CN113066282B - 一种面向混行环境下车辆跟驰耦合关系建模方法及系统 - Google Patents

一种面向混行环境下车辆跟驰耦合关系建模方法及系统 Download PDF

Info

Publication number
CN113066282B
CN113066282B CN202110214367.3A CN202110214367A CN113066282B CN 113066282 B CN113066282 B CN 113066282B CN 202110214367 A CN202110214367 A CN 202110214367A CN 113066282 B CN113066282 B CN 113066282B
Authority
CN
China
Prior art keywords
vehicle
following
vehicles
acceleration
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110214367.3A
Other languages
English (en)
Other versions
CN113066282A (zh
Inventor
张俊杰
杨灿
于海洋
任毅龙
张骏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Hefei Innovation Research Institute of Beihang University
Original Assignee
Beihang University
Hefei Innovation Research Institute of Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University, Hefei Innovation Research Institute of Beihang University filed Critical Beihang University
Priority to CN202110214367.3A priority Critical patent/CN113066282B/zh
Publication of CN113066282A publication Critical patent/CN113066282A/zh
Application granted granted Critical
Publication of CN113066282B publication Critical patent/CN113066282B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开了一种面向混行环境下车辆跟驰耦合关系建模方法及系统,用于解析智能网联车与人工驾驶车辆之间的交互运动耦合关系。技术方案是基于不同车辆类型特点,考虑了人工驾驶车辆驾驶人对车辆信息的感知误差,构建一种考虑驾驶人感知误差的人工驾驶车辆跟驰模型,以及考虑了智能网联车辆可接受多前后车辆信息,构建了一种考虑多前后车信息反馈的智能网联车辆跟驰模型,比较分析在智能网联车辆处于低渗透率情况下,混行车流的演化情况,此方法可广泛应用于车路协同技术、智能交通管控等领域。

