包括:
所述多普勒频移大于气体-固体阈值频率,或所述多普勒信号强度大于气体阈值强度,判断结论为气体微栓子。
其中,将所述多普勒频移与设定的阈值频率进行对比,判断得出结论,所述方法还包括:
所述多普勒频移小于气体-固体阈值频率,且多普勒信号强度小于固体阈值强度,判断结论为固体微栓子。
本发明的自动识别气体与固体栓子信号的方法,通过对观察者发射超声波声源,当超声经过观察者大脑动脉中流动的血流成分,则会得到相应的回波信号,再基于超声多普勒效应,得出血流速度,将血流速度带入公式中计算出多普勒频移,将计算出的多普勒频移与正常人的各个阈值频率进行对比,即可识别出观察者大脑动脉中是否存在气体微栓子或固体微栓子,对于筛选高危患者和了解栓子的来源均有帮助,为临床上有的放矢的治疗提供必要信息,有利于及时对患者进行治疗。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明的自动识别气体与固体栓子信号的方法的步骤图。
图2是本发明的自动识别气体与固体栓子信号的方法的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
请参阅图1,本发明提供了一种自动识别气体与固体栓子信号的方法,包括以下步骤:
S101:对观察者发射超声波声源,超声经过观察者大脑动脉中流动的血流成分,获得相应的回波信号;
具体的,超声多普勒效应是指当超声波声源与观察者相对运动时,观察者接收到的频率就会和超声波声源频率不同,其频率差与相对速度存在映射关系。液体中的气泡或固体微粒随着流体运动并能反射超声,其反射声波也存在多普勒效应;进而利用超声波能够监测大脑动脉中的血流情况。采用超声经颅多普勒仪器对观察者发射超声波声源,当超声经过大脑动脉中流动的血流成分,则会得到相应的回波信号,捕捉其回波信号,可知观察者体内的声波速度。
S102:通过所述回波信号得出观察者大脑动脉中的血流速度,再利用所述血流速度计算出多普勒频移;
具体的,基于超声多普勒效应,利用所述回波信号得出观察者的血流速度,当血液中含有气泡或固体微粒穿过超声波传播路径时,由于密度和物理性质差异会产生强烈的回波信号,即高强度瞬态信号(High Intensity Transient Signals,HITS),将已知数据代入如下公式进行计算:
S103:将所述多普勒频移与设定的阈值频率进行对比,判断得出结论。
具体的,预先对正常人进行相同仪器、相同时间和相同动脉位置的监测,可得出正常人的各个阈值频率,将计算出的观察者的多普勒频移与正常人的各个阈值频率进行对比,即可知观察者的情况。
请参阅图2,基于HITS信号的气体与固体微栓子自动识别方法,具体如下:
1、满足以下任一条件,判为伪差(Artifacts):
2、满足以下任一条件,判为微栓子(microembolic signal,MES):
3、识别气体与固体微栓子:
本发明的自动识别气体与固体栓子信号的方法,通过对观察者发射超声波声源,当超声经过观察者大脑动脉中流动的血流成分,则会得到相应的回波信号,再基于超声多普勒效应,得出血流速度,将血流速度带入公式中计算出多普勒频移,将计算出的多普勒频移与正常人的各个阈值频率进行对比,即可识别出观察者大脑动脉中是否存在气体微栓子或固体微栓子,对于筛选高危患者和了解栓子的来源均有帮助,为临床上有的放矢的治疗提供必要信息,有利于及时对患者进行治疗。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。
Claims (7)
1.一种自动识别气体与固体栓子信号的方法,其特征在于,包括以下步骤:
对观察者发射超声波声源,超声经过观察者大脑动脉中流动的血流成分,获得相应的回波信号;
通过所述回波信号得出观察者大脑动脉中的血流速度,再利用所述血流速度计算出多普勒频移;
将所述多普勒频移与设定的阈值频率进行对比,判断得出结论。
2.如权利要求1所述的自动识别气体与固体栓子信号的方法,其特征在于,将所述多普勒频移与设定的阈值频率进行对比,判断得出结论,所述方法还包括:
所述多普勒频移小于伪差阈值频率,判断结论为伪差。
3.如权利要求2所述的自动识别气体与固体栓子信号的方法,其特征在于,将所述多普勒频移与设定的阈值频率进行对比,判断得出结论,所述方法还包括:
所述多普勒频移大于伪差阈值频率,并小于微栓子阈值频率,且持续时间小于伪差阈值时间,判断结论为伪差。
4.如权利要求3所述的自动识别气体与固体栓子信号的方法,其特征在于,将所述多普勒频移与设定的阈值频率进行对比,判断得出结论,所述方法还包括:
所述多普勒频移大于微栓子阈值频率,判断结论为微栓子。
5.如权利要求4所述的自动识别气体与固体栓子信号的方法,其特征在于,将所述多普勒频移与设定的阈值频率进行对比,判断得出结论,所述方法还包括:
所述多普勒频移大于伪差阈值频率,并小于微栓子阈值频率,且持续时间大于伪差阈值时间,判断结论为微栓子。
6.如权利要求1所述的自动识别气体与固体栓子信号的方法,其特征在于,将所述多普勒频移与设定的阈值频率进行对比,判断得出结论,所述方法还包括:
所述多普勒频移大于气体-固体阈值频率,或所述多普勒信号强度大于气体阈值强度,判断结论为气体微栓子。
7.如权利要求6所述的自动识别气体与固体栓子信号的方法,其特征在于,将所述多普勒频移与设定的阈值频率进行对比,判断得出结论,所述方法还包括:
所述多普勒频移小于气体-固体阈值频率,且多普勒信号强度小于固体阈值强度,判断结论为固体微栓子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110622592.0A CN113069148A (zh) | 2021-06-04 | 2021-06-04 | 一种自动识别气体与固体栓子信号的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110622592.0A CN113069148A (zh) | 2021-06-04 | 2021-06-04 | 一种自动识别气体与固体栓子信号的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113069148A true CN113069148A (zh) | 2021-07-06 |
Family
