CN113063529A - 一种微机械谐振式压力传感器及制造方法 - Google Patents

一种微机械谐振式压力传感器及制造方法 Download PDF

Info

Publication number
CN113063529A
CN113063529A CN202110299610.6A CN202110299610A CN113063529A CN 113063529 A CN113063529 A CN 113063529A CN 202110299610 A CN202110299610 A CN 202110299610A CN 113063529 A CN113063529 A CN 113063529A
Authority
CN
China
Prior art keywords
resonant
pressure
silicon wafer
silicon
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110299610.6A
Other languages
English (en)
Inventor
饶宾期
周凯
刘婧琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN202110299610.6A priority Critical patent/CN113063529A/zh
Publication of CN113063529A publication Critical patent/CN113063529A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • G01L1/162Measuring force or stress, in general using properties of piezoelectric devices using piezoelectric resonators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2206Special supports with preselected places to mount the resistance strain gauges; Mounting of supports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • G01L1/2293Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges of the semi-conductor type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • G01L9/0048Details about the mounting of the diaphragm to its support or about the diaphragm edges, e.g. notches, round shapes for stress relief
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/008Transmitting or indicating the displacement of flexible diaphragms using piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/04Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of resistance-strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/08Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of piezoelectric devices, i.e. electric circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0264Pressure sensors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

本发明公开了一种微机械谐振式压力传感器及制造方法。所述微机械谐振式压力传感器包括感压膜、支撑梁和谐振梁;所述谐振梁置于感压膜上方,支撑梁根部形成有激励电阻和检查电阻;所述支撑梁形成于谐振梁上方,每个支撑梁根部制作检测电阻用于检测支撑梁根部应变;所述感压膜由经过各向异性腐蚀液腐蚀SOI硅片背面形成;本发明采用梁‑膜一体化结构,改善传感器压力与谐振频率的线性变化,提高传感器的压力灵敏度和线性度;本发明采用双谐振梁差分结构,两个谐振梁具有相同的固有频率,利用差频输出来表征传感器的压力特性,消除了由于温度等环境因素引起的工作梁谐振频率的变化,从而提高了传感器的测量精度和稳定性。