Description

一种面向混行环境下车辆跟驰耦合关系建模方法及系统
技术领域
本发明涉及车车协同安全控制领域领域,具体涉及一种面向混行环境下车辆跟驰耦合关系建模方法及系统。
背景技术
近年来,智能交通技术研究已从以解决交通管控为重点的阶段向以车车/车路通信为支撑的车路协同阶段发展。从国内外研究现状与发展动态来看,车路协同技术逐渐从实验室走向实际应用,而车辆混行将成为未来交通系统常态化运行模式,因此,揭示混行环境下的车流混沌现象的演变机理成为未来智能交通管控研究的难点问题。
经过对现有技术文献的检索发现,为了探索混行交通流的演变规律,国内外学者也做了一些研究工作。Zhang等人利用扩展的宏观交通流模型研究了客车和货车两种车辆混行环境下交通流的演化状态。Work等人研究了在人工驾驶车辆与自动驾驶车辆混行环境下的交通流演化规律。另外,Zhu和Zhang基于车辆跟驰模型也研究了人工驾驶车辆与自动驾驶车辆混行环境下的交通流演化规律。Li等人针对协同自适应巡航控制车辆应用数值仿真试验研究了不同协同自适应巡航控制车辆比例等条件下的交通流车辆追尾碰撞安全风险。Yu等人针对协同自适应巡航控制车辆跟驰策略控制,建立了基于记忆性车间距变化的协同自适应巡航控制车辆跟驰模型,数值实验结果表明所提出的协同自适应巡航控制车辆跟驰策略能够较好地平滑交通流速度波动以及改善交通流迟滞效应。Jia等人分别提出了基于车间通信以及车路通信的协同自适应巡航控制车辆跟驰控制策略,并对跟驰控制系统稳定性进行了理论分析,但缺乏对协同自适应巡航控制车辆与人工驾驶车辆混合交通流稳定性的优化分析。Ge等人利用最优化速度车辆跟驰模型,考虑前车加速度反馈建立了智能网联车辆跟驰模型并分析了智能网联车辆混行队列稳定性的动态特性。虽然已有的研究成果通过车辆跟驰模型研究了不同车辆混行情况下交通流的演化规律,但是鲜有从驾驶人风险感及其感知误差以及智能网联车辆低渗透率情况下,构建智能网联车与人工驾驶车辆之间跟驰耦合关系模型。因此,基于风险动态平衡理论,以期望安全裕度跟车模型为模型基础,提出一种面向混行环境下的车辆跟驰耦合关系模型。
发明内容
本发明提出的一种面向混行环境下车辆跟驰耦合关系建模方法及系统,具体是针对车辆混行跟驰过程中,解析智能网联车与人工驾驶车辆之间的交互运动耦合关系,此方法可广泛应用于车路协同技术、智能交通管控等领域。
为实现上述目的,本发明采用了以下技术方案:
一种面向混行环境下车辆跟驰耦合关系建模方法,包括以下步骤:
(1)交通情景设定,通过运动可控的引导车来设定需要模拟的交通情景;
(2)选取参数值,根据设定的交通情景选取参数的取值,包括驾驶人反应时间τ、车辆紧急制动反应时间τ1、车辆制动最大减速度d、多前后车信息反馈控制参数βii,i表示智能网联车在可接受的通信距离范围内队列前后车辆个数、加速度敏感系数α和期望安全裕度SMD
(3)获取所有车辆的初始状态;
(4)仿真模拟t>0时车辆队列的运动状态,假设前导车按照预先指定的方案运动,而跟驰车队按照混行环境下车辆跟驰耦合关系模型运动,来考察所有t>0时所有车辆的运动状态;
所述的一种面向混行环境下的车辆跟驰耦合关系模型,其运动方程:
Figure BDA0002953369020000021
其中,在车辆跟驰队列中,若人工驾驶的车辆前车为智能网联车时,则an(t+τ)表示网联车辆加速度;反之,则表示人工驾驶的车辆加速度;ε表示驾驶人感知误差,an(t)表示车辆实际加速度,
Figure BDA0002953369020000022
表示在给定的加速度ξ0下感知误差的条件概率分布函数服从均值为μ和方差为
Figure BDA0002953369020000031
的正态分布,vn(t)和vn-1(t)表示车辆n和n-1的速度,Dn(t)表示第n和n-1车之间的车间隙,m1和m2分别表示队列中第n辆网联车前车和车尾非网联车和网联车的数量。