ID=76617036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110622592.0A Pending CN113069148A (zh) | 2021-06-04 | 2021-06-04 | 一种自动识别气体与固体栓子信号的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113069148A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116098656A (zh) * | 2023-04-13 | 2023-05-12 | 南京左右脑医疗科技集团有限公司 | 栓子监测方法、装置和存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4319580A (en) * | 1979-08-28 | 1982-03-16 | The Board Of Regents Of The University Of Washington | Method for detecting air emboli in the blood in an intracorporeal blood vessel |
US5348015A (en) * | 1992-09-17 | 1994-09-20 | Applied Physiology And Medicine | Method and apparatus for ultrasonically detecting, counting and/or characterizing emboli |
US20060264759A1 (en) * | 2005-05-20 | 2006-11-23 | Moehring Mark A | System and method for grading microemboli monitored by a multi-gate doppler ultrasound system |
EA201000034A1 (ru) * | 2009-12-04 | 2010-10-29 | Закрытое Акционерное Общество "Научно-Производственная Фирма "Биосс" | Способ определения микроэмболов в мозговом кровотоке |
RU2587310C1 (ru) * | 2015-04-07 | 2016-06-20 | Закрытое акционерное общество "СПЕКТРОМЕД" | Способ определения и дифференцировки микроэмболов в мозговом кровотоке посредством ультразвуковой допплеровской системы |
-
2021
- 2021-06-04 CN CN202110622592.0A patent/CN113069148A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4319580A (en) * | 1979-08-28 | 1982-03-16 | The Board Of Regents Of The University Of Washington | Method for detecting air emboli in the blood in an intracorporeal blood vessel |
US5348015A (en) * | 1992-09-17 | 1994-09-20 | Applied Physiology And Medicine | Method and apparatus for ultrasonically detecting, counting and/or characterizing emboli |
US20060264759A1 (en) * | 2005-05-20 | 2006-11-23 | Moehring Mark A | System and method for grading microemboli monitored by a multi-gate doppler ultrasound system |
EA201000034A1 (ru) * | 2009-12-04 | 2010-10-29 | Закрытое Акционерное Общество "Научно-Производственная Фирма "Биосс" | Способ определения микроэмболов в мозговом кровотоке |
RU2587310C1 (ru) * | 2015-04-07 | 2016-06-20 | Закрытое акционерное общество "СПЕКТРОМЕД" | Способ определения и дифференцировки микроэмболов в мозговом кровотоке посредством ультразвуковой допплеровской системы |
Non-Patent Citations (3)
Title |
---|
EMMA M. L. CHUNG: "Transcranial Doppler Embolus Detection: A Primer", 《ULTRASOUND》 * |
VENDEL KEMÉNY: "Microemboli Detection by Transcranial Doppler Ultrasound", 《SEMMELWEIS UNIVERSITY SCHOOL OF PH.D. STUDIES》 * |