Description

一种微机械谐振式压力传感器及制造方法
技术领域
本发明涉及一种微机械谐振式压力传感器,适用于微电子机械系统(MEMS)领域。
背景技术
基于MEMS技术的硅微机械谐振压力传感器是目前市场上最精确的压力传感器之一,具有体积小、重量轻、功耗低、结构紧凑、易于集成化和利于批量生产等众多优点。在航空航天、工业过程控制和其它精密测量场合十分适用,并在军事和民用领域有着十分广泛的应用和巨大的市场。
然而现有的微机械谐振式压力传感器存在着等问题。高温、高辐射、高湿等条件下,传感器容易发生电荷漂移而导致性能不稳定,导致精确度下降。在以上恶劣的环境中,传感器的关键结构的材料发生特性失配,如谐振梁机械强度变化,也会导致传感器性能下降。
发明内容
为克服现有技术的缺陷,本发明的实施案例提供一种微机械谐振式压力传感器,可以消除由于温度等环境因素引起的工作梁谐振频率的变化,提高了传感器的测量精度和稳定性。
为实现上述压力传感目的,本发明提供以下技术方案:一种微机械谐振式压力传感器,它包括硅片、绝缘层、谐振梁、支撑梁、压感膜、腔室、电阻和焊盘。谐振梁置于感压膜上方,谐振梁根部有激励电阻和检查电阻;检测电阻用于检测谐振梁根部应变;谐振梁、感压膜是由一块(100)面SOI硅片在腐蚀液中经过各向异性腐蚀后得到。
所述传感器具有双梁差分式结构,两根梁对称且具有相同固有频率。
所述压感膜悬置于两个硅岛之间,感压膜与支撑梁相连接。
所述谐振梁由氮化硅薄膜、支撑梁和硅层组成。
一种微机械谐振式压力传感器的制造方法方法,包括如下步骤:
步骤S1:原始硅片是(100)面双面抛光SOI硅片,在硅片正反两面制作绝缘层;
步骤S2:光刻背腐蚀窗口,去除背腐蚀窗口内的绝缘层,并利用各向异性腐蚀工艺去除背腐蚀窗口内的硅形成深坑;
步骤S3:去除背面的绝缘层,SOI硅片背面与另一块(100)面双面抛光硅片键合,键合后的硅片背面制作绝缘层保护;
步骤S4:正面绝缘层上沉积多晶硅,掺杂、光刻制作电阻。溅射、光刻制作引线和焊盘;
步骤S5:正面沉积氮化硅掩蔽层,光刻谐振梁和支撑梁图形,去除图形外的氮化硅掩蔽层和绝缘层;
步骤S6:正面刻蚀谐振梁和支撑梁图形外的硅衬底直至埋氧化层。光刻焊盘,去除焊盘上的氮化硅掩蔽层;
步骤S7:氢氟酸腐蚀埋氧化层,释放谐振梁、支撑梁和压感膜。
上述的制备方法中,硅片的采用电阻率小于0.5Ω·cm。
上述的制备方法中,硅片正面硼扩散是在980℃,氮气坏境,扩散时间为50分钟。
上述的制备方法中,腐蚀液为氢氧化钾溶液。
上述的制备方法中,背腐蚀坑的深度至少达到150微米。
有益效果:与现有传感器相比,本发明具有以下优点:
本发明采用梁-膜一体化结构,改善传感器压力与谐振频率的线性变化,提高传感器的压力灵敏度和线性度;采用双谐振梁差分结构,两个谐振梁具有相同固有频率,利用差频输出表征传感器的压力特性,消除由于温度等环境因素引起的工作梁谐振频率的变化,从而提高了传感器的测量精度和稳定性。
附图说明
图1为本发明提供的一种微机械谐振式压力传感器的三维结构图。
图2为绝缘层上等距排列的电阻,同时电阻外侧有等距排布的焊盘。
图3~11为本发明一实施例中压阻式的微机械压力传感器的一个或多个制备步骤所产生的结构的示意图;
具体实施方式
下面通过具体实施例进一步说明本发明的实质性特点。
所述微机械谐振式压力传感器包括感压膜、支撑梁和谐振梁;所述谐振梁置于感压膜上方,支撑梁根部形成有激励电阻和检查电阻;所述支撑梁形成于谐振梁上方,支撑梁根的部制作检测电阻用于检测支撑梁的根部应变。
如图1所示,为本发明提供的一种微机械谐振式压力传感器的三维结构图,所述传感器有两根具有相同固有频率的谐振梁;传感器采用差分结构,利用差频输出消除环境温度引起的频率变化。
本实施例的制作工艺步骤如下(图3至图11):
步骤S1,原始硅片是(100)面双面抛光的SOI硅片,通过1150℃热氧化,在硅片正反两面生长制作绝缘层;
步骤S2,光刻背腐蚀窗口,去除背腐蚀窗口内的绝缘层,利用各向异性腐蚀工艺去除背腐蚀窗口内的硅,形成背腐蚀坑;
步骤S3,用氢氟酸去除背面的绝缘层,将SOI硅片的背面与盖板进行键合,键合后的硅片背面制作绝缘层保护。盖板是一块(100)面双面抛光硅片;
步骤S4,正面绝缘层用低压化学气相淀积法淀积多晶硅薄膜,厚度在0.3μm以内;多晶硅薄膜在980℃,氮气坏境中掺杂硼,掺杂时间为50分钟。光刻出激励电阻和检查电阻的图形,用离子刻蚀机刻蚀图形外的多晶硅薄膜,形成激励电阻和检查电阻;
步骤S5,光刻引线和焊盘的图形,并用离子刻蚀机刻蚀图形。用溅射台淀积Au,制作引线和焊盘,厚度在04-0.8μm;
步骤S6,硅片正面淀积氮化硅掩蔽层,光刻出谐振梁和支撑梁图形,用离子刻蚀机去除图形外的氮化硅掩蔽层和绝缘层,直至埋氧化层后停止刻蚀;
步骤S7,硅片正面光刻焊盘图形,刻蚀除去焊盘上面的氮化硅掩蔽层;。
步骤S8,用氢氟酸腐蚀埋氧化层,释放出谐振梁和感压膜。
综上所述,本发明提出的一种微机械压力传感器及其制造方法,所采用的双谐振梁差分结构,一定程度上消除由于温度等环境因素引起的工作梁谐振频率的变化,从而提高了传感器的测量精度和稳定性。

Claims (6)