另外,期望安全裕度SMD=0.9;车长设为5m;加速度敏感系数α=15m/s2;其他参数g=9.8m/s2,τ1=0.15s,τ=0.5s,τ2=0.5s,βi=0.2,γi=0.3,μ=0.2。
所有车辆的速度和位置按照如下规则进行更新,其计算公式为:
速度:vn(t)=vn(t-Δt)+a(t-Δt)×Δt,n=1,2,…N;
位置:
Figure BDA0002953369020000032
其中,Δt为加速度调节时间。
另一方面,本发明还公开一种面向混行环境下车辆跟驰耦合关系建模系统,
包括以下单元,
交通情景设定单元,用于通过运动可控的引导车来设定需要模拟的交通情景;
参数值选取单元,用于根据设定的交通情景选取参数的取值,包括驾驶人反应时间τ、车辆紧急制动反应时间τ1、车辆制动最大减速度d、多前后车信息反馈控制参数βii,i表示智能网联车在可接受的通信距离范围内队列前后车辆个数、加速度敏感系数α和期望安全裕度SMD
初始状态获取单元,用于获取所有车辆的初始状态;
仿真单元,用于仿真模拟t>0时车辆队列的运动状态,假设前导车按照预先指定的方案运动,而跟驰车队按照混行环境下车辆跟驰耦合关系模型运动,来
考察所有t>0时所有车辆的运动状态;
包括一种考虑驾驶感知误差的人工驾驶车辆的跟驰模型,其运动方程:
Figure BDA0002953369020000033
其中,在车辆跟驰队列中,若人工驾驶的车辆前车为智能网联车时,则an(t+τ)表示网联车辆加速度;反之,则表示人工驾驶的车辆加速度,τ是驾驶人反应时间,ε表示驾驶人感知误差,an(t)表示车辆实际加速度,
Figure BDA0002953369020000034
表示在给定的加速度ξ0下感知误差的条件概率分布函数服从均值为μ和方差为
Figure BDA0002953369020000041
的正态分布;
所有车辆的速度和位置按照如下规则进行更新,其计算公式为:
速度:vn(t)=vn(t-Δt)+a(t-Δt)×Δt,n=1,2,…N;
位置:
Figure BDA0002953369020000042
其中,Δt为加速度调节时间。
进一步的,还包括智能网联车辆跟驰模型建立单元,其运动方程:
Figure BDA0002953369020000043
Figure BDA0002953369020000044
其中,α是驾驶人的反应敏感系数,vn(t)是车辆n在t时刻的速度,xn(t)是车辆n在t时刻的位置,SMD是驾驶员的期望安全裕度,d是车辆最大制动加速度,an(t)是车辆n在t时刻的加速度,τ2是智能网联车辆响应时间,多前后车信息反馈控制参数βii,Dn(t)表示第n和n-1车之间的车间隙,m1和m2分别表示队列中第n辆网联车车前和车尾非网联车和网联车的数量。
第三方面,本发明还公开一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行如上述方法的步骤。
由上述技术方案可知,本发明的面向混行环境下车辆跟驰耦合关系建模方法及系统,基于不同车辆类型特点,考虑在智能网联车辆低渗率的情况下,兼顾人工驾驶车辆驾驶人对车辆信息的感知误差,构建一种面向混行环境下的车辆跟驰耦合关系模型。本发明中智能网联车辆与人工驾驶车辆按照面向混行环境下的车辆跟驰耦合关系模型进行跟驰运动。
综上所述,本发明公开了一种面向混行环境下车辆跟驰耦合关系建模方法及系统,用于解析智能网联车与人工驾驶车辆之间的交互运动耦合关系。技术方案是基于期望安全裕度模型,分别构建一种考虑驾驶人感知误差的人工驾驶车辆跟驰模型和一种考虑多前后车信息反馈的智能网联车辆跟驰模型,比较分析在智能网联车辆处于低渗透率情况下,混行车流的演化情况,此方法可广泛应用于车路协同技术、智能交通管控等领域。