周利胜: "经颅多普勒超声微栓子信号的研究进展", 《江西医药》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116098656A (zh) * | 2023-04-13 | 2023-05-12 | 南京左右脑医疗科技集团有限公司 | 栓子监测方法、装置和存储介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sarkar et al. | Role of transcranial Doppler ultrasonography in stroke | |
Saric et al. | Guidelines for the use of echocardiography in the evaluation of a cardiac source of embolism | |
US5348015A (en) | Method and apparatus for ultrasonically detecting, counting and/or characterizing emboli | |
Polak | Peripheral vascular sonography | |
Boote | AAPM/RSNA physics tutorial for residents: topics in US: Doppler US techniques: concepts of blood flow detection and flow dynamics | |
Wardlaw et al. | Color transcranial “power” Doppler ultrasound of intracranial aneurysms | |
EP3097538B1 (en) | Evaluation of carotid plaque using contrast enhanced ultrasonic imaging | |
US9918696B2 (en) | Method and apparatus for detecting a gas pocket using ultrasound | |
Oikawa et al. | Preoperative cervical carotid artery contrast-enhanced ultrasound findings are associated with development of microembolic signals on transcranial Doppler during carotid exposure in endarterectomy | |
Bathala et al. | Cerebrovascular ultrasonography: Technique and common pitfalls | |
CN113069148A (zh) | 一种自动识别气体与固体栓子信号的方法 | |
Kussman et al. | Cerebral emboli monitoring using transcranial Doppler ultrasonography in adults and children: a review of the current technology and clinical applications in the perioperative and intensive care setting | |
Clark et al. | Noninvasive screening of extracranial carotid disease: duplex sonography with angiographic correlation. | |
Klingelhöfer | Ultrasonography of carotid stenosis | |
Silvilairat et al. | Abdominal aortic pulsed wave Doppler patterns reliably reflect clinical severity in patients with coarctation of the aorta | |
Evans | Ultrasonic detection of cerebral emboli | |
WO2006015264A2 (en) | T-statistic method for suppressing artifacts in blood vessel ultrasonic imaging | |
Kathpalia et al. | A robust Doppler spectral envelope detection technique for automated blood flow measurements | |
LANGLOIS et al. | Ultrasonic evaluation of the carotid bifurcation | |
Gao et al. | Characteristics of microembolic signals detected near their origins in middle cerebral artery stenoses | |
Tola et al. | B‐flow imaging for the measurement of residual lumen diameter of renal artery stenosis | |
Easton | Cerebral embolism and Doppler ultrasound | |
Manchev | Diagnostic Imaging of Carotid Artery | |
US11963818B2 (en) | Method and system for the measurement of haemodynamic indices | |
McNamara et al. | Emergency Doppler evaluation of the liver and kidneys |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20210706 |
|
RJ01 | Rejection of invention patent application after publication |