1.一种微机械谐振式压力传感器,其特征在于:具有双梁差分式结构;所述结构具有谐振梁、支撑梁、感压膜;所述谐振梁位于感压膜上方;所述谐振梁的根部有激励电阻和检查电阻;所述谐振梁、感压膜是由一块(100)面SOI硅片在腐蚀液中经过各向异性腐蚀后得到;所述谐振梁由低压化学气相法淀积的氮化硅薄膜、支撑梁和硅层组成;
所述传感器结构的制造方法如下:
原始硅片是(100)面双面抛光SOI硅片,在硅片正反两面制作绝缘层;
光刻背腐蚀窗口,去除背腐蚀窗口内的绝缘层,并利用各向异性腐蚀工艺得到背腐蚀坑;
去除背面的绝缘层,将SOI硅片与盖板键合,在键合后的硅片背面制作绝缘层保护;
硅片正面绝缘层上沉积多晶硅薄膜,硅片正面硼扩散、光刻并刻蚀多晶硅薄膜形成激励电阻和检查电阻;
正面沉积氮化硅掩蔽层,光刻谐振梁的掩膜图形,刻蚀图形外的氮化硅掩蔽层和绝缘层;
正面刻蚀谐振梁图形外的硅层,光刻焊盘掩膜图形,刻蚀焊盘上的氮化硅掩蔽层;
在氢氟酸腐蚀埋氧化层,释放谐振梁和压感膜。
2.根据权利要求1所述的一种微机械谐振式压力传感器,其特征在于:所述传感器具有双梁差分式结构,两根梁对称且具有相同固有频率。
3.根据权利要求1所述的一种微机械谐振式压力传感器,其特征在于:所述SOI硅片的电阻率小于0.5Ω·cm。
4.根据权利要求1所述的一种微机械谐振式压力传感器,其特征在于:所述硅片正面硼扩散是在980℃,氮气坏境,扩散时间为50分钟。
5.根据权利要求1所述的一种微机械谐振式压力传感器,其特征在于:所述腐蚀液为氢氧化钾溶液。
6.根据权利要求1所述的一种微机械谐振式压力传感器,其特征在于:所述背腐蚀坑的深度至少达到150微米。
CN202110299610.6A 2021-03-19 2021-03-19 一种微机械谐振式压力传感器及制造方法 Pending CN113063529A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110299610.6A CN113063529A (zh) 2021-03-19 2021-03-19 一种微机械谐振式压力传感器及制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110299610.6A CN113063529A (zh) 2021-03-19 2021-03-19 一种微机械谐振式压力传感器及制造方法

Publications (1)

Publication Number Publication Date
CN113063529A true CN113063529A (zh) 2021-07-02

Family

ID=76562762

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110299610.6A Pending CN113063529A (zh) 2021-03-19 2021-03-19 一种微机械谐振式压力传感器及制造方法

Country Status (1)

Country Link
CN (1) CN113063529A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102608356A (zh) * 2011-12-06 2012-07-25 中国计量学院 一种双轴体微机械谐振式加速度计结构及制作方法
CN106706958A (zh) * 2015-11-15 2017-05-24 重庆松瑞汽车销售有限公司 微机械硅谐振梁加速度计
CN108931321A (zh) * 2018-06-21 2018-12-04 中国计量大学 梁-岛-膜一体化谐振式压力传感器结构及制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102608356A (zh) * 2011-12-06 2012-07-25 中国计量学院 一种双轴体微机械谐振式加速度计结构及制作方法
CN106706958A (zh) * 2015-11-15 2017-05-24 重庆松瑞汽车销售有限公司 微机械硅谐振梁加速度计
CN108931321A (zh) * 2018-06-21 2018-12-04 中国计量大学 梁-岛-膜一体化谐振式压力传感器结构及制造方法

Similar Documents

Publication Publication Date Title
US11226251B2 (en) Method of making a dual-cavity pressure sensor die
WO2017028466A1 (zh) 一种mems应变计芯片及其制造工艺
WO2017028465A1 (zh) 一种mems压力计芯片及其制造工艺
CN1974372B (zh) 差压/绝压/温度三参数单片集成传感器芯片
WO2017148215A1 (zh) 一种压力计芯片及其制造工艺
CN108931321B (zh) 梁-岛-膜一体化谐振式压力传感器结构及制造方法
CN109485011B (zh) 基于Si-Si-Si-玻璃晶圆键合技术的MEMS谐振压力传感器及制造工艺
Wang et al. Monolithic integration of pressure plus acceleration composite TPMS sensors with a single-sided micromachining technology
Basov et al. Investigation of high-sensitivity piezoresistive pressure sensors at ultra-low differential pressures
CN108254106A (zh) 一种硅硅玻璃硅四层结构谐振式mems压力传感器制备方法
CN112284607B (zh) 一种十字岛耐高温耐腐蚀压力传感器芯片及制备方法
CN105181231A (zh) 一种封装结构的压力传感器及其制备方法
CN111122044A (zh) 一种机载航空高灵敏度输出压力芯片及其制备方法
CN104045049A (zh) 一种基于硅层转移技术(solt)的高精度加速度计的加工方法
CN112034204A (zh) 一种联动接触电容式加速度敏感芯片及其制造方法
CN114275731A (zh) 一种基于mems的双梁式微压感测芯体及其制备工艺
CN113465791B (zh) 一种谐振式压力传感器及其制备方法
CN112284605B (zh) 一种十字岛梁膜高温微压传感器芯片及制备方法
CN104181331B (zh) 一种压阻式加速度传感器及其制造方法
CN116399506A (zh) 一种宽量程mems电容真空传感器及其制备方法
CN113063529A (zh) 一种微机械谐振式压力传感器及制造方法
CN115824468A (zh) 一种基于soi的小量程高灵敏度压力传感器芯片及制备方法
CN109813490B (zh) 一种mems电容式真空规及其制作方法
CN111122904B (zh) 一种三明治加速度计微结构制作方法
CN102259824A (zh) 一种基于晶圆键合技术的黏度传感器芯片及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210702