附图说明
图1是本发明车辆队列跟驰运动示意图;
图2是本发明在不同智能网联车辆渗透率下的混合车流波动性对比图:(a)智能网联车占比0;(b)智能网联车占比10%。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。
如图1所示,本实施例所述的面向混行环境下车辆跟驰耦合关系建模方法,具体步骤如下:
(1)交通情景设定,通过运动可控的引导车来设定需要模拟的交通情景;
(2)选取参数值,根据设定的交通情景选取参数的取值,包括驾驶人反应时间τ、车辆紧急制动反应时间τ1、车辆制动最大减速度d、多前后车信息反馈控制参数βii,i表示智能网联车在可接受的通信距离范围内队列前后车辆个数、加速度敏感系数α和期望安全裕度SMD
(3)获取所有车辆的初始状态;
(4)仿真模拟t>0时车辆队列的运动状态,假设前导车按照预先指定的方案运动,而跟驰车队按照混行环境下车辆跟驰耦合关系模型运动,来考察所有t>0时所有车辆的运动状态。
所述的一种面向混行环境下的车辆跟驰耦合关系模型,其运动方程:
Figure BDA0002953369020000051
其中,在车辆跟驰队列中,若人工驾驶的车辆前车为智能网联车时,则an(t+τ)表示网联车辆加速度;反之,则表示人工驾驶的车辆加速度;ε表示驾驶人感知误差,an(t)表示车辆实际加速度,
Figure BDA0002953369020000061
表示在给定的加速度ξ0下感知误差的条件概率分布函数服从均值为μ和方差为
Figure BDA0002953369020000062
的正态分布,vn(t)和vn-1(t)表示车辆n和n-1的速度,Dn(t)表示第n和n-1车之间的车间隙,m1和m2分别表示队列中第n辆网联车前车和车尾非网联车和网联车的数量。
另外,期望安全裕度SMD=0.9;车长设为5m;加速度敏感系数α=15m/s2;其他参数g=9.8m/s2,τ1=0.15s,τ=0.5s,τ2=0.5s,βi=0.2,γi=0.3,μ=0.2。
所有车辆的速度和位置按照如下规则进行更新,其计算公式为:
速度:vn(t)=vn(t-Δt)+a(t-Δt)×Δt,n=1,2,…N;
位置:
Figure BDA0002953369020000063
其中,Δt为加速度调节时间。
以下具体举例说明:
本发明是基于期望安全裕度跟驰模型,构建一种面向混行环境下的车辆跟驰耦合关系模型,具体步骤如下:
(1)期望安全裕度车辆跟驰模型:
Figure BDA0002953369020000064
式中,α是驾驶人的反应敏感系数;vn(t)是车辆n在t时刻的速度;l为车辆的长度;xn(t)是车辆n在t时刻的位置;SMD是驾驶员的期望安全裕度;d是车辆最大制动加速度;an(t)是车辆n在t时刻的加速度;τ是驾驶人反应时间。
(2)建立一种考虑驾驶感知误差的人工驾驶车辆的跟驰模型:
Figure BDA0002953369020000065
(3)建立一种智能网联车辆跟驰模型:
Figure BDA0002953369020000071
Figure BDA0002953369020000072
(4)设定的交通场景,有N=50辆车包括智能网联车辆和人工驾驶车辆,以车头间距为L=35m随机均匀的分布在同一车道上。设初始时刻头车出现了一个小的扰动,头车编号为1,其他车按行驶方向依次编号。
(5)车辆初始状态的速度和位置如下:
Figure BDA0002953369020000073
式中,
Figure BDA0002953369020000074
是头车在
Figure BDA0002953369020000075
时刻一个小的加速度扰动,设其服从5×10-2×U(-1,1)的均匀随机分布。
(6)一种面向混行环境下的车辆跟驰耦合关系模型参数取值:
驾驶人反应时间τ:0.5s;
车辆紧急制动反应时间τ1:0.15s;
车辆响应时间τ2:0.5s;
车辆制动最大减速度d:7.5m/s2
加速度敏感系数α:15m/s2
期望安全裕度SMD:0.9;
多前后车信息反馈控制参数βii:0.2,0.3;
车辆长度l:5m;
其他常参量:g=9.8m/s2,m1=m2=2;
图2是在不同智能网联车辆渗透率下的混合车流波动性对比图:(a)智能网联车占比0;(b)智能网联车占比10%。从图中可以看出,在智能网联车与人工驾驶车辆混行可在一定程度上提高车流稳定性。
综上所述,本发明公开了一种面向混行环境下车辆跟驰耦合关系建模方法及系统,用于解析智能网联车与人工驾驶车辆之间的交互运动耦合关系。技术方案是基于期望安全裕度模型,分别构建一种考虑驾驶人感知误差的人工驾驶车辆跟驰模型和一种考虑多前后车信息反馈的智能网联车辆跟驰模型,比较分析在智能网联车辆处于低渗透率情况下,混行车流的演化情况,此方法可广泛应用于车路协同技术、智能交通管控等领域。
另一方面,本发明还公开一种面向混行环境下车辆跟驰耦合关系建模系统,
包括以下单元,
交通情景设定单元,用于通过运动可控的引导车来设定需要模拟的交通情景;
参数值选取单元,用于根据设定的交通情景选取参数的取值,包括驾驶人反应时间τ、车辆紧急制动反应时间τ1、车辆制动最大减速度d、多前后车信息反馈控制参数βii,i表示智能网联车在可接受的通信距离范围内队列前后车辆个数、加速度敏感系数α和期望安全裕度SMD
初始状态获取单元,用于获取所有车辆的初始状态;
仿真单元,用于仿真模拟t>0时车辆队列的运动状态,假设前导车按照预先指定的方案运动,而跟驰车队按照混行环境下车辆跟驰耦合关系模型运动,来考察所有t>0时所有车辆的运动状态;
包括一种考虑驾驶感知误差的人工驾驶车辆的跟驰模型,其运动方程:
Figure BDA0002953369020000081
其中,在车辆跟驰队列中,若人工驾驶的车辆前车为智能网联车时,则an(t+τ)表示网联车辆加速度;反之,则表示人工驾驶的车辆加速度,τ是驾驶人反应时间,ε表示驾驶人感知误差,an(t)表示车辆实际加速度,
Figure BDA0002953369020000082
表示在给定的加速度ξ0下感知误差的条件概率分布函数服从均值为μ和方差为
Figure BDA0002953369020000083
的正态分布;
所有车辆的速度和位置按照如下规则进行更新,其计算公式为:
速度:vn(t)=vn(t-Δt)+a(t-Δt)×Δt,n=1,2,…N;
位置:
Figure BDA0002953369020000084
其中,Δt为加速度调节时间。
进一步的,还包括智能网联车辆跟驰模型建立单元,其运动方程:
Figure BDA0002953369020000091
Figure BDA0002953369020000092
其中,α是驾驶人的反应敏感系数,vn(t)是车辆n在t时刻的速度,xn(t)是车辆n在t时刻的位置,SMD是驾驶员的期望安全裕度,d是车辆最大制动加速度,an(t)是车辆n在t时刻的加速度,τ2是智能网联车辆响应时间,多前后车信息反馈控制参数βii,Dn(t)表示第n和n-1车之间的车间隙,m1和m2分别表示队列中第n辆网联车车前和车尾非网联车和网联车的数量。
第三方面,本发明还公开一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行如上述方法的步骤。
可理解的是,本发明实施例提供的系统与本发明实施例提供的方法相对应,相关内容的解释、举例和有益效果可以参考上述方法中的相应部分。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (8)

1.一种面向混行环境下车辆跟驰耦合关系建模方法,其特征在于:包括以下步骤,
(1)交通情景设定,通过运动可控的引导车来设定需要模拟的交通情景;
(2)选取参数值,根据设定的交通情景选取参数的取值,包括驾驶人反应时间τ、车辆紧急制动反应时间τ1、车辆制动最大减速度d、多前后车信息反馈控制参数βii,i表示智能网联车在可接受的通信距离范围内队列前后车辆个数、加速度敏感系数α和期望安全裕度SMD
(3)获取所有车辆的初始状态;
(4)仿真模拟t>0时车辆队列的运动状态,假设前导车按照预先指定的方案运动,而跟驰车队按照混行环境下车辆跟驰耦合关系模型运动,来考察所有t>0时所有车辆的运动状态;
包括一种考虑驾驶感知误差的人工驾驶车辆的跟驰模型,其运动方程:
Figure FDA0002953369010000011
其中,在车辆跟驰队列中,若人工驾驶的车辆前车为智能网联车时,则an(t+τ)表示网联车辆加速度;反之,则表示人工驾驶的车辆加速度,τ是驾驶人反应时间,ε表示驾驶人感知误差,an(t)表示车辆实际加速度,
Figure FDA0002953369010000012
表示在给定的加速度ξ0下感知误差的条件概率分布函数服从均值为μ和方差为
Figure FDA0002953369010000013
的正态分布;
所有车辆的速度和位置按照如下规则进行更新,其计算公式为:
速度:vn(t)=vn(t-Δt)+a(t-Δt)×Δt,n=1,2,…N;
位置:
Figure FDA0002953369010000014
其中,Δt为加速度调节时间。
2.根据权利要求1所述的面向混行环境下车辆跟驰耦合关系建模方法,其特征在于:还包括建立一种智能网联车辆跟驰模型,其运动方程:
Figure FDA0002953369010000015
Figure FDA0002953369010000016
其中,α是驾驶人的反应敏感系数,vn(t)是车辆n在t时刻的速度,xn(t)是车辆n在t时刻的位置,SMD是驾驶员的期望安全裕度,d是车辆最大制动加速度,an(t)是车辆n在t时刻的加速度,τ2是智能网联车辆响应时间,多前后车信息反馈控制参数βii,Dn(t)表示第n和n-1车之间的车间隙,m1和m2分别表示队列中第n辆网联车车前和车尾非网联车和网联车的数量。
3.根据权利要求2所述的面向混行环境下车辆跟驰耦合关系建模方法,其特征在于:进一步包括:根据建立的一种智能网联车辆跟驰模型以及一种考虑驾驶感知误差的人工驾驶车辆的跟驰模型,形成一种面向混行环境下车辆跟驰耦合关系模型:
Figure FDA0002953369010000021
4.根据权利要求2所述的面向混行环境下车辆跟驰耦合关系建模方法,其特征在于:期望安全裕度SMD=0.9;车长设为5m;加速度敏感系数α=15m/s2;其他参数g=9.8m/s2,τ1=0.15s,τ=0.5s,τ2=0.5s,βi=0.2,γi=0.3,μ=0.2。
5.根据权利要求2所述的面向混行环境下车辆跟驰耦合关系建模方法,其特征在于:
选取参数为:
N=50辆车包括智能网联车辆和人工驾驶车辆,以车头间距为L=35m随机均匀的分布在同一车道上,多前后车信息反馈控制参数βii分别为0.2和0.3,驾驶人感知误差均值μ为0.2,分析在头车存在小扰动情况下,比较分析在有无智能网联车辆情况下所有车辆的速度波动情况。
6.一种面向混行环境下车辆跟驰耦合关系建模系统,其特征在于:包括以下单元,
交通情景设定单元,用于通过运动可控的引导车来设定需要模拟的交通情景;
参数值选取单元,用于根据设定的交通情景选取参数的取值,包括驾驶人反应时间τ、车辆紧急制动反应时间τ1、车辆制动最大减速度d、多前后车信息反馈控制参数βii,i表示智能网联车在可接受的通信距离范围内队列前后车辆个数、加速度敏感系数α和期望安全裕度SMD
初始状态获取单元,用于获取所有车辆的初始状态;
仿真单元,用于仿真模拟t>0时车辆队列的运动状态,假设前导车按照预先指定的方案运动,而跟驰车队按照混行环境下车辆跟驰耦合关系模型运动,来考察所有t>0时所有车辆的运动状态;
包括一种考虑驾驶感知误差的人工驾驶车辆的跟驰模型,其运动方程:
Figure FDA0002953369010000031
其中,在车辆跟驰队列中,若人工驾驶的车辆前车为智能网联车时,则an(t+τ)表示网联车辆加速度;反之,则表示人工驾驶的车辆加速度,τ是驾驶人反应时间,ε表示驾驶人感知误差,an(t)表示车辆实际加速度,
Figure FDA0002953369010000032
表示在给定的加速度ξ0下感知误差的条件概率分布函数服从均值为μ和方差为
Figure FDA0002953369010000033
的正态分布;
所有车辆的速度和位置按照如下规则进行更新,其计算公式为:
速度:vn(t)=vn(t-Δt)+a(t-Δt)×Δt,n=1,2,…N;
位置:
Figure FDA0002953369010000034
其中,Δt为加速度调节时间。
7.根据权利要求6所述的面向混行环境下车辆跟驰耦合关系建模系统,其特征在于:还包括智能网联车辆跟驰模型建立单元,其运动方程:
Figure FDA0002953369010000035
Figure FDA0002953369010000036
其中,α是驾驶人的反应敏感系数,vn(t)是车辆n在t时刻的速度,xn(t)是车辆n在t时刻的位置,SMD是驾驶员的期望安全裕度,d是车辆最大制动加速度,an(t)是车辆n在t时刻的加速度,τ2是智能网联车辆响应时间,多前后车信息反馈控制参数βii,Dn(t)表示第n和n-1车之间的车间隙,m1和m2分别表示队列中第n辆网联车车前和车尾非网联车和网联车的数量。
8.一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行如权利要求1至5中任一项所述方法的步骤。
CN202110214367.3A 2021-02-26 2021-02-26 一种面向混行环境下车辆跟驰耦合关系建模方法及系统 Active CN113066282B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110214367.3A CN113066282B (zh) 2021-02-26 2021-02-26 一种面向混行环境下车辆跟驰耦合关系建模方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110214367.3A CN113066282B (zh) 2021-02-26 2021-02-26 一种面向混行环境下车辆跟驰耦合关系建模方法及系统

Publications (2)

Publication Number Publication Date
CN113066282A CN113066282A (zh) 2021-07-02
CN113066282B true CN113066282B (zh) 2022-05-27

Family

ID=76559054

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110214367.3A Active CN113066282B (zh) 2021-02-26 2021-02-26 一种面向混行环境下车辆跟驰耦合关系建模方法及系统

Country Status (1)

Country Link
CN (1) CN113066282B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113936461B (zh) * 2021-10-15 2024-04-19 吉林大学 一种信号控制交叉口车辆混行的仿真方法和系统
CN114613131B (zh) * 2022-03-01 2023-03-28 北京航空航天大学 一种基于安全裕度的个性化前向碰撞预警方法
CN115497313A (zh) * 2022-08-12 2022-12-20 黑芝麻智能科技(重庆)有限公司 网联车队智能协同控制方法、系统、电子设备及存储介质
CN115601954B (zh) * 2022-12-13 2023-03-31 西南交通大学 一种智能网联车队的换道判断方法、装置、设备及介质
CN116030632B (zh) * 2023-02-10 2023-06-09 西南交通大学 一种面向混合交通流的性能指标计算方法及系统
CN116749925B (zh) * 2023-06-20 2024-05-07 哈尔滨工业大学 面向人机混驾的仿人工驾驶证据动态累积制动方法及系统
CN117238131B (zh) * 2023-09-14 2024-05-07 中国民航大学 一种车联网环境下交通流特性分析方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2354762B1 (en) * 2010-02-05 2013-11-27 Harman Becker Automotive Systems GmbH Navigation system and method for determining parameters in a navigation system
JP5501209B2 (ja) * 2010-12-15 2014-05-21 本田技研工業株式会社 車両の走行支援装置
US8692690B2 (en) * 2011-03-09 2014-04-08 Xerox Corporation Automated vehicle speed measurement and enforcement method and system
CN102662320A (zh) * 2012-03-05 2012-09-12 吴建平 一种基于模糊数学的车辆跟驰模拟方法
US9952594B1 (en) * 2017-04-07 2018-04-24 TuSimple System and method for traffic data collection using unmanned aerial vehicles (UAVs)
CN107554524B (zh) * 2017-09-12 2019-11-15 北京航空航天大学 一种基于主观危险感知的跟驰模型稳定性控制方法
CN108470448A (zh) * 2018-04-13 2018-08-31 西南交通大学 一种黄灯两难区风险评估方法
CN109978260B (zh) * 2019-03-26 2023-02-21 重庆邮电大学 混合交通流下网联车跟驰行为预测方法
CN110750877B (zh) * 2019-09-27 2024-05-03 西安理工大学 一种Apollo平台下的车辆跟驰行为预测方法
CN110851995B (zh) * 2019-11-27 2023-06-06 河北工业大学 一种混合交通流跟驰系统及仿真方法
CN111532262B (zh) * 2020-05-14 2021-05-28 中南大学 自动驾驶车辆后端防撞控制方法、系统、计算机、存储介质
CN111724603B (zh) * 2020-07-01 2021-05-18 中南大学 基于交通轨迹数据的cav状态判定方法、装置、设备及介质
CN111985092B (zh) * 2020-07-30 2024-05-31 哈尔滨工业大学 一种智能汽车仿真测试矩阵生成方法
CN111968372B (zh) * 2020-08-25 2022-07-22 重庆大学 一种考虑主观因素的多车型混合交通跟驰行为仿真方法

Also Published As

Publication number Publication date
CN113066282A (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
CN113066282B (zh) 一种面向混行环境下车辆跟驰耦合关系建模方法及系统
CN113219962B (zh) 一种面向混行队列跟驰安全的控制方法、系统及存储介质
CN111348016B (zh) 一种基于v2x的车队协同制动方法及系统
Deng A general simulation framework for modeling and analysis of heavy-duty vehicle platooning
CN106997690B (zh) 一种车联网环境下高速公路车辆非强制换道控制方法
Han et al. Decentralized longitudinal tracking control for cooperative adaptive cruise control systems in a platoon
CN108569287A (zh) 生成车辆控制命令的方法和装置、车辆控制器、存储介质
CN109101689B (zh) 一种基于车辆行为调整模型的用于最佳跟驰车距计算的曲线拟合建模方法
CN113096402B (zh) 一种基于智能网联车辆的动态限速控制方法、系统、终端及可读存储介质
Lang et al. Predictive cooperative adaptive cruise control: Fuel consumption benefits and implementability
CN113312752A (zh) 一种主路优先控制交叉口交通仿真方法及装置
CN111047047A (zh) 驾驶模型的训练方法和装置、电子设备、计算机存储介质
CN113511203B (zh) 车辆编队跟驰行驶控制方法、系统、设备及存储介质
Han et al. Energy impact of connecting multiple signalized intersections to energy-efficient driving: Simulation and experimental results
Jiang et al. Risk Modeling and Quantification of a Platoon in Mixed Traffic Based on the Mass‐Spring‐Damper Model
Ding et al. Model predictive enhanced adaptive cruise control for multiple driving situations
Kavas-Torris et al. A Comprehensive Eco-Driving Strategy for Connected and Autonomous Vehicles (CAVs) with Microscopic Traffic Simulation Testing Evaluation
CN115952641A (zh) 基于元胞自动机的双车道自动-手动驾驶车辆交通流仿真方法
CN111767648B (zh) 一种基于简化的社会力计算模型的混合交通仿真方法
Xia et al. Analysis of Driver’s Behavior under Following-Go Scenario
Qin et al. Two-lane multipoint overtaking decision model based on vehicle network
Thormann Cooperative platooning: Development and co-simulation-based validation of distributed model predictive control methods for safe and efficient cooperative platooning
CN114802133B (zh) 考虑舒适性的自动紧急制动自适应控制方法
Qiao et al. The Impact of Connected and Autonomous Trucks on Freeway Traffic Flow
Suzuki et al. Controlling Vehicle Platoon to Alleviate Shockwave Propagation